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Simple Summary: Supplementation of agriculture by-product as functional feed additives in combi-
nation with biofloc technology (a sustainable and environmentally friendly technology) has recently
gained much attention in aquaculture. In the present study, sugarcane bagasse powder can possibly
be applied as a feed additive to improve growth performance, immune response, and immune and
antioxidant-related gene expression.

Abstract: We investigated, herein, the effects of dietary inclusion of sugarcane bagasse powder (SB)
on Nile tilapia development, mucosal and serum immunities, and relative immune and antioxidant
genes. Fish (15.12 ± 0.04 g) were provided a basal diet (SB0) or basal diet incorporated with SB at
10 (SB10), 20 (SB20), 40 (SB40), or 80 (SB80) g kg−1 for 8 weeks. Our results demonstrated that the
dietary incorporation of sugarcane bagasse powder (SB) at 20 and 40 g kg−1 significantly ameliorated
FW, WG, and SGR as opposed to fish fed basal, SB10, and SB80 diets. However, no significant changes
in FCR and survivability were observed between the SB supplemented diets and the control (basal
diet). The mucosal immunity exhibited significantly higher SMLA and SMPA activities (p < 0.005)
in fish treated with SB diets after eight weeks. The highest SMLA and SMPA levels were recorded
in fish fed SB80 followed by SB20, SB40, and SB10, respectively. For serum immunity, fish fed SB
incorporated diets significantly ameliorated SL and RB levels (p < 0.05) compared with the control.
However, SP was not affected by the inclusion of SB in any diet throughout the experiment. The
expression of IL1, IL8, LBP, GSTa, GPX, and GSR genes in the fish liver was significantly increased in
fish fed the SB20 and SB10 diets relative to the basal diet fed fish (p < 0.05); whereas only the IL8, LBP,
and GPX genes in the intestines were substantially augmented via the SB20 and SB80 diets (p < 0.05).
IL1 and GSR were not influenced by the SB incorporated diets (p > 0.05). In summary, sugarcane
bagasse powder (SB) may be applied as a feed additive to improve growth performance, immune
response, and immune and antioxidant-related gene expression in Nile tilapia.

Keywords: sugarcane bagasse; Nile tilapia; growth performance; immune response; gene expressions

1. Introduction

The aquaculture industry produces upwards of half of the globe’s seafood and is
responsible for a dramatic expansion of human food production [1,2]. Nile tilapia is one
of the most widely cultivated fish worldwide, due to its flexibility and high economic
value [3,4]. Nevertheless, the super-intensification of tilapia farming has imposed serious
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strains on several cultured ecosystems and has increased susceptibility to diseases, espe-
cially bacterial infections [5,6], giving rise to sizable death rates and significant property
damage [7]. Antibiotics have been commonly used in the past century to prevent and treat
bacterial infections all over the world [8]. Antibiotic therapies, on the other hand, have
promoted the development of antimicrobial bacteria and the deterioration of cultivated
ecosystems [9]. Contrastingly, feed cost in super-intensive fish farming can account for up
to 70% of overall operational costs [10,11] and is often performed solely with rations [12].
As protein-based feedstuff in aquafeed adds significantly to the cost, the application of
non-protein feedstuff, including lipids and carbohydrates, can diminish the use of protein
as an energy source [13,14]. In this regard, to keep pace with considerable developments
taking place in the aquaculture industry, advance manufactured technologies, especially
concerning cost-effective feed and environmentally friendly cultured systems, are needed.

The application of functional supplements has grown in popularity in fish farm-
ing [15,16]. Agricultural co-products, in this sense, provide a potential source of dietary
fibers, acting as prebiotics, that may be used as biomedical compounds to cure symp-
toms associated to intestinal alteration [17]. Sugarcane bagasse (SB) is one option for this
commodity. SB is an abundantly produced by-product from the sugar-making process
after the sugarcane juice has been extracted [18], and is estimated to account for about
78.04 thousand metric tons yearly [19]. Due to the deficiency of profitable treatments
and recirculation manners, most SB is burned, discarded, or utilized as pulp [20–22]. As
with many other agricultural by-products, SB is rich in polysaccharides, which include
cellulose and hemicellulose [23–26]. SB hemicellulose is mostly made up of xylan, which is
of special concern, given that xylooligosaccharides (XOS) represent a potential prebiotic
compound [18,27–29]. Therefore, employing such a by-product would generate a value-
added element to this manufacturing waste and offer a valuable and much-needed raw
resource for pharmaceutical and aquacultural industries [30].

Fish, like many vertebrates, possess a complicated immune system, including innate
and specific immune responses. The first layer of defense includes epidermal mucus that is
varied biologically in its activated components, including lectins, lysozymes, antibacterial
peptides, and immunoglobulins [31–33]. Furthermore, cytokines, as a part of cell-mediated
immune response, are simple water-soluble polypeptides, which are secreted by several
immune cells in response to antigens [34]. Lipopolysaccharide binding protein (LBP)
gene is involved in the acute-phase immunologic response to bacterial infections in Nile
tilapia against Streptococcus agalactiae and Aeromonas hydrophila [35]. On the other hand,
the glutathione (GSH)-relative antioxidant system plays a key role in the intercellular
defense mechanism counteracting oxidative stress, which is involved of GSH and its
related enzymes, including glutathione peroxidase (GPx), glutathione reductase (GR), and
glutathione S-transferase (GST) [36,37].

Biofloc technology (BFT) has become a profitable, ecologically responsible, and sus-
tainable aquaculture system [38–41]. This technology is primarily founded on the principle
of waste nutrient recycling, especially nitrogen, into microbial biomass that can be used
in situ by the culture fish and shellfish or be harvested and processed into feed ingredi-
ents [42]. As demonstrated in previous research, biofloc technology has shown numerous
positive effects on water quality, productivity, immune response, and disease prevention in
aquaculture [38,39]. Prebiotics derived from agricultural by-products, on the other hand,
play an equally essential role in aquaculture farming [43,44]. The addition of these products
to the biofloc system is intended to enhance favorable microorganisms, not only in the
cultured water but also in the host’s gut to combat the potentially harmful bacteria. Recent
studies have been undertaken in accordance with this theory, in which biofloc water was
found to significantly enhance water quality, the host’s performance, immune response,
and disease resistance [45,46]. The effects of SB within the biofloc represents a novel and
multidisciplinary strategy that has yet to be thoroughly explored through research. We
speculated that the symbiotic relationship between SB powder and the biofloc system may
strengthen Nile tilapia’s health and performance. The present study, thereby, investigated
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the impact of SB on performance, non-specific immune response, and relative immune and
antioxidant gene expressions of Nile tilapia raised in the biofloc system.

2. Materials and Methods
2.1. Sugarcane Bagasse Powder Preparing

Sugarcane bagasse was collected from a local market, oven-dried for 48 h at 60 ◦C,
pulverized, sieved through a 100-mesh screener, and then retained at 4 ◦C for further use.

2.2. Diets Description

Five trial diets were developed with the inclusion of SB at different rates: SB0, the
control (0 g kg−1), SB10 (10 g kg−1), SB20 (20 g kg−1), SB40 (40 g kg−1), and SB80 (80 g kg−1)
(Table 1). Feedstuffs were mixed and combined; then oil and distilled water were appended
to make the dough. The product was then converted into pellets, then dehydrated at 50 ◦C
to reach ~10% moisture, and preserved in bags at 4 ◦C.

Table 1. The formulation and proximate composition of the experiment (g kg−1).

Ingredients SB0 SB10 SB20 SB40 SB80

Fish meal 150 150 150 150 150
Corn meal 200 200 200 200 200
Soybean

meal 390 390 390 394 400

Wheat flour 70 70 70 70 70
Rice bran 150 150 145 126 80

SB 1 0 10 20 40 80
Cellulose 20 10 5 0 0

Soybean oil 5 5 5 5 5
Premix 2 10 10 10 10 10

Vitamin C 3 5 5 5 5 5
Proximate composition of the experimental diets (%)

Crude
protein 32.6 32.4 32 31.4 31.8

Crude lipid 2.34 2.57 2.69 3.58 2.68
Fiber 3.75 3.83 4.35 4.76 5.06
Ash 7.75 7.72 7.67 7.50 7.34

Dry matter 96.63 96.80 94.02 93.97 96.8
GE (cal/g) 4 4239 4255 4200 4214 4219

1 SB = sugarcane bagasse; 2 vitamin and trace mineral mix supplemented as follows (IU kg–1 or g kg–1 diet): retinyl
acetate 1,085,000 IU; cholecalciferol 217,000 IU; D, L-a-tocopherol acetate 0.5 g; thiamin nitrate 0.5 g; pyridoxine
hydrochloride 0.5 g; niacin 3 g; folic 0.05 g; cyanocobalamin 10 g; Ca pantothenate 1 g kg−1; inositol 0.5 g; zinc 1 g;
copper 0.25 g; manganese 1.32 g; iodine 0.05 g; sodium 7.85 g; 3 Vitamin C 98% 8 g; 4 GE = gross energy.

2.3. Experimental Design

Nile tilapia were purchased from Chiang Mai Patana Farm and distributed in cages.
In the adaptation period, fish were fed the control diet for two weeks. Their internal organs
and gills were checked regularly by a light microscope to determine their health status.
Thereafter, three hundred fish with an average weight of 15.12 ± 0.04 g were randomly
dispersed into 15 tanks (150 L) and provided diets reiterated in triplicates. Twenty fish were
stocked per tank, and the fish were fed to satiation twice daily, at 8:30 a.m. and 4:30 p.m.,
under a photoperiod of 12:12 h of darkness and light.

2.4. Biofloc Water Preparation

The tanks were prepared as the BF source of inoculants 3 weeks before the trial. To
prepare the floc water, 2 g wheat flour, 400 g salt (400 g per tank), 5 g dolomite, and
5 g molasse were added to each tank. During the experimental period, the C:N ratio
was maintained at 15:1 by adding molasses (40% C) as a carbon source, according to
Avnimelech [47]. The C:N ratio was schematically computed based on the leftover nitrogen
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level in each tank, as well as the contribution of the diet [48]. Molasse was added daily, two
hours post-feeding.

2.5. Samples Preparation

The mucus of the skin was collected, as described by Khodadadian Zou, Hoseinifar,
Kolangi Miandare, and Hajimoradloo [49], after four and eight weeks of feeding. Briefly,
fish were anesthetized with clove oil and smoothly massaged in a bag containing 50 mM
NaCl. Subsequently, a sterile tube was used to centrifuge the solution at 1500 g at 4 ◦C
for ten minutes. Afterward, supernatant (500 µL) was collected and kept in a freezer for
further analysis.

The serum from blood samples was separated, as described in our previous stud-
ies [50,51] and preserved at −20 ◦C for further analyses. Briefly, blood (1 mL) was collected
via the caudal vein of each fish using a 1mL syringe and immediately released into 1.5 mL
Eppendorf tubes without anticoagulant. The blood samples were then led to clot at room
temperature for one hour and stored in a refrigerator (4 ◦C) for four hours. After that, the
samples were centrifuged at 1500× g for five minutes at 4 ◦C, and the anticipated serum
was gathered using a micro-pipette and stored at −80 ◦C for further evaluation.

Leukocytes were prepared following the technique described in previous stud- ies
[50,51]. Briefly, one milliliter of blood was withdrawn from each fish at a rate of three
fish per replication and then transferred into 15 mL tubes containing 2 mL of RPMI 1640
(Gibthai, Bangkok, Thailand). This mixture was then carefully inserted into 15mL tubes,
containing 3 mL of Histopaque (Sigma, St. Louis, MO, USA). These tubes were then
centrifuged at 400 g for 30 min at room temperature. Upon completion, a buffy coat of
leucocyte cells that drifted to the top of the Histopaque was carefully collected using a
Pasteur pipette, and released into sanitized 15 mL tubes, after which 6mL of phosphate
buffer solution (PBS: Sigma-Aldrich, St. Louis, MO, USA) was added to each tube and
gently aspirated. The cells in these tubes were washed twice by centrifugation at 250× g for
ten minutes at room temperature to remove any residual Histopaque. The cells obtained
were then re-suspended in the PBS and adjusted to the numbers of cells required to evaluate
phagocytic and respiratory burst activities.

2.6. Immunological Parameters and Growth Performance

Lysozyme activity was detected according to Parry, Chandan, and Shahani [52] and
presented as µg mL−1. Briefly, 25 µL of undiluted serum and 100 µL of skin mucus from
each fish was loaded onto 96-well plates in triplication. Micrococcus lysodeikticus (175 µL,
0.3 mg mL−1 in 0.1 M citrate phosphate buffer, pH 5.8) was then added to each well. The
contents were rapidly mixed, and any changes in turbidity were measured every 30 s for
five minutes at 540 nm and 25 ◦C via a microplate reader. The sample’s equivalent unit of
activity was determined and compared with the standard curve, which was generated from
the reduction of OD value vs. the concentration of hen egg-white lysozyme ranging from
0–20 µL mL−1 (Sigma Aldrich, St. Louis, MO, USA), and expressed as µg mL−1 serum.

Peroxidase measurements were determined as stated by Van Doan, Hoseinifar, Da-
wood, Chitmanat, and Tayyamath [53]. Briefly, 5 µL of undiluted serum or skin mucus
from each fish was placed on 96-flat-bottomed-well plates in triplicate. Then, 45 µL of
Hank’s Balanced Salt Solution (without Ca+2 or Mg+2) was added to each well. Afterward,
100 µL of solution (40 mL of distilled water + 10 µL of H2O2, 30%; Sigma Aldrich + one
pill of 3,3′,5,5′-tetramethylbenzidine, TMB; Sigma Aldrich) was then added to each well.
When the reaction color turned blue, after 30 to 60 s, a 50 µL solution of 2M H2SO4 was
immediately added to each well. The optical density was then read at 450 nm via a mi-
croplate reader (Synergy H1, BioTek, Winooski, VT, USA). Samples not containing serum
or skin mucus were considered to be blanks. A single unit was defined as the amount that
produces an absorbance change, expressed as units (U) mL−1 of serum or mucus through
the following equation: Peroxidase activity = [absorbance of the sample] − [absorbance of
blank containing all solution without serum or mucus sample].
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Respiratory burst activity was determined according to the protocol described by Sec-
omebs [54], and growth parameters utilized the equations of Doan, Hoseinifar, Jaturasitha,
Dawood, and Harikrishnan [55]. Briefly, 175 µL PBS cell suspension at a concentration
of 6 × 106 cells mL−1 was loaded into the 96 well plates in triplication. Then, 25 µL of
nitro blue tetrazolium (NBT) at a concentration of 1mg mL−1 was added to each well
and incubated for two hours at room temperature. Later, the supernatant was carefully
discarded from each well, and 125 µL of 100% methanol was then added into each well
for five minutes to fix the cells. After that, 125 µL of 70% methanol well−1 were added
into each well, twice, for clean-up. The plates were then dried for thirty minutes at room
temperature. Then, 125 µL of 2N KOH and 150 µL of DMSO were added to each well.
Afterward, the plates were measured at 655 nm via microplate-reader (Synergy H1, BioTek,
USA), according to the following: Spontaneous O2

- production = [absorbance NBT reduc-
tion of the sample] − [absorbance of blank containing 125 µL of 2N KOH and 150 µL with
no leucocytes].

2.7. Immune and Antioxidant-Related Genes Expression in Liver and Intestine
2.7.1. Tissue Sampling

At the end of the experiment, three fish from each treatment were randomly selected
for liver and intestine collection. Fish were dissected and their liver and intestine tissues
(25–50 mg) were removed and transferred to a 1.5 Eppendorf tube containing 500 µL of
Trizol (Invitrogen #1IV11-15596-026), then frozen at −80 ◦C until RNA extraction.

2.7.2. RNA Extraction and cDNA Synthesis

The liver and intestine tissues were homogenized using pellet pestles (Sigma-Aldrich).
Afterward, the samples were incubated at room temperature for 5 min, and then 100 µL of
chloroform was added to each tube, and again incubated at room temperature for 2 min.
The tubes were then centrifuged for 15 min at 12,000× g at 4 ◦C. After centrifugation,
the aqueous phase containing the RNA was transferred to a new tube then extracted
using an RNA extraction kit (Invitrogen, PureLinkTM RNA Mini Kit, Fair Lawn, NJ, USA)
according to the manufacturer’s instructions. The extracted RNA was quantified using
a spectrophotometer (NanoDropTM 2000, Thermo Scientific, Wilmington, NC, USA) at
an absorbance ratio of 260–280 nm. cDNA was synthesized using an iScriptTM cDNA
Synthesis Kit (BIO-RAD, Hercules, CA, USA) according to the manufacturer’s instructions.
The primer sequences of IL1, IL8, LBP, GSTa, GPX, and GSR genes, as well as the 18S rRNA
as a housekeeping gene, are displayed in Table 2.

Table 2. Primer sequences, amplicons, and the related information for quantitative PCR.

Primer Name Primer Sequence (5′-3′) Target Gene Tm (◦C) Product Size (bp) Accession No.

18S rRNA -F GTGCATGGCCGTTCTTAGTT 18S rRNA 60 150 XR_003216134
18S rRNA -R CTCAATCTCGTGTGGCTGAA 60

IL1-F GTCTGTCAAGGATAAGCGCTG IL-1 59 200 XM_019365844
IL1-R ACTCTGGAGCTGGATGTTGA 58
IL8-F CTGTGAAGGCATGGGTGTG IL-8 59 196 NM_001279704
IL8-R ATCACTTTCTTCACCCAGGG 58
LBP-F ACCAGAAACTGCGAGAAGGA LBP 59 200 XM_013271147
LBP-R GATTGGTGGTCGGAGGTTTG 59
GSTa-F ACTGCACACTCATGGGAACA GSTa 60 190 NM_001279635
GSTa-R TTAAAAGCCAGCGGATTGAC 60
GPX-F GGTGGATGTGAATGGAAAGG GPX 60 190 NM_001279711
GPX-R CTTGTAAGGTTCCCCGTCAG 59
GSR-F CTGCACCAAAGAACTGCAAAC GSR 60 172 XM_005467348
GSR-R CAGAGAAGGCAGTCCACTC 60

IL1: interleukin 1, IL8: interleukin 8, LBP: lipopolysaccharide binding protein, GSTa: glutathione S-transferase, GPX: glutathione peroxidase,
GSR: glutathione-disulfide reductase.
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2.7.3. Quantitative PCR

The qPCR reaction was carried out by CFX ConnectTM Real-Time PCR System (BIO-
RAD, Hercules, CA, USA) using the iTaq Universal SYBR Green supermix 2X (BIO-RAD,
USA) and specific primers for individual gene (Table 2). The qPCR was performed in
triplicate using 100 ng of cDNA, 400 mM of primers. Thermal cycling conditions were
95 ◦C for 30 s (holding stage); 40 cycles of 95 ◦C for 15 s, and 60 ◦C for 30 s (cycling stage);
followed by 95 ◦C for 15 s; 60 ◦C for 60 s; and 95 ◦C for 15 s (melt curve stage). Changes in
the expression levels of the above genes were measured using the 2−∆∆Ct method and a
standard curve [56].

2.8. Statistical Analysis

The differences in studied parameters of immune response, gene expression, and
growth performance among diets were determined using one-way analysis of variance
(ANOVA) and Duncan’s multiple range test via SAS software [57]. Significantly different
mean values (p < 0.05) and other data are displayed as means ± SE.

3. Results
3.1. Growth Performance

As summarized in Table 3, the dietary incorporation of sugarcane bagasse powder
(SB) at 20 and 40 g kg−1 significantly increased final weight (FW), weight gain (WG), and
specific growth rate (SGR) in contrast to fish fed basal, SB10, and SB80 diets. However, no
noticeable change in feed conversion ratio (FCR) between the SB treated and non-treated
diets, except for the fish fed diet SB80, which produced a higher FCR level than the control
(Table 3). Survival rates of Nile tilapia were not influenced by the SB-treated diets (p > 0.05).

Table 3. Growth performances and feed utilization (mean ± SE) of the Nile tilapia fed different diets:
SB0 (0 -control), SB10 (10 g kg−1), SB20 (20 g kg−1), SB40 (40 g kg−1), and SB80 (80 g kg−1).

Ingredients SB0 SB10 SB20 SB40 SB80

IW (g) 15.12 ± 0.007 15.12 ± 0.01 15.17 ± 0.01 15.10 ± 0.01 15.07 ± 0.004
FW (g)
4 weeks 36.65 ± 0.21 36.23 ± 0.13 37.25 ± 0.11 37.43 ± 0.20 39.00 ± 0.25
8 weeks 71.48 ± 0.20 b 71.35 ± 0.13 b 74.78 ± 0.04 a 75.60 ± 0.10 a 71.90 ± 0.01 b

WG (g)
4 weeks 21.53 ± 0.20 21.12 ± 0.43 22.08 ± 0.12 22.33 ± 0.20 23.93 ± 0.25
8 weeks 56.83 ± 0.20 b 56.23 ± 0.13 b 59.62 ± 0.05 a 60.50 ± 0.10 a 56.83 ± 0.02 b

FCR
4 weeks 1.05 ± 0.006 1.08 ± 0.02 1.08 ± 0.002 1.04 ± 0.009 0.97 ± 0.009
8 weeks 1.23 ± 0.003 b 1.23 ± 0.006 b 1.22 ± 0.003 b 1.18 ± 0.001 b 1.29 ± 0.003 a

SGR
4 weeks 3.16 ± 0.02 3.11 ± 0.04 3.21 ± 0.01 3.24 ± 0.02 3.39 ± 0.02
8 weeks 2.77 ± 0.004 b 2.77 ± 0.003 b 2.85 ± 0.002 a 2.88 ± 0.003 a 2.79 ± 0.00 b

SR (%)
4 weeks 100 100 100 100 100
8 weeks 100 100 100 100 100

IW: initial fish weight, FW: final fish weight, WG: weight gain, SGR: specific fish growth rate−1, FCR: feed
conversion ratio, SR: survival rate, SB: sugarcane bagasse. Different letters in a row denote significant difference
(p < 0.05).

3.2. Skin Mucus Immunity

Table 4 illustrates the effects of SB on skin mucosal immunity of Nile tilapia. Based on
the results, skin mucus lysozyme (SMLA) and skin mucus peroxidase (SMPA) activities
were significantly higher (p < 0.005) in fish treated with the SB diets after eight weeks. The
highest SMLA and SMPA levels were recorded in fish fed SB80; followed by the SB20, SB40,
and SB10 diets, respectively (Table 4).
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Table 4. Skin mucus lysozyme and peroxidase activities of O. niloticus after 4 and 8 weeks feeding
with experimental diets: SB0 (0 -control), SB10 (10 g kg−1), SB20 (20 g kg−1), SB40 (40 g kg−1), and
SB80 (80 g kg−1).

Ingredients SB0 SB10 SB20 SB40 SB80

4 weeks
SMLA 0.73 ± 0.08 b 1.22 ± 0.06 ab 1.64 ± 0.41 ab 1.74 ± 0.43 a 1.73a ± 0.17 a

SMPA 0.08 ± 0.006 b 0.09 ± 0.005 ab 0.10 ± 0.003 a 0.09 ± 0.005 ab 0.10 ± 0.007 a

8 weeks
SMLA 1.50 ± 0.31 c 2.89 ± 066 ab 3.73 ± 0.95 a 2.61 ± 0.90 b 3.49 ± 1.19 ab

SMPA 0.09 ± 0.006 b 0.14 ± 0.006 a 0.12 ± 0.001 a 0.14 ± 0.003 a 0.15 ± 0.02 a

SMLA (µg mL−1) = skin mucus lysozyme activity; SMPA (µg mL−1) = skin mucus peroxidase activity. Different
letters in a row denote significant difference (p < 0.05).

3.3. Serum Immunity

The amount of lysozyme (SL) in the serum differed greatly between groups (Table 5).
Fish fed an SB supplemented diet produced a better SL level (p < 0.05) in contrast to
non-treated groups. The best results were observed in the SB80 diet at four weeks and in
the SB40 diet at eight weeks. Similarly, the respiratory burst activity (RB) level significantly
improved in fish fed the SB10 diet versus the control and other treated groups at 4 weeks
post-feeding. No meaningful change in RB was observed in any group at either four- or
eight-weeks post-feeding. Additionally, SP was not influenced by the incorporation of SB
throughout the experiment.

Table 5. Serum immunity of O. niloticus after four and eight weeks’ feeding with experimental diets:
SB0 (0-Control), SB10 (10 g kg−1), SB20 (20 g kg−1), SB40 (40 g kg−1), and SB80 (80 g kg−1).

Ingredients SB0 SB10 SB20 SB40 SB80

4 weeks
SL 1.90 ± 0.29 c 2.36 ± 0.02 bc 3.20 ± 0.25 a 2.87 ± 0.09 ab 3.18 ± 0.35 a

SP 0.22 ± 0.02 0.22 ± 0.07 0.28 ± 0.04 0.26 ± 0.04 0.21 ± 0.02
RB 0.12 ± 0.008 b 0.21 ± 0.02 a 0.10 ± 0.004 b 0.14 ± 0.02 b 0.12 ± 0.10 b

8 weeks
SL 5.69 ± 0.41 b 8.68 ± 1.09 a 8.42 ± 1.04 a 8.72 ± 0.32 a 7.88 ± 0.38 ab

SP 0.19 ± 0.01 0.16 ± 0.01 0.17 ± 0.02 0.20 ± 0.02 0.17 ± 0.02
RB 0.25 ± 0.02 0.27 ± 0.006 0.18 ± 0.02 0.20 ± 0.005 0.25 ± 0.07

SL = serum lysozyme activity (µg mL−1); SP = serum peroxidase activity (µg mL−1); RB = respiratory burst
activity (OD655). Different letters in a row denote significant difference (p < 0.05).

3.4. Expression of Immune-Related and Antioxidant Genes

The effects of SB on the transcription levels of IL1, IL8, LBP, GSTa, GPX, and GSR in
the livers of Nile tilapia are presented in Figure 1. The expression of IL1, IL8, and LBP
significantly increased in the SB10 and SB20 diets relative to the basal diet-fed fish (p < 0.05).
The highest upregulation of IL1 and IL8 was noticed in fish fed the SB10 supplemented
diet. Similarly, significantly higher expression levels of GSTa, GPX, and GSR genes were
found in fish fed the SB10 diet, as opposed to the other treated fish and un-treated fish
(p < 0.05). No meaningful variations in IL1, IL8, LBP, GSTa, GPX, and GSR were found in
fish fed the SB80 or basal diet (p > 0.05).

Figure 2 illustrates the consequences of dietary SB on the transcription level of immune
and antioxidant-related genes in the intestines of Nile tilapia. The expression levels of
IL8, LBP, and GPX significantly increased in fish fed the SB20 and SB80 diets (p < 0.05).
Nevertheless, no significant difference in IL8, LBP, and GPX expression levels was recorded
in fish fed SB10, SB40, and SB80, respectively. IL1 and GSR were not influenced by the
inclusion of SB supplements (p > 0.05).
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Figure 1. Expressions of immune (interleukin 1, IL1; interleukin 8, IL8; lipopolysaccharide binding
protein, LBP) and antioxidant-related genes (glutathione S-transferase, GSTa; glutathione-disulfide
reductase, GSR; glutathione peroxidase, GPX) in liver of Nile tilapia after treated with phenol rich.
Three replicates. a,b,c Columns without the same superscripts differ (p < 0.05).

Figure 2. Expressions of immune (interleukin 1, IL1; interleukin 8, IL8; lipopolysaccharide binding
protein, LBP) and antioxidant-related genes (glutathione S-transferase, GSTa; glutathione-disulfide
reductase, GSR; glutathione peroxidase, GPX) in intestine of Nile tilapia after treated with phenol
rich. Three replicates. a,b Columns without the same superscripts differ (p < 0.05).

4. Discussion

Fish skin mucus is the first layer of the innate immune system, which is released in
cases of stress and outbreak [58–60]. The mucus consists of many biological molecules,
such lysozyme, peroxidase, and bactericidal agents [61–63]. Our work indicated that fish
fed SB diets had higher skin mucosal immunity than that of the control. Similar find-
ings were reported in convict cichlid (Amatitlania nigrofasciata) [64]; gilthead seabream
(Sparus aurata) [65]; hybrid tilapia (Oreochromis niloticus × O. mossambicus) [66]; common
carp (Cyprinus carpio) [67]; Persian sturgeon (Acipenser persicus) [68]; Nile tilapia (O. niloti-
cus) [69,70], and Siberian sturgeon (Acipenser baerii) [71]. Lysozyme is a proteolytic enzyme,
which can kill bacteria by damaging their cell-wall and provoking other immune parame-
ters, such as complement and phagocytosis activities [72]. On the other hand, respiratory
burst, via motivation by foreign agents, is renowned for enhancing the oxidation levels in
phagocytes, and is known to be an essential element in the fish defense mechanism [73,74].
Supplementation of SB in the present study increased lysozyme and respiratory burst activ-
ities. The findings were consistent with previous findings reported in gibel carp (Carassius
auratus gibelio) [75]; hybrid grouper (Epinephelus fuscoguttatus♀× E. lanceolatus♂) [76]; Nile
tilapia (O. niloticus) [70]; and European seabass (Dicentrarchus labrax) [77]. The enhance-
ments may be attributable to the flavonoids and phenolics in SB [78,79]. It is known that
polyphenols can induce dendritic cells, have immunomodulatory effects on macrophages,
and increase the proliferation of B and T cells [80].

Cytokines, which are primarily generated by white blood cells, play an essential part
in modulating and linking non-specific and specific immune systems [81]. The present
study indicated that IL-1 and IL-8 were significantly up-regulated in fish fed SB diets,
particularly 10 g kg−1 SB. These are important cytokines of fish that aid in response
to infected pathogens [82,83]. Our results were consistent with earlier studies in barra-
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mundi (Lates calcarifer) [84]; Nile tilapia (O. niloticus) [70]; Japanese flounder (Paralichthys
olivaceus) [85]; rohu (Labeo rohita) [86], and European seabass (Dicentrarchus labrax) [77].
Lipopolysaccharide-binding protein (LBP) is a soluble acute-phase protein, which plays
an essential role in the detection of bacterial elements that regulate cellular signals in
phagocytic cells and is able to boost fish immune response [35,87,88]. Our findings are in
line with studies reported in crucian carp (Carassius carassius) [89]; Atlantic salmon (Salmo
salar) [90], and Nile tilapia (O. niloticus) [70]. The GPx and GSR enzymes work together
in the glutathione protection mechanism to eliminate hydrogen peroxide (H2O2). GPx
transforms H2O2 into water via oxidation of glutathione (GSH) to glutathione disulfide
(GSSG). Once oxidized, GSH is revitalized by GSR via oxidizing reduction of NADPH [91].
Glutathione S-transferase (GST) is the phase II xenobiotic metabolic catalyst that utilizes
phase I reactions to build bigger endogenic molecules, which are readily released through
bile or kidney [92]. SB supplementation in the Nile tilapia diets substantially increased
GST, GPX, and GSR transcription in fish livers, according to the present findings. The same
conclusions were noted in Nile tilapia (O. niloticus) [93–95]; hybrid grouper (Epinephelus
lanceolatus ♀× E. fuscoguttatus♂) [96]; common carp (Cyprinus carpio) [97–99]; European
seabass (Dicentrarchus labrax) [100], and rohu (Labeo rohita) [86]. The significantly enhanced
immune response by Nile tilapia in the present study may be attributable to the bioactive
compounds present in the SB, which contains a high amount of xylooligosaccharide, which
is potentially prebiotic [18,101–103]. Xylooligosaccharide is known to enhance immune
responses [104,105], and has been applied in aquafeed to stimulate fish immunity [106,107].
Moreover, the antioxidant properties have been accredited to the phenolic compounds
content of SB, which scavenge oxidative activity [79,108–110]. Interestingly, IL-1, IL-8,
LBP, GSTa, GPX, and GSR gene expressions in the liver were down-regulated in fish fed
SB80 compared to SB10. This may be attributable to an overdose of immunostimulant
administration, which generally resulted in immunosuppression [111]. Moreover, signif-
icantly up-regulated relative immune and antioxidant gene expressions were observed
in fish liver, whereas no significant differences were determined in fish intestine. The
difference in relative immune gene expression may be due to the difference in immune
cell presence in each tissue. Fish intestine is immunologically active and armored with B
cells, macrophages, granulocytes, and T cells, while in the liver, along with immunomodu-
latory and immune suppression genes, non-specific molecules, such as acute phase protein,
complement components, and anti-microbial peptides, which could release from bile to
intestinal mucus, were found to be of great importance for basic function [112]. In terms of
antioxidant gene expression, similar findings were observed in common carp, where the
antioxidant gene expressions were higher in the liver compared to the intestine. This may
be attributable to the tissue-specific expression of antioxidant genes under oxidative stress.
In carp, oxidative stress enhanced antioxidant gene transcription values in the liver, but
reduced them in other tissues [113].

Aquaculture’s predominant purpose is to improve the maximum growth rate while
maintaining the lowest feed conversion ratio [114]. A wide range of research has been
undertaken to fulfil this purpose, and feed additives are one of the most promising
ones [115,116]. Enhanced growth output and feed utilization in Nile tilapia fed SB were
noticed in our study. The findings complied with earlier work in peninsula carp (Labeo
fimbriatus) [117]; dairy cows [118]; and broilers [119]. SB has been shown to proliferate
Bacillus spp. in the chicken’s intestinal tract, which enhances gut health and chicken per-
formance [119]. Furthermore, SB has been considered to be a prebiotic source [28,29,120],
known to boost fish growth and feed utilization [107,121].

Biofloc technology plays an essential part in decreasing feed utilization and stimulat-
ing the health and wellbeing of aquacultural species [38–40,122]. Previous studies have
demonstrated that biofloc technology combined with functional feed additives significantly
enhanced growth performance, immunity, and disease resistance [123–125]. Similar results
were remarked in fish fed SB in our work. SB has been demonstrated to be a good source of
fiber and a potential prebiotic [18,101–103]. Kishawy, Sewid, Nada, Kamel, El-Mandrawy,
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Abdelhakim, El-Murr, Nahhas, Hozzein, and Ibrahim [125] reported that mannan oligosac-
charide (MOS–a prebiotic) administration to the biofloc system led to an increase in LAB
population in the water and the intestine, modulated immune response and tolerance
against Aeromonas hydrophila, and caused a rise in the survivability and performance of Nile
tilapia. Sugarcane bagasse is a potential organic carbon source [126–129]. It is known that
incorporation of MOS carbon sources into biofloc systems trigger heterotrophic microor-
ganisms to take up the inorganic nitrogen, thereby modifying the water C:N ratio, resulting
in greater microbic protein sources for host, as well as enhanced water quality [42,130].
Furthermore, the integration of MOS as a carbon source results in the development of
biofloc, an additional protein source for fish [131]. Additionally, MOS serves as a means of
carbon and is recognized as a prebiotic carbohydrate, which has been documented to boost
growth efficiency by enhancing the augmentation of LAB in the fish intestine [132]. These
favorable microorganisms are capable of releasing mannanase enzymes that metabolize
MOS and generate fermented acids, like lactic and citric acids [133]. Hence, the dietary
inclusion of SB may generate the same effects as MOS within the biofloc system, which
boosts growth, immunity, and disease protection of the host.

5. Conclusions

The addition of sugarcane bagasse (SB) to tilapia diets raised in biofloc water boosted
growth performance and skin mucosal and serum immunities, as well as enhancing
immune-related and antioxidant gene expressions. SB seems to be an acceptable, eco-
logically responsible substance for improving Nile tilapia growth and health status.
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