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Abstract: The SWR1 complex (SWR1-C) is important for the deposition of histone variant H2A.Z into
chromatin to regulate gene expression. Characterization of SWR1-C subunits in Arabidopsis thaliana
has revealed their role in variety of developmental processes. Oryza sativa actin related protein 6
(OsARP6) is a subunit of rice SWR1-C. Its role in rice plant development is unknown. Here, we
examined the subcellular localization, expression patterns, and loss of function phenotypes for this
protein and found that OsARP6 is a nuclear localized protein, and is broadly expressed. OsARP6
interacted with OsPIE1, a central ATPase subunit of rice SWR1-C. The osarp6 knockout mutants
displayed pleiotropic phenotypic alterations in vegetative and reproductive traits, including semi-
dwarf phenotype, lower tillers number, short leaf length, changes in spikelet morphology, and seed
abortion. Microscopic thin sectioning of the top internode revealed that the dwarf phenotype of
osarp6 was due to reduced number of cells rather than reduced cell length. The altered transcript level
of genes involved in cell division suggested that OsARP6 affects cell cycle regulation. In addition,
H2A.Z levels were reduced at the promoters and transcription start sites (TSS) of the regulated genes
in osarp6 plants. Together, these results suggest that OsARP6 is involved in rice plant development,
and H2A.Z deposition.

Keywords: OsARP6; SWR1-C; H2A.Z; internode elongation; rice

1. Introduction

Plant height, determined by the length of internodes as well as the number of elon-
gated internodes, is an important agronomic trait that affects yield potential directly [1].
Suitable height in rice and wheat, in combination with new fertilizer and pesticide tech-
nologies, doubled production in most parts of the world during “Green Revolution” [2].
Moreover, increased total biomass, resistance to lodging and tolerance to crowding re-
sult from their short stature [3,4]. Therefore, it is necessary to clarify the signal network
regulating plant height.

In eukaryotic organisms, DNA is tightly wrapped inside the nucleus into a compact
structure known as chromatin, which blocks transcription factors and other DNA binding
proteins to access DNA targets and perform their function [5]. Histone modifications, ATP-
dependent chromatin remodeling and replacement of canonical histones with specialized
variants regulate chromatin structure to balance chromatin packaging and transcriptional
access [6–8]. Except for H4, all canonical histones have known variants, with H2A having
the largest number of variants [9]. Among H2A variants, H2A.Z is the most conserved and
affects multiple biological processes, including regulation of gene expression [10,11].

The SWR1 complex (SWR1-C), a member of the Inositol Requiring 80 (INO80) family
of remodelers, mediates deposition of H2A.Z into nucleosomes. SWR1-C was initially
discovered in yeast (Saccharomyces cerevisiae) [12]. Only five of the 14 proteins in the
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yeast SWR1-C are essential for viability; the remainder, including the SWR1 ATPase,
enhance complex function [12]. Most of the SWR1-C components are conserved from
yeast to Arabidopsis [9,13,14]. Arabidopsis PIE1, encoding the ATPase domain containing
chromatin-remodeling factor, directly binds to H2A.Z variants, including HTA8, HTA9, and
HTA11 [15]. Loss of PIE1 leads to early flowering through a reduction in the expression of
FLOWERING LOCUS C (FLC), reduced H2A.Z deposition, and pleiotropic developmental
abnormalities including short siliques and fertility defects [16–18]. Silencing of AtARP4
results in altered organization of plant organs, early flowering, delayed flower senescence
and high levels of sterility [19]. SWC6 loss-of-function mutants also display pleiotropic
phenotypes characterized by serrated leaves, frequent absence of inflorescence internodes,
and flowers with an abnormal number and size of organs, as well as early flowering due to
reduced FLC expression [18,20]. SWC4 RNAi (swc4i) and yaf9a yaf9b double mutant plants
display pleiotropic phenotypic defects in both vegetative and reproductive development,
including early senescence and chlorotic leaves, abnormal flowering, and reduced plant and
organ size [21,22]. SWC4 represses transcription of a number of genes, including the floral
integrator FT and key transcription factors, mainly by modulating H2A.Z deposition [22].
ACTIN-RELATED PROTEIN6 (ARP6), one of the nonessential subunits of the yeast SWR1-
C, is required for normal growth of yeast. In the yeast SWR1-C, ARP6 facilitates binding
between other subunits, such as Swc2, and the ATPase domain of SWR1. In Arabidopsis,
ARP6 acts in the nucleus [23,24] to modulate gene expression in vegetative development
and repression of flowering. The early flowering of arp6 mutants is associated with
reduced expression of the central floral repressor gene FLC as well as MADS AFFECTING
FLOWERING 4 (MAF4) and MAF5 [23]. In rice, genome-wide H2A.Z distribution was
altered in OsARP6 RNAi plants [25]. The H2A.Z deposition mediated by OsARP6 in gene
bodies largely resulted in downregulation, whereas H2A.Z at the transcription start sites
(TSS) was positively correlated with the expression of some genes with housekeeping
functions [25].

The SWR1-C is a likely candidate to regulate gene expression during cell division.
Arabidopsis SWR1-C components mutants such as ARP4, ARP6, SWC4 and YAF9 re-
sults in dwarfed plant morphology, decreased leaf size and number, and reduced silique
size [19,21–23]. Microscopic analysis investigating the smaller size of yaf9a yaf9b double mu-
tants and of knock-down plants for SWC4 encoding an interactor of YAF9A, found a shared
role for these proteins in the regulation of leaf cell proliferation and expansion [21,22].
Similarly, smaller leaves from arp6-1 plants are caused by fewer total cells, rather than a
normal number of smaller cells [23]. Together, all these observations suggest a potential
role of SWR1-C in regulating cell cycle [17,21,22].

Although SWR1-C is involved in plant development, environmental response, and
transcription regulation in Arabidopsis, the functions of SWR1-C in rice development remain
unclear. Here, we report that Oryza staiva ARP6 (OsARP6), a subunit of rice SWR1-C,
participates in rice plant vegetative and reproductive development. We found that OsARP6
is broadly expressed in the whole plant, with high expression levels in panicle and leaves at
the heading stage. Loss of OsARP6 function in rice leads to dwarf phenotype with defects
in cell proliferation. The transcription levels of cell-cycle genes were down regulated in
osarp6 mutants. The CHIP-qPCR results showed that down regulated transcription in
osarp6 plants was due to reduced H2A.Z levels at the promoters and TSS of the cell-cycle-
related genes. Taken together, our results are consistent with the role of OsARP6 in the
chromatin-level control of multiple genes.

2. Materials and Methods

The plants used in the study are in the Oryza sativa ssp. japonica cv Nipponbare
background. The osarp6-1 and osarp6-2, were generated by CRISPR/Cas9. All rice plants
were grown in Hefei (Anhui, China), and Lingshui (Hainan, China) in 2018, 2019 and 2020.
For mutants generated by CRISPR/Cas9, the oligonucleotides used for targeted muta-
genesis were designed with the help of the CRISPR-P and CRISPR-PLANT tools [26,27]
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and are listed in Table S2. The oligonucleotides were inserted into the CRISPR/Cas9
vector pHUN4c12 with BsaI. The binary constructs were then introduced into the Agrobac-
terium tumefaciens strain EHA105. Embryonic calli from mature rice seeds were trans-
formed by co-cultivation, selected with 50 mg/L hygromycin, and used to regenerate
transgenic plants.

2.1. Subcellular Localization

A 35S:OsARP6-GFP fusion vector was constructed by cloning the full-length OsARP6
coding sequence (CDS) without a stop codon in the pUC19-eGFP vector. 35S:GFP was
used as a control. The inserted gene was confirmed by gene sequencing followed by
transient expression in rice protoplast. Rice protoplast isolation and transformation were
performed as described previously [28]. Briefly, the stem and sheath tissues of 7–10 d-
old rice seedlings were cut into 0.5 mm strips and immediately transferred into 0.6 M
mannitol. After enzymatic digestion for 8 h, an equal volume of W5 solution (154 mM
NaCl, 125 mM CaCl2, 5 mM KCl and 2 mM MES at pH 5.7) was added to the sample,
followed by resuspension in MMG solution (0.4 M mannitol, 15 mM MgCl2 and 4 mM
MES, pH 5.7). After 16 h incubation in the dark at 26 ◦C, the green fluorescence of 35S:GFP
and 35S:OsARP6-GFP in protoplast was visualized using a Zeiss LSM 880 (Jena, Germany)
confocal laser scanning microscope.

2.2. Yeast Two-Hybrid Assay (Y2H)

The yeast two-hybrid assay (Y2H) was performed according to the manufacturer’s
protocol (Clontech, Mountain View, CA, USA, user’s manual 630489). Briefly, the Saccha-
romyces cerevisiae strain AH109 was co-transformed with the bait and prey constructs, in
pGBKT7 and pGADT7 respectively. The yeast was scored for protein interaction based on
its ability to grow on synthetic defined medium lacking tryptophan (Trp), leucine (Leu),
histidine (His) and adenine (Ade). The primers used to generate the constructs are shown
in Table S2.

2.3. Bimolecular Fluorescence Complementation (BiFC)

For bimolecular fluorescence complementation (BiFC), OsPIE1 was cloned in pUC-
SPYNE vector while OsARP6 was cloned into the pUC-SPYCE vector. The rice protoplasts
were co-transformed with the corresponding constructs and examined under a confocal
laser scanning microscope (Zeiss LSM880, Jena, Germany). The primers used to generate
the constructs are shown in Table S2.

2.4. Genotyping

To confirm the Cas9 mutants, primers were designed flanking the target regions. DNA
was extracted from the mutants, and the target region was amplified and sequenced to
check the desired mutation. The CRISPR/Cas9 constructs were segregated out in self-
pollinated lines. T2 plants were used for phenotypic evaluation. The primers used for
genotyping are listed in Table S2.

2.5. Histological Analyses

For histological analysis, the uppermost internodes were collected from field-grown
mature plants and fixed in 3.7% formaldehyde, 5% acetic acid, and 50% ethanol at 4 ◦C
overnight. The samples were auto-dehydrated in a LEICA ASP200S tissue processor,
embedded in paraffin (Leica Biosystems, Richmond, VA, USA), and sectioned to 8 µm
thicknesses using a LEICA RM2255 rotary microtome. After dewaxing with xylene and
hematoxylin-eosin staining, the sections were observed under a light microscope (Zeiss,
Axioscope A1 polarized light microscope, Jena, Germany).



Biomolecules 2021, 11, 1100 4 of 15

2.6. Reverse Transcription and Quantitative PCR (RT-qPCR)

Total RNA from the leaves of 10-d-old plants was isolated and was reverse transcribed
with oligo (dT) primers and random primers. The relative expression levels of individual
genes were measured with gene-specific primers. Quantitative PCR analysis was per-
formed with the CFX real-time PCR instrument (Bio-Rad, Hercules, CA, USA) and SYBR
Green mixture (ChamQ, Vazyme Biotech Co., Ltd., Nanjing, China). The relative expression
of the genes was quantitated with the 2−ddct Ct calculation, using ACTIN1 as the reference
housekeeping gene for the expression analyses. The primers used for qPCR are listed in
Table S2.

2.7. ChIP Assay

ChIP assay was performed as described previously [28,29]. Briefly, 3 g of 3-week-old
plant material was crosslinked in 1% formaldehyde for 10 min and then quenched with
0.125 M glycine. Then, 5 µg of the specific antibodies anti-H2A.Z (ab4174, lot: GR292900-1,
Abcam, Cambridge, UK), or control IgG serum, were added to the pre-cleared supernatants
for an overnight incubation at 4 ◦C. The protein–DNA complexes were heated at 65 ◦C
for 8 h to reverse the formaldehyde crosslinking. The sample was then extracted with
phenol/chloroform and the DNA was precipitated in ethanol and resuspended in water.
The purified DNA was analyzed by qPCR with the gene-specific primers shown in Table S2.

3. Results
3.1. Phylogenetic Analysis and Subcellular Localization of OsARP6

Oryza sativa Actin-related protein 6-like (OsARP6) is a 429-amino-acid protein encoded
by LOC_Os01g16414. Based on overall amino acid sequence similarity, OsARP6 is 63%
and 25% identical to Arabidopsis and yeast ARP6 proteins, respectively. Phylogenetic
analysis using the amino acid sequences of putative nuclear ARPs from rice, Arabidopsis
and yeast were aligned along with conventional actins, and the resulting alignments were
used to generate phylogenies, which indicated that OsARP6 does indeed belong to the
ARP6 class, and thus is the conserved ortholog of Arabidopsis and yeast ARP6 proteins
(Figure 1a). Multiple alignment analysis using conventional actins from human, yeast,
Arabidopsis and rice as reference showed that OsARP6, along with Arabidopsis and yeast
ARP6 proteins, contain Nucleotide-Binding Domain of the sugar kinase/HSP70/Actin
super family (NBD_sugar-kinase_HSP70_actin) (Figure S1). Of the 17 key amino acid
residues involved in nucleotide binding [30,31], 8, 9 and 6 are conserved in rice, Arabidopsis
and yeast, respectively (Figure S1). To investigate the subcellular localization of OsARP6,
we generated a 35S:OsARP6-GFP vector and transiently expressed it in rice protoplast. We
found that the OsARP6–GFP fusion protein was localized to the nucleus. As a control, free
GFP was localized in both the cytosol and nucleus in protoplast (Figure 1b).
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Figure 1. OsARP6 is nucleus localized and interacts with OsPIE1. (a) Phylogenetic analysis of actin-related proteins from 
yeast, Arabidopsis and rice. At, Arabidopsis thaliana; Os, Oryza sativa; Sc, Saccharomyces cerevisiae. OsARP6 is shown in bold. 
The analysis was performed by MEGA 5.2 using the neighbor-joining (NJ) method. (b) Subcellular localization of 
OsARP6. Confocal laser-scanning microscopy observations of rice protoplast expressing 35S:GFP as a control 
or 35S:OsARP6-GFP fusion protein. Scale bar = 10 µm. (c) OsARP6 fused to the C-terminus of yellow fluorescent protein 
(YFP) was tested for its ability to bind to N-terminus of YFP fused to OsPIE1 or the N-terminus of YFP fused to OsTrx1 
(used as negative control). OsARP6 fused to C-terminus of YFP and OsPIE1 fused to N-terminus of YFP, were also tested 
for their ability to bind to N-terminus of YFP alone or C-terminus of YFP alone, respectively, added as negative control. 
Yellow fluorescence and a bright-field image were recorded, and the resulting images were merged. Twenty-five cells 
were examined for each transformation. Bar = 10 µm. (d) Yeast two-hybrid assay revealing the interaction between 
OsARP6 and OsPIE1. The growth of two dilutions (2 × 10−2 and 2 × 10−3) of yeast culture on synthetic defined (SD) medium 
lacking Trp, Leu, His and adenine is shown. (e) Expression pattern of OsARP6 in different organs was determined by 
quantitative RT-qPCR and normalized against ACTIN1; YR, young root; YL, young leaf; S, shoot; YP1, young panicle stage 
1; YP4, young panicle stage 4; OP, old panicle; FL, flag leaf at heading stage; 2L, second leaf to flag leaf at heading stage. 
Error bars indicate SD for three replicates. 

Figure 1. OsARP6 is nucleus localized and interacts with OsPIE1. (a) Phylogenetic analysis of actin-related proteins from
yeast, Arabidopsis and rice. At, Arabidopsis thaliana; Os, Oryza sativa; Sc, Saccharomyces cerevisiae. OsARP6 is shown in bold.
The analysis was performed by MEGA 5.2 using the neighbor-joining (NJ) method. (b) Subcellular localization of OsARP6.
Confocal laser-scanning microscopy observations of rice protoplast expressing 35S:GFP as a control or 35S:OsARP6-GFP
fusion protein. Scale bar = 10 µm. (c) OsARP6 fused to the C-terminus of yellow fluorescent protein (YFP) was tested
for its ability to bind to N-terminus of YFP fused to OsPIE1 or the N-terminus of YFP fused to OsTrx1 (used as negative
control). OsARP6 fused to C-terminus of YFP and OsPIE1 fused to N-terminus of YFP, were also tested for their ability to
bind to N-terminus of YFP alone or C-terminus of YFP alone, respectively, added as negative control. Yellow fluorescence
and a bright-field image were recorded, and the resulting images were merged. Twenty-five cells were examined for each
transformation. Bar = 10 µm. (d) Yeast two-hybrid assay revealing the interaction between OsARP6 and OsPIE1. The
growth of two dilutions (2 × 10−2 and 2 × 10−3) of yeast culture on synthetic defined (SD) medium lacking Trp, Leu, His
and adenine is shown. (e) Expression pattern of OsARP6 in different organs was determined by quantitative RT-qPCR and
normalized against ACTIN1; YR, young root; YL, young leaf; S, shoot; YP1, young panicle stage 1; YP4, young panicle
stage 4; OP, old panicle; FL, flag leaf at heading stage; 2L, second leaf to flag leaf at heading stage. Error bars indicate SD for
three replicates.
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3.2. OsARP6 Interacts with OsPIE1

Arabidopsis PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1 (PIE1) encodes a
putative DNA-dependent ATPase of the SNF2 family [15], closely related to yeast Swr1,
human SRCAP, and Drosophila Domino proteins. Arabidopsis ARP6 interacts with PIE1
and SWC6 via the c-terminus [16]. To identify whether the OsARP6 is conserved from
Arabidopsis to rice, we examined the interaction between OsARP6 and OsPIE1, a PIE1
ortholog of Arabidopsis in rice. The reconstituted YFP fluorescence was observed in the
nucleus when YFPC-OsARP6 and YFPN-OsPIE1 were co-transformed into rice protoplast,
whereas no fluorescence was observed when YFPC-OsARP6 was co-transformed with
YFPN-OsTrx1, another nuclear protein (Figure 1c). The interaction of OsARP6 with OsPIE1
was also observed in yeast two hybrid (Y2H) analysis. We generated fusion proteins
containing OsPIE1 with the binding domain (BD) and OsARP6 fused to activation domain
(AD). The results revealed that OsARP6 bound strongly to OsPIE1, but not to OsTrx1,
which was used as negative control (Figure 1d). Together, all these results suggest that the
subunits of SWR1-C might be conserved in Arabidopsis and rice.

3.3. Expression Pattern of OsARP6

We examined the expression pattern of OsARP6 in different tissues by quantitative
real-time PCR (RT-qPCR). The results showed that OsARP6 is broadly expressed in root,
shoot, leaf and panicle, with much higher expression in panicle and leaf at the heading
stage (Figure 1e). Expression analysis of OsARP6 using the Rice eFP Browser (http://www.
bar.utoronto.ca/efprice/cgi-bin/efpWeb.cgi, access date 12 June 2021) showed similar
results, indicating that OsARP6 was broadly expressed root, stem, leaf, panicle and seed,
with much higher expression in somatic apical meristem (SAM), young panicle and mature
leaf (Figure S2).

3.4. Generation of Rice osarp6 Mutants with CRISPR Cas9

To investigate the function of OsARP6, we generated knockout osarp6 mutants with
the CRISPR/Cas9 system. Two 20-bp nucleotide sequences from the open reading frame in
exon 1 of OsARP6 were chosen as the target sites (Figure 2a). Sequencing results revealed
that a single nucleotide deletion in the first exon in osarp6-1 resulted in an early stop
codon at the 45th amino acid in the Open Reading Frame (ORF), while a single nucleotide
insertion in the first exon in osarp6-2 resulted in an early stop codon at the 93rd amino acid
in the ORF (Figure 2b). The sequencing results of the mutants are shown in Figure S3a,b.
The homozygous knockout lines, osarp6-1 and osarp6-2, failed to produce mature seeds.
Therefore, we propagated the mutation through corresponding heterozygous lines. T2
generation of self-pollinated mutant plants was used for phenotype analysis.

http://www.bar.utoronto.ca/efprice/cgi-bin/efpWeb.cgi
http://www.bar.utoronto.ca/efprice/cgi-bin/efpWeb.cgi
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Chi-square test was used to evaluate the data, X2 = 1.37 and P > 0.05. 

Figure 2. Gene structure of OsARP6 and generation of osarp6 mutants using CRISPR/Cas9. (a) Gene structure of OsARP6,
showing exons (boxes), introns (lines), and Cas9 targets (triangles). (b) The deletion and insertion in osarp6-1 and osarp6-2
respectively and the stop codon caused by a shifted open reading frame (ORF) are shown in red. (c) Typical external
appearance of wild-type and osarp6 flowers. Spikelets just before anthesis are shown. (d) Typical seeds obtained from
wild-type and homozygous osarp6 plants. Seeds at 30 DAP are shown. (e) Comparison of wild-type seeds with homozygous
seeds obtained from heterozygous osarp6 plants. Seeds at 30 DAP are shown.

3.5. Loss of OsARP6 Function Resulted in Pleotropic Phenotypes

The homozygous osarp6 plants were sterile and could not develop mature seeds. The
spikelet length of osarp6 was longer than wild type (Figure 2c). The length of palea varied
from normal to shorter, and was in some cases extremely reduced (Figure 2c). The seeds
from homozygous osarp6 mutants exhibited a filling problem, which could not be germi-
nated (Figure 2d). However, examination of the seeds collected from heterozygous osarp6
plants revealed that about 22% of seeds were severely affected (Figure 2e). The genotyping
of such seeds confirmed that they carried homozygous loss of function mutation for Os-
ARP6. The segregation analysis of heterozygous osarp6 self-pollinated plants showed ratios
of about 1:1.85:0.81 for WT, heterozygous osarp6 and homozygous osarp6 plants, which
are close to the expected 1:2:1 ratio (X2 = 1.37 and P > 0.05) (Table 1). This indicates that
additional gametophytic defects were not involved. Homozygous seeds obtained from
heterozygous mutants could partially germinate and grow into mature plants.

Table 1. Segregation analysis of heterozygous osarp6 self-pollinated plants.

Parents
(Self-Pollinated)

Offsprings

Total WT Heterozygous Homozygous Observed Ratio Expected Ratio

osarp6-1 (Heterozygous) 119 32 60 27 1:1.88:0.84 1:2:1
osarp6-2 (Heterozygous) 134 37 68 29 1:1.83:0.78 1:2:1

Total 253 69 128 56 1:1.85:0.81 1:2:1

Chi-square test was used to evaluate the data, X2 = 1.37 and P > 0.05.
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The homozygous knockout osarp6 plants raised from the seeds obtained from self-
pollinated heterozygous osarp6 showed pleiotropic phenotypes, including the semi-dwarf
phenotype, lower tillers number, and short leaf length (Figure 3a–g). Semi-dwarf phenotype
and lower tillers number were also observed in heterozygous osarp6 plants (Figure S4a–e),
suggesting that OsARP6 is crucial for rice development. Decrease in length was observed in
all internodes with the top three internodes most affected (Table 2). Together, these results
show that OsARP6 is required for normal vegetative and reproductive growth of rice.

Biomolecules 2021, 11, x 8 of 15 
 

The homozygous knockout osarp6 plants raised from the seeds obtained 
from self-pollinated heterozygous osarp6 showed pleiotropic phenotypes, including the 
semi-dwarf phenotype, lower tillers number, and short leaf length (Figure 3a–g). Semi-
dwarf phenotype and lower tillers number were also observed in heterozygous osarp6 
plants (Figure S4a–e), suggesting that OsARP6 is crucial for rice development. Decrease in 
length was observed in all internodes with the top three internodes most affected (Table 
2). Together, these results show that OsARP6 is required for normal vegetative and repro-
ductive growth of rice. 

 
Figure 3. Phenotypes of homozygous osarp6 plants. (a) Representative image of 120-day-old wild-type and osarp6 homo-
zygous plants. Scale bar = 10 cm. (b) Stems of the mature wild-type and homozygous osarp6 plants. All leaves were 
removed to clearly show the elongated stems. White arrowheads indicate the nodes. Scale bar = 10 cm. (c) Leaf phenotype 
of 120-day-old wild-type and osarp6 plants. Flag leaf, wild-type (left) and osarp6 (right), are shown. Scale bar = 5 cm. 
(d) Quantification of height of wild-type and osarp6 plants. Error bars indicate the SD (n = 12). Asterisks indicate P < 
0.01 (**) as determined by Student’s t test analysis. (e) Quantification of tillers number from wild-type and osarp6 plants. 
Error bars indicate the SD (n = 12). Asterisks indicate P < 0.01 (**) as determined by Student’s t test analysis. (f) 
Internode and panicle lengths of wild-type and osarp6 plants. Error bars indicate the SD (n = 12). (g) Quantification 
of flag leaf length from wild-type and osarp6 plants. Error bars indicate the SD (n = 10). Asterisks indicate P < 0.01 (**) as 
determined by Student’s t test analysis. (h) Longitudinal sections of the elongated zones of the 5th internode (upper-
most internode) of wild-type and homozygous osarp6 plants at the mature stage. Scale bar = 50 µm. (i) Quantification 
of cell length of the uppermost internode of wild-type and homozygous osarp6 plants. Error bars indicate SD (n = 50). 
ns indicates non-significant as determined by Student’s t test analysis.  

Figure 3. Phenotypes of homozygous osarp6 plants. (a) Representative image of 120-day-old wild-type and osarp6 ho-
mozygous plants. Scale bar = 10 cm. (b) Stems of the mature wild-type and homozygous osarp6 plants. All leaves were
removed to clearly show the elongated stems. White arrowheads indicate the nodes. Scale bar = 10 cm. (c) Leaf phenotype
of 120-day-old wild-type and osarp6 plants. Flag leaf, wild-type (left) and osarp6 (right), are shown. Scale bar = 5 cm.
(d) Quantification of height of wild-type and osarp6 plants. Error bars indicate the SD (n = 12). Asterisks indicate P < 0.01 (**)
as determined by Student’s t test analysis. (e) Quantification of tillers number from wild-type and osarp6 plants. Error
bars indicate the SD (n = 12). Asterisks indicate P < 0.01 (**) as determined by Student’s t test analysis. (f) Internode and
panicle lengths of wild-type and osarp6 plants. Error bars indicate the SD (n = 12). (g) Quantification of flag leaf length from
wild-type and osarp6 plants. Error bars indicate the SD (n = 10). Asterisks indicate P < 0.01 (**) as determined by Student’s
t test analysis. (h) Longitudinal sections of the elongated zones of the 5th internode (uppermost internode) of wild-type
and homozygous osarp6 plants at the mature stage. Scale bar = 50 µm. (i) Quantification of cell length of the uppermost
internode of wild-type and homozygous osarp6 plants. Error bars indicate SD (n = 50). ns indicates non-significant as
determined by Student’s t test analysis.
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Table 2. Internode and panicle length analysis of wild-type and osarp6 plants.

Genotype Internode Length (cm) Panicle Length (cm)

Fifth Fourth Third Second First
WT 32.2 ± 1.8 15.7 ± 1.3 9.3 ± 1.2 3.3 ± 1.4 1.1 ± 0.4 18.6 ± 1.2

osarp6-1 14.7 ± 0.6 5.0 ± 1.0 1.2 ± 0.2 0.8 ± 0.1 0.4 ± 0.1 14.7 ± 1.5
osarp6-2 14.5 ± 0.5 4.6 ± 0.5 1.3 ± 0.1 0.7 ± 0.1 0.4 ± 0.0 14.2 ± 0.6

osarp6-1 (heterozygous) 24.7 ± 0.5 10.6 ± 1.5 5.1 ± 0.2 3.1 ± 0.4 0.6 ± 0.1 15.4 ± 0.2
osarp6-2 (heterozygous) 25.0 ± 0.7 10.0 ± 0.4 5.2 ± 0.5 3.1 ± 0.1 0.5 ± 0.1 15.4 ± 0.5

3.6. The Reduced Height of osarp6 Is Due to Defect in Cell Proliferation

To investigate whether dwarf morphology of osarp6 plants was caused by defects in
cell elongation and/or cell proliferation, the longitudinal cell morphology of the osarp6
and WT internodes was observed. After the heading stage, the middle sections of the
fifth internode (top) were collected, fixed, and sectioned, and the cell length was observed
under microscope. The results showed that cell length was not affected in osarp6 plants
(Figure 3h,i). The ratios of cell number in a single row in 1 cm sections from top, middle
and bottom portions in 5th internodes were not different in wild-type and osarp6 mutants
(Table S1). The estimated total number of cells in a single row in 5th internode in wild type
was more than two times than osarp6 mutants (Table S1). Together, these results showed
that reduction in longitudinal cell number in the elongation zone may account for the short
internodes in osarp6 plants.

3.7. OsARP6 Is Involved Regulating the Expression of Various Cell-Cycle-Related Genes

The altered rate of cell proliferation in the osarp6 mutant prompted us to examine the
expression of cell-cycle-regulating genes. The cell division cycle is controlled in eukaryotes
by cyclin-dependent kinases (CDKs) [32–34]. Total RNA was isolated from the leaves
of 10-day-old seedlings of WT and osarp6 mutant plants, and was subjected to RT-qPCR.
Expression level of OsCDKA2;1 and CDKA;2, involved in controlling both G1/S and G2/M
transitions [35] were down regulated in osarp6 mutants (Figure 4). Similarly, the expression
level of the Cyclin-dependent kinase-activating kinase R2, which regulates S-phase progres-
sion [36], was greatly decreased in osarp6 mutants compared to WT (Figure 4). The kinase
activity of CDKs is dependent on the binding of positive regulators known as cyclins,
first identified as proteins showing a cyclical pattern of accumulation and destruction dur-
ing the synchronous divisions that characterize early embryonic development in marine
invertebrates [37]. The A-type cyclins generally appear at the onset of S-phase [38–41].
In contrast, the B-type cyclins are induced in late S to G2 phase, reach their maximum
levels during mitosis, and are eventually ubiquitously degraded prior to anaphase via the
functions of the destruction boxes (D-box) located in their N-termini [42,43]. Expression
analysis of different cyclins genes showed that OsCYCA3;2, OsCYCB1;4, and OsCYCB2;2
were significantly downregulated in osarp6 mutants (Figure 4). Therefore, our results
indicate that the altered rate of cell proliferation in osarp6 might be due to the altered
expression level of cell cycle specific genes.
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Figure 4. OsARP6 promotes the expression of cell-cycle-regulatory genes. RNA was extracted from three-week-old seedlings,
and RT-qPCR was performed using gene-specific primers. ACTIN1 was used for internal control. Experiments were repeated
at least three times, and the data from representative experiments shown are presented as means. Error bars indicate SD for
three replicates. Asterisks indicate P < 0.05 (*) and P < 0.01 (**) compared with WT in the Student’s t test analysis.

3.8. OsARP6 Is Required for H2A.Z Deposition at the Promoters and TSS of
Cell-Cycle-Related Genes

Yeast and Arabidopsis ARP6 proteins, as part of the SWR1-C, are involved in H2A.Z
deposition [17,21,44]. We speculated as to whether mutation in rice OsARP6 may also
cause lower deposition of H2A.Z at the cell-cycle-regulatory genes. The histone-DNA
complex was immuno-precipitated with a specific H2A.Z antibody followed by qPCR. The
results revealed that H2A.Z was incorporated at the promoters and TSS, but not the gene
bodies, of cell-cycle-regulatory genes in wild type, but were reduced in osarp6 mutants
(Figure 5a,b). Therefore, our results confirmed the role of OsARP6 in mediating H2A.Z
deposition at cell-cycle-related genes.
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Figure 5. OsARP6 is responsible for H2A.Z deposition at promoters and transcription start sites (TSS) of the cell-cycle
genes. (a) Regions used for checking H2A.Z levels at cell-cycle-regulatory genes in wild-type and osarp6 mutants. 1, 2
and 3 respectively denote promoter, TSS and gene body. (b) H2A.Z levels at cell-cycle-regulatory genes in wild-type and
osarp6 plants using H2A.Z specific antibodies. IgG was used as negative control. ACTIN1 was used as internal control.
Experiments were repeated at least three times, and the data from representative experiments shown are presented as means.
Error bars indicate SD for three replicates. Asterisks indicate P < 0.05 (*) and P < 0.01 (**) and ns indicates non-significant
compared with WT in the Student’s t test analysis.
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4. Discussion

In this study, we characterized OsARP6 as conserved subunit of putative SWR1-C in
rice. OsARP6 interacted with OsPIE1, a rice ortholog of yeast Swr1. We found that OsARP6
is involved in vegetative and reproductive development of rice. Loss of OsARP6 function
resulted in pleiotropic defects in development including defect in height, tiller numbers,
and fertility. The semi-dwarf phenotype was due to the defect in cell proliferation. The
transcription levels and H2A.Z levels at promoters and TSS of OsCDKA;1, OsCDKA;2,
OsCYCB1;4, OsCYCB2;2 OsCYCA3;2 and OsR2 were reduced in osapr6 mutants.

ARP6 has been identified in yeast as a component of the SWR1-C [8,12]. Biochemical
characterization of the yeast SWR1-C revealed that Arp6, Swc6, Swc2, and Swc3 form a
sub-complex that associates to Swr1 [45]. Similarly, Arabidopsis ARP6 and SWC6 form a
sub-complex that associates with PIE1 [18]. Phylogenetic analysis, interaction between
OsARP6 and OsPIE1 and role in H2A.Z deposition confirmed that OsARP6 is a component
of conserved SWR-C in rice.

The knockout osarp6 mutants displayed pleiotropic developmental alterations includ-
ing reduced plant height, reduced tiller number, attenuated panicle exertion and defects
in reproductive development. In Arabidopsis, loss of function mutations in PIE1, ARP6
or SWC6 cause similar morphological and developmental phenotypic defects affecting
vegetative and reproductive traits, including dwarf stature and early flowering and cause
mis-expression of several genes [9,16,17,20,23,46,47]. Similarly, Arabidopsis yaf9a yaf9b
double mutant plants and plants with reduced levels of SWC4 expression (swc4i) display
pleiotropic phenotypic alterations in both vegetative and reproductive development, in-
cluding early senescence and chlorotic leaves, abnormal flowering and reduced plant and
organ size [21,22]. Consistent with the role of SWR1-C in H2A.Z deposition, the Arabidop-
sis H2A.Z mutants also exhibit pleiotropic phenotypes [14]. Our results are consistent with
previous results showing that putative rice SWR1-C and H2A.Z play key roles throughout
plant development.

We found that reduced height of osarp6 is due to reduced number of cells in the elon-
gation zone, suggesting defect in cell division. Chromatin-remodeling has been reported to
play role in transcriptional regulation during the cell cycle [48,49]. Arabidopsis arp6 mutants
have remarkably smaller leaves that are composed of fewer cells rather than a normal
number of smaller cells [23]. Plants defective in other nuclear ARPs, such as ARP4 and
ARP7, also exhibit dramatic and remarkably diverse developmental phenotypes, including
reduced cell size and/or numbers [19,50,51]. Consistent with previous studies, our results
demonstrate that the reduced size of osarp6 is due to defect in cell division.

In Arabidopsis, the presence of H2A.Z in the +1 nucleosome of certain genes is required
for maintenance of transcriptional activity [17,52,53]. Our results indicate that OsARP6
regulate cell division by modulating H2A.Z deposition at the +1 nucleosome and not the
gene bodies of cell-cycle-regulatory genes. Together, our results suggest that OsARP6 may
contribute to the regulation of gene expression through modulation of H2A.Z dynamics.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom11081100/s1, Figure S1: Alignment of ARP6 proteins from rice, Arabidopsis and yeast
with conventional actins; Figure S2: Expression pattern of OsARP6 obtained from ePlant Rice;
Figure S3: Sequence comparisons of wild type, and knockout osarp6 mutants; Figure S4: Phenotypes
of heterozygous osarp6 plants; Table S1: Quantification of cell length and cell number in 5th internodes
of wild type and osarp6 mutants; Table S2: Primers used in this study.
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