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Introduction

Because of increasing environmental impacts from human
activities, a growing number of captive breeding programs

© 2008 The Author

Abstract

Captive breeding programs are increasingly being initiated to prevent the
imminent extinction of endangered species and/or populations. But how well
can they conserve genetic diversity and fitness, or re-establish self-sustaining
populations in the wild? A review of these complex questions and related issues
in salmonid fishes reveals several insights and uncertainties. Most programs
can maintain genetic diversity within populations over several generations, but
available research suggests the loss of fitness in captivity can be rapid, its mag-
nitude probably increasing with the duration in captivity. Over the long-term,
there is likely tremendous variation between (i) programs in their capacity to
maintain genetic diversity and fitness, and (ii) species or even intraspecific life-
history types in both the severity and manner of fitness-costs accrued. Encour-
agingly, many new theoretical and methodological approaches now exist for
current and future programs to potentially reduce these effects. Nevertheless,
an unavoidable trade-off exists between conserving genetic diversity and fitness
in certain instances, such as when captive-bred individuals are temporarily
released into the wild. Owing to several confounding factors, there is also cur-
rently little evidence that captive-bred lines of salmonids can or cannot be rein-
troduced as self-sustaining populations. Most notably, the root causes of
salmonid declines have not been mitigated where captive breeding programs
exist. Little research has also addressed under what conditions an increase in
population abundance due to captive-rearing might offset fitness reductions
induced in captivity. Finally, more empirical investigation is needed to evaluate
the genetic/fitness benefits and risks associated with (i) maintaining captive
broodstocks as either single or multiple populations within one or more facili-
ties, (ii) utilizing cryopreservation or surrogate broodstock technologies, and
(iii) adopting other alternatives to captive-rearing such as translocations to
new habitats. Management recommendations surrounding these issues are pro-
posed, with the aim of facilitating meta-analyses and more general principles
or guidelines for captive-breeding. These include the need for the following: (i)
captive monitoring to involve, a priori, greater application of hypothesis testing
through the use of well-designed experiments and (ii) improved documenta-
tion of procedures adopted by specific programs for reducing the loss of
genetic diversity and fitness.

are being initiated to salvage endangered species and/or
populations from extinction (IUCN 1998, 2006; Seddon
et al. 2007; Frankham 2008). Historically, many of these
programs have been met with considerable difficulty
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(Philippart 1995; Snyder et al. 1996; Wolf et al. 1996;
Frankham 2008). Yet, despite the extensive resources and
labor that captive breeding programs require, few studies
have thoroughly investigated the following: (i) how well
current captive breeding procedures might recover endan-
gered populations, (ii) to what extent particular genetic
factors might hinder or help the success of captive breed-
ing, and (iii) alternative solutions to captive breeding for
endangered species and/or population recovery.

Here, I critically investigate these issues as they pertain
to how well captive breeding programs involving fish
hatcheries can conserve salmonid diversity, a group of
well-studied and socio-economically important fish spe-
cies native to the northern hemisphere. In a time when
the remarkable diversity within salmonid species has been
recognized legally for its import to species’ persistence
and adaptability (Waples 1995; Irvine et al. 2005), salmo-
nid populations in many regions of their native ranges
are experiencing unprecedented population declines and/
or low levels of natural recruitment. Human activities
implicated in salmonid declines include overexploitation,
habitat loss from logging, agriculture, damming and
urbanization, environmental change related to climate
warming, stocking of hatchery fish and negative interac-
tions with their wild counterparts, and the introduction
of non-native or invasive species (Lassuy 1995; NRC
1996; Parrish et al. 1998; Myers et al. 2004). Population
declines and habitat fragmentation are often so severe
that natural recolonization of habitats via dispersal
(‘straying’) is difficult (O’Reilly and Doyle 2007). Conse-
quently, captive breeding programs involving hatcheries
have become widely-used tools in an attempt to prevent
population extinctions or reintroduce extirpated popula-
tions (Berejikian et al. 2004; Flagg et al. 2004a,b; Pollard
and Flagg 2004; O’Reilly and Doyle 2007).

The general uses and goals of hatcheries in salmonids
are varied (Waples et al. 2007; Naish et al. 2008). For
instance, ‘hatchery augmentation programs’ are a cen-
tury-old management tool and aim to increase the abun-
dance of populations solely for fishery opportunities
(Naish et al. 2008). For the purposes of this review, how-
ever, and to avoid confusion, I categorize two other
‘types’ of hatchery programs below that either (i) aim to
restore extirpated or endangered populations, or (ii) reha-
bilitate declining or threatened populations. Indeed, it is
these conservation-oriented programs that are most rele-
vant to consider in the context of the capacity of hatcher-
ies to conserve biodiversity, particular in the context of
(i) which is the focus of the review.

‘Captive breeding programs’, broadly speaking, serve to
use hatcheries to maintain populations that are unable to
survive in the wild for at least a portion of their lifecycle
(Utter and Epifanio 2002). The proximate goal of these
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programs is to prevent imminent extinction of declining
species or populations. Their ultimate goal is to maintain
the genetic diversity and fitness within populations until
the threats to them are removed and they can be reintro-
duced as self-sustaining populations (Utter and Epifanio
2002; Pollard and Flagg 2004). These programs have been
recently advanced and the most extensively applied in
Europe and North America.

‘Supplementation programs’, hand,
involve the intentional demographic integration of hatch-

on the other
ery and natural production, with the goal of improving
the status of an existing natural population (Waples et al.
2007). Such programs have been used in many regions
but most extensively in Western North America (Naish
et al. 2008). Here they are used to mitigate losses in
declining or threatened populations from human activi-
ties and/or environmental changes.

In reality, the definitions, uses, and goals of these pro-
grams represent a continuum along which the status of
populations may range anywhere from being threatened
to extirpated (and ultimately, rendering the species
extinct) (Fig. 1). In some cases then, it may be hard to
distinguish the exact moment when a supplementation
program has become a captive breeding program, or vice-
versa (Fig. 1). In addition, programs within these catego-
ries may vary considerably between hatchery facilities, in
terms of (i) the procedures that they adopt to improve
the chances that the program will achieve its goals and

Species or
Population
status

\ Stable
Willbecome

endangered if threats to
them are not removed

Facing imminent Endangered
extinction or extirpation
Population
extirpation

/ Harvest
augmentation

Supplementation

Threatened
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Figure 1 The continuum of different types of hatchery programs
("harvest supplementation’, ‘supplementation’, and ‘captive-breeding’)
in relation to the status of a species or population. The designation of
different programs to specific points along the continuum is not
intended to be prescriptive.
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(ii) the duration or life-history stage of hatchery-rearing
(Table 1; see Appendix 1 for literature search details). For
instance, only recently have a number of procedures been
feasible or recognized for mitigating a myriad of genetic
risks in the hatchery that might affect the success of cap-
tive breeding programs (Table 2). Live-gene banking pro-
grams of Atlantic salmon in Norway and eastern North
America (see Box 1; Table 1) are good examples of ‘cur-
rent’ captive breeding programs that accommodate many
of these new procedures to protect populations that are
at the extreme of the continuum outlined in Fig. 1; that
is, populations that are extirpated or facing imminent
extinction.

Owing to these considerations, I pay careful attention
throughout the review to distinguish how differences

Genetic diversity and fitness in captive breeding

between supplementation and captive breeding programs
may affect interpretations of the capacity of the latter, the
predominant focus of the review, to conserve biodiversity.
Similarly, wherever possible, the review is careful to dis-
cuss how conclusions drawn from previous captive breed-
ing programs may change in the context of ‘current’
captive breeding programs such as live-gene banking that
adopt procedures to minimize genetic risks. Additionally,
unless otherwise stated, the term ‘wild” refers to fish born
in the wild, regardless of the origin of their parents.
‘Hatchery’ or ‘hatchery-reared’ refers to fish born and
raised in the hatchery during some portion of their lifecy-
cle, regardless of the origin of their parents, but where
details of the hatchery-rearing process were unknown.
Conversely, ‘captive’, ‘captive-bred’ or ‘captive-reared’

Table 1. Commonalities and differences between and within categories of hatchery programs, depending on the salmonid species and/or partic-

ular geographic location. X=majority or all

Captive- Captive- Live gene Live gene
Supplementation breeding breeding banking  banking
Traditional Supplementation (e.g., steelhead, (winter-run (Pacific salmon, (Atlantic  (Atlantic
hatchery (e.g., Chinook western USA, Chinook salmon, western USA,  salmon,  salmon,
Characteristic of the program augmentation salmon) Canada) California) Canada) Norway) Canada)
Use of local populations Some Some X X X X
for generating broodstocks
Hatchery release as eyed-embryos Some Some
Hatchery release as Some Some X
unfed fry in the wild
Hatchery release as several Some Some X
week-old fry in the wild
Hatchery release as parr or Some Some X
presmolts in the wild
Hatchery release as smolts X X X X Most Some
in the wild
Free mate choice — release Some Some*
of adults (*captured as
wild juveniles)
Adult broodstock always X Some
retained in captivity
Release at optimal dates and sizes Some Some Some X Some X X
Pedigree information used Some Some X Some X X
to prevent kinship matings
Relatedness estimates of Some Some Some X X
founders to prevent
kinship matings
Fish grown at ‘natural’ growth X
trajectories before release
Equalization of family sizes in X Some X X
captivity and at release
Balanced sex ratios when breeding Some Some X Some X X
Recovery of offspring from each X
spawned adult at each spawning
Sperm cryopreservation ? Some X X

Undoubtedly, individual programs within each category differ in the particular procedures adopted and in the proportion of the broodstock to
which each procedure is applied. Detailed comparisons of harvest augmentation and captive-breeding programs in Pacific salmon can be found in
Flagg et al. (2004b). See also O'Reilly and Doyle (2007) for a description of live-gene banking in Atlantic salmon.

© 2008 The Author
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Table 2. Examples of means for reducing genetic and other risks associated with captive breeding programs.
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Means for reducing genetic or other risks
associated with captive breeding programs

Outcome/benefit

References

Minimize generations in captivity

Minimize intentional selection in captivity
(e.g., large adult size, early spawning adults)

Use local populations for captive breeding
and/or supplementation

Restrict captive-rearing to life-history stages
where natural mortality in the wild
is not as severe
Maintain N, as high as possible
Start the initial captive broodstock with as
many genetically-diverse founders as possible
Equalize founder representation in the
initial captive broodstock
Equalize family sizes in captivity and at time
of release
Equalize sex ratios at spawning
Recover offspring from each spawning adult at
each sampling event before
release at in each spawning year
Equalize captive population sizes across
generations
Maximize captive generation length
Do not carry out mixed-sperm fertilizations
Allow free mate choice rather than conduct
random matings

Minimize family variance in the captive component
relative to the wild component of the population

Apply sperm cryopreservation techniques, or
surrogate broodstock technologies

Greater naturalization of the captive environment
(for physiological, morphological and behavioural
conditioning)

Estimate relatedness among founders and use this
information, as well as employ pedigree analyses,
to minimize/avoid kin matings

Optimal releases of captive-reared individuals into
the wild (e.g. at proper times, body sizes, water
temperatures)

Grow captive-reared individuals at ‘natural’ rates
of growth

Monitor success of released captive-bred individuals

Delay maturation of individuals in captivity

Reduces domestication selection to captivity

Reduces the potential loss of genetic diversity
in captivity

Reduces domestication selection to captivity

Early release of offspring; use broodstock with
wild exposure or from the wild

Reduces the loss of adaptation to local
environments

Prevents outbreeding depression

May reduce domestication selection in
captivity

Reduces the loss of genetic diversity in captivity

May improve offspring quality and retention
of fitness

Potentially increases N, of the whole
population

Maximizes generation length, thereby

potentially reducing the loss of genetic diversity
and loss of fitness (from domestication selection
or a relaxation of natural selection) in captivity
Improves survival chances upon exposure to

the wild

Reduces inbreeding and retains genetic diversity

Improves survival chances upon exposure
to the wild

Decreases sex ratio skews brought on my
early male maturation

Feedback for improvement of captive-breeding
programs

Extend generation length in captivity

Frankham et al. (2002);
Frankham (2008)

Miller and Kapuscinski (2003);
Frankham et al. (2002); O'Reilly
and Doyle (2007)

Brannon et al. (2004)

P. O'Reilly, DFO Halifax,
Canada, personal communication

Ryman and Stahl (1981);

Tave (1984); Allendorf and
Ryman (1987);, Withler (1988);
Eknath  and  Doyle  (1990);
Allendorf (1993); Doyle et al.

(2001); Frankham et al. (2002);
Campton (2004); Rodriguez-
Ramilo et al. (2006); O'Reilly and
Doyle (2007); Wedekind et al.
(2007)

Fleming (1994); Wedekind 2002;
Berejikian et al. (2004); Pitcher
and Neff (2007)

Ryman and Laikre (1991);
Hedrick et al. (2000a,b); Wang
and Ryman (2001)

Okutsu et al. (2007);
O'Reilly and Doyle (2007)

Maynard et al. (1996, 2004);
Braithwaite and Salvanes (2005);
Salvanes and Braithwaite (2005)

Fernandez and Caballero (2001);
Fernandez et al. (2003); Hansen
and Jensen (2005); Herbinger
et al. (2006); O'Reilly and Doyle
2007; Kozfkay et al. (2008)

Miller and Kapuscinski (2003);
Brannon et al. (2004); O'Reilly
and Doyle (2007)

Larsen et al. (2004)

Flagg et al. (2004a);
O'Reilly and Doyle (2007)
Frankham et al. (2002)

Discussions of many of these with specific respect to salmonid fishes can also be found in Miller and Kapuscinski (2003), Reisenbichler et al.
(2003), Flagg et al. (2004b) and O'Reilly and Doyle (2007).
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refers to fish born and raised in the hatchery (or in ‘cap-
tivity’) during some portion of their lifecycle, regardless
of the origin of their parents, but where some informa-
tion was available to describe how genetic risks of hatch-
ery-rearing were mitigated.

Bearing these considerations in mind, I take stock of
the capacity of captive breeding programs involving
hatcheries to conserve salmonid biodiversity by addressing
the following questions and related issues. First, I very
briefly consider why genetic diversity between and within
salmonid populations is important to conserve. Second, I
review and weigh the evidence that salmonid captive
breeding programs are capable of maintaining both
genetic diversity and fitness within populations. Third, I
summarize available information that captive-reared lines
of salmonids can be successfully reintroduced into the
wild as self-sustaining populations if and when the threats
imposed on them are removed. Fourth, because some
degree of wild fitness may be unavoidably lost in captiv-
ity, I explore theoretical grounds for whether a demo-
graphic boost from increased population abundance can

Genetic diversity and fitness in captive breeding

offset such fitness reductions. Fifth, I evaluate whether
single or multiple facilities are required to more effec-
tively carry out captive breeding programs involving
hatcheries (from a genetic and fitness perspective).
Finally, I consider whether technical alternatives to cap-
tive breeding programs might be used to conserve salmo-
nid biodiversity. Importantly, while the review focuses on
salmonid fishes, these same questions are directly relevant
to the assessments of captive breeding programs for many
other threatened/endangered species.

Genetic diversity among and within populations:
important to conserve?

The conservation of genetic diversity within species is a
hallmark of contemporary conservation biology (reviewed
in: Soulé 1987; Ryder 1986; Crandall et al. 2000; Fraser
and Bernatchez 2001; Frankham et al. 2002; Moritz 2002;
Frankham 2005). This is true of salmonid biodiversity
conservation as well (references in Table 3), and the costs
of not conserving genetic diversity are also embodied

Table 3. Evidence that genetic diversity between and within populations is important to conserve, as well as functions of genetic diversity within
and between salmonid populations and their biological and/or human benefits.

Evidence that genetic diversity is important to biodiversity maintenance

Species References

Reduced genetic diversity and associated inbreeding within populations
are associated with an increased risk of extinction

Elevated extinction risk in populations with higher rates of inbreeding
(lower genetic diversity) than in populations with lower rates of
inbreeding (higher genetic diversity)

Molecular (e.g., allelic) variation has significant effects on
population growth rate

Quantitative (e.g., body size) variation has significant effects on
population growth rate

Higher genetic diversity within species enhances ecosystem
recovery following disturbances

Higher genetic diversity within species increases community
species richness

Butterflies Saccheri et al. (1998)

Plants, fruitflies Newman and Pilson (1997); Bijlsma

et al. (2000)
Butterflies Hanski and Saccheri (2006)
Sheep Pelletier et al. (2007)
Sea grass Reusch et al. (2005)
Plants Booth and Grime (2003)

Function of salmonid genetic diversity

Salmonid references

Maximizes the potential for species to respond to environmental change
Protects the progenitors of future biodiversity (e.g., new species)
Reduces the likelihood of extinction
Direct/indirect benefits of conserving salmonid genetic diversity
Long-term species persistence
Short-term population viability
Maintenance of natural evolutionary processes
Protection of different habitats, and potentially ecosystem functioning
Maintenance of local adaptations
Maintenance of ecosystem stability
Permits humans to understand how salmonid biodiversity arises
Development of proper restoration guidelines

if some natural systems are conserved
Potential future resources for humans
Potential future resources for aquaculture programs

Utter (1981); Waples (1991a, 1995); Ryman et al. (1995)
Bernatchez (1995); Taylor (1999); see also Bowen (1999)
Waples (1995); Dodson et al. (1998)

Utter (1981); Waples (1991a); Ryman et al. (1995); Taylor (1999)
Dodson et al. (1998)

Waples (1991a, 1995); Dodson et al. (1998)

Waples (1991a, 1995); Allendorf et al. (1997)

Waples (1991a, 1995); Dodson et al. (1998)

Riddell (1993)

Taylor (1999)

Riddell (1993); Fraser and Bernatchez (2008)

Waples (1991a); Fraser et al. (2006)
O'Reilly and Doyle (2007)

© 2008 The Author
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within the precautionary approach to salmonid fisheries
management (Dodson et al. 1998; Garcia de Leaniz et al.
2007). The motivation behind conserving genetic diversity
stems from a number of important functions that genetic
diversity serves, or is believed to serve, to biodiversity
maintenance both among and within populations
(Table 3). These functions include (i) maximizing the
potential for species/populations to evolve to cope with
environmental change, (ii) providing the raw material
that natural selection acts upon to generate diversifica-
tion, and (iii) influencing both ecosystem recovery follow-
ing disturbances and community species richness
(Table 3). Indeed, the consequences of reduced genetic
diversity are strongly purported to reinforce demo-
graphic/environmental processes and together drive spe-
cies extinctions (Lande 1995; Spielman et al. 2004).

Salmonids are well-studied in terms of the degree to
which genetic diversity is partitioned between and within
populations. To date, however, the vast majority of these
studies have been based on neutral genetic markers
(Box 1). The scale and the extent to which genetic diver-
sity in salmonids is adaptive remain poorly understood.
Nevertheless, conservation of salmonid genetic diversity is
strongly advocated because several indications suggest
that adaptive divergence via natural selection may be
important in salmonid diversification, and that it can vary
with habitat heterogeneity and/or environmental stability
(Taylor 1991; Garcia de Leaniz et al. 2007). On the other
hand, how best to prioritize intraspecific diversity, both
in salmonids and in general, is still a matter of consider-
able debate (Allendorf et al. 1997; Currens et al. 1998;
Wainwright and Waples 1998; Fraser and Bernatchez
2001; Moritz 2002; Wood and Gross 2008).

Can captive breeding programs involving
hatcheries conserve genetic diversity within
populations?

Given it is commonly accepted that genetic diversity both
within and between populations is important to conserve,
it is relevant to consider whether or not captive breeding
programs can maintain genetic diversity. For the most
concerning situations involving the extirpation or near-
extirpation of populations in the wild, captive brood-
stocks may be unavoidably small owing to a lack of space
for housing fish or a limited number of remaining wild
founders to initiate captive lines. Captive broodstocks will
therefore have a low effective population size (N.)
(Box 1). Smaller N, populations, in the absence of gene
flow, lose genetic diversity at a much higher rate through
genetic drift (Box 1) than large N. populations (reviewed
in Frankham et al. 2002; Keller and Waller 2002; but see
Willi et al. 2006). Relative to larger N, populations, smal-
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ler N, populations are also more susceptible to inbreeding
and its associated effects (inbreeding depression) (Box 1),
if they have not been small over long histories to have
effectively purged deleterious, recessive alleles (Leberg and
Firmin 2008). This is a common situation for many cap-
tive-bred species that have often experienced rapid
declines related directly or indirectly to human activities.
In theory, a well-managed captive breeding program
implementing a number of procedures (e.g., Table 2; see
below) can generate a ratio of N, to census size (N) of a
population that exceeds one (Frankham et al. 2002). Usu-
ally though, N, will be less than N owing to three vari-
ables: unequal sex ratios, variation in family sizes and,
particularly, fluctuating population sizes, that drive down
the ratio of No/N (Frankham 1995), including in salmo-
nids (Waples 2002a; Ardren and Kapuscinski 2003; Araki
et al. 2007a). There is consequently a consensus that the
more these effects are reduced in a captive breeding pro-
gram (see Table 2), and the larger the N,, the more suc-
cessful that captive breeding program will be at
maintaining genetic diversity (Frankham et al. 2002; Kol-
jonen et al. 2002; McLean et al. 2004, 2007; O’Reilly and
Doyle 2007; Frankham 2008).

One relevant question to ask is, how many generations
can N, of typical salmonid captive breeding programs
maintain genetic diversity? Frankham et al. (2002) have
argued that the retention of 90% of genetic diversity (e.g.
allelic richness, heterozygosity; Box 1) over a 100-year
period in captivity should be a targeted conservation goal.
This time period would equate to 25-33 generations for
most captive-reared salmonids, and stems from the time-
frame when human population growth is expected to
decline and increases in wild habitat may become avail-
able (Soulé et al. 1986). In an analogous situation, Frank-
lin (1980) and Frankel and Soulé (1981) also argued that
a decrease in mean heterozygosity of 1% per generation
(i.e., an inbreeding rate of 1%) due to low N, was an
acceptable rate of loss of diversity in livestock breeding
programs. However, there is currently no empirically or
theoretically justifiable answer to the question ‘how much
genetic diversity is enough to conserve a species or popu-
lation?” Additionally, a rate of loss of heterozygosity of
1% per generation might be acceptable in benign agricul-
tural environments but has not been tested on captive-
reared salmonids or other fishes that will be released into
the wild (Naish et al. 2008). In reality, the goal of any
captive breeding program should be perhaps to conserve
as much genetic diversity as possible. Relationships between
genetic diversity and population viability are also complex
and likely vary between species and populations within
species (Tallmon et al. 2004). Therefore, conservation
hope should not be abandoned if a population has lost,
say, 20% or more of its genetic diversity over 100 years of

© 2008 The Author
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captive-rearing; it might, of course, still be reintroduced
successfully into the wild. Indeed, there is at least one
report of a successful introduction of salmonid popula-
tions into previously unoccupied habitat despite limited
genetic diversity and low N, (Koskinen et al. 2002). Con-
sequently, the present review applies the aforementioned
yardsticks cautiously and with these points in mind when
interpreting results from empirical or theoretical studies
on salmonids.

N, in the context of salmonid biology

Theoretical works initially developed to characterize the
rate of loss of genetic diversity expected over time in
populations of finite size referred to N, per generation
and were based on species with discrete generations in
which there was 100% turnover each generation (Waples
1990, 2002a; Waples and Teel 1990). In reality and, like
many other organisms, salmonids have overlapping gener-
ations in which individuals from several different-year
classes might contribute to a population’s gene pool
annually. However, relative to species from which histori-
cal modeling of overlapping generations was derived
(Felsenstein 1971; Hill 1972), many salmonids also dif-
fered because they die after breeding. This is the case for
semelparous Pacific salmon (Oncorhynchus spp.) and for
populations of other salmonids with a low degree of
iteroparity (e.g., Atlantic salmon, Salmo salar). Waples
(1990) discussed how such a characteristic causes a com-
plete turnover in the breeding population each year rather
than the gradual transition of most overlapping genera-
tion models. In other words, short-term genetic change in
many salmonids is more a function of the effective
number of breeders per year, Ny, and not generational N,
(Waples 1990). If N, remains stable across years, then N,
per generation is equivalent to N, multiplied by the
average age of breeders, or generation length g and
N, = gN,, accurately predicts the rate to which genetic
diversity may be lost through genetic drift in an isolated,
captive-reared population.

Waples (1990) simulated the loss of heterozygosity and
allelic diversity that might be accrued over 100 years in
isolated salmonid populations with N, of 24, 50, and 100,
under a Wright-Fisher model with random mating and
separate sexes. For a salmonid with a 4-year generation
time, these N}, values would translate into generational N,
values of roughly 100, 200, and 400. Relative to discrete
population models, only slight deficiencies in hetero-
zygosity occurred in the early years of simulations when
N, was small, by the extent (g + 1)/(8N},) (details in
Waples 1990). Thus, according to this model (and similar
to discrete generation theoretical models: Hartl and Clark
1989), even populations of Nj, = 24 would be capable of

© 2008 The Author
Journal compilation © 2008 Blackwell Publishing Ltd 1 (2008) 535-586
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retaining ~88% of initial heterozygosity over a 100-year
period (Waples 1990); in other words, only ~0.5% of
heterozygosity would be lost per generation in captivity
in a salmonid with a 4-year generation time.

For reasons that are unclear, in scenarios involving small
versus large N, (N, = 24 vs. 50 or 100), small N, popula-
tions also lost rarer alleles more readily than that predicted
by the discrete generation model in the early generations,
but this effect disappeared after about 10 generations
(details in Waples 1990). Unless N;, was small (N, = 24),
few alleles of frequency >10% would be lost even over a
100-year period, but rarer alleles (with frequencies of 2%
or 5%) would be lost at a much higher rate. For instance,
an isolated population of Ny, = 24 could expect to lose
~47% of alleles with frequencies <5% in 100 years, whereas
a population of Ny, = 50 or 100 would only lose ~20% or
~23% of such alleles, respectively, over the same time period
(Waples 1990). Such greater losses of allelic diversity rela-
tive to heterozygosity are consistent with a wide body of
theory (e.g., Allendorf 1986; Leberg 1992; Luikart et al.
1998). Waples (1990) simulations also assumed an age
structure of 50% age 4 breeders, and 25% age 3 and age 5
breeders, but changing the age structure had little effect on
the outcomes.

Based on these results, Waples (1990) recommended
that maintaining N}, = 100 in salmonid hatchery brood-
stocks per year would be sufficient to preserve most
alleles for tens of generations. Put another way however,
the model suggested that for a salmonid with a 4-year
generation time, 90% of the initial rarer allelic diversity
(frequencies<5%) could still be retained after about 8, 17,
and >25 captive generations for populations of Nj, = 24,
50 and 100, respectively (see Waples 1990). Thus, the
model also suggested that a smaller N, (24-50) might be
reasonably tolerated in captive breeding programs for
shorter time periods than 100 years (e.g., 3060 years).

Reducing the rate of loss of genetic diversity in captivity
predicted from theoretical expectations

Encouragingly, there are means by which to reduce the
rate of loss of genetic diversity based on the theoretical
considerations outlined above (e.g., a random mating,
idealized population), even if the captive broodstock cen-
sus size is low. Ideally though, it is better to start with as
large a founder captive population as possible (Allendorf
and Ryman 1987; Frankham et al. 2002).

One simple and widely recognized approach is to ensure
that each individual contributes exactly the same number
of progeny to the next generation. Assuming that, for
example, an individual of one sex is bred with a single indi-
vidual of the opposite sex, equalized family sizes from these
matings yield a rate of of inbreeding and genetic drift that
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is roughly half those generated from random contributions
of parents in an idealized population (Wright 1938; Wang
1997). In other words, equalization of family sizes effec-
tively doubles N relative to a randomly mated population.
The few experimental tests carried out on this topic with
fruitflies have supported theoretical predictions (Borlase
et al. 1993; Rodriguez-Ramilo et al. 2006). For instance,
Rodriguez-Ramilo et al. (2006) compared the genetic
diversity of captive-lines with equalized versus random
contributions after 38 generations at constant size (N = 20
or 100) and environmental conditions. After 38 genera-
tions, they found that ‘equalized’ lines retained 23-36%
more allelic diversity (at four microsatellite loci) than ‘ran-
domized’ lines. With respect to salmonids, more recently
instated captive breeding programs, such as live-gene bank-
ing programs of Atlantic salmon, attempt to balance sex
ratios and equalize family sizes not only within captivity
but also at the time of release into the wild (O’Reilly and
Doyle 2007; P. O’Reilly, Department of Fisheries and
Oceans, Halifax, personal communication; see also Hedrick
et al. 2000a,b; Moyer et al. 2007). Live-gene banking pro-
grams also attempt to recover at least one offspring per
spawned adult repeatedly at each spawning, in each spawn-
ing year, and at each sampling event to maximize the reten-
tion of genetic diversity of individuals (P. O’Reilly,
Department of Fisheries and Oceans, Halifax, personal
communication).

Another more sophisticated and recommended
approach is to use pedigree or molecular genetic marker
data to minimize mean inbreeding or kinship (coancestry)
coefficients between parents before generating every new
captive generation (Ballou and Lacy 1995; Caballero and
Toro 2000, 2002; Fernandez et al. 2003, 2004; Wang 2004).
Salmonid spawnings based on minimizing mean kinship
are now being carried out in a number of captive breeding
programs (e.g., Flagg et al. 2004a; Hansen and Jensen 2005;
O’Reilly and Doyle 2007; Kozfkay et al. 2008). Currently,
however, little empirical research in salmonids or other
taxa has been conducted to assess to what degree genetic
diversity can be more effectively retained with these addi-
tional measures relative to theoretical expectations, in
terms of their long-term effectiveness. For instance, over
four generations and constant population size, Montgom-
ery et al. (1997) compared the amount of genetic diversity
retained in replicate populations of fruitflies where either
kinship was minimized or randomized between breeders
(based on six microsatellite loci and seven allozyme loci).
The authors found that minimum kinship replicates
retained significantly greater levels of allelic richness and
heterozygosity than randomized replicates, although diver-
sity in randomized replicates was still 94-95% that of mini-
mized kinship replicates. On the other hand, minimizing
kinship in captive populations of endangered species/popu-
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lations might yield greater benefits than this experimental
work would suggest because female fruitflies in this study
were restricted to a single mating. Namely, the reuse of
under-represented individuals in successive generations
would allow them to make greater genetic contributions to
successive captive generations (Montgomery et al. 1997).
Finally, it is worth noting that some measures for minimiz-
ing kinship require detailed pedigree information (e.g.,
Toro et al. 1999; Wang 2001a; but see Wang 2004) which
may not be available in some situations.

One potential caveat of strategies that minimize kinship
is that they often assume captive broodstock founders are
unrelated and not inbred (Rudnick and Lacy 2008),
although with DNA techniques, it is now possible to at
least estimate founder relationships (Gautschi et al. 2003;
Russello and Amato 2004). If founders are related or
inbred, maximizing N, by equaling the genetic contribu-
tions of captive breeders will only exacerbate the effects
caused by a nonrepresentative sampling of the ancestral
gene pool within the captive broodstock (Ebanhard 1995;
Doyle et al. 2001). This is important to consider in many
salmonids for two reasons. First, related family members
within populations may not be distributed randomly at
various stages of the life cycle (Hansen et al. 1997; Fraser
et al. 2005). Second, sampling collections for captive
broodstock purposes may be restricted in time and spatial
coverage (Herbinger et al. 2006).

Recent modeling suggests that while the potential bene-
fits from knowing founder relationships probably vary on
a case-by-case basis, minimizing kinship within a captive
broodstook under traditional founder assumptions could
still generate near optimal results (Rudnick and Lacy
2008). Yet, Doyle et al. (2001) illustrated an empirical
example in which a greater level of genetic diversity was
recovered (and thus retained) within a small captive pop-
ulation generated from related founders, characteristics
likely of many captive breeding programs (Utter 1998;
Hedrick et al. 2000a,b,c; O’Reilly and Doyle 2007). Nota-
bly, using relatedness estimates based on DNA markers
and minimum kinship analyses, Doyle et al. (2001) car-
ried out compensatory matings in a captive population of
sea bream (Pagurus major), wherein subsets of founders
from under-represented lineages were preferentially mated
to increase their contribution. Relative to random subsets
of breeders of equal size, preferentially-mated subsets of
breeders had a lower mean coancestry and they generated
an offspring gene pool with greater heterozygosity and
allelic diversity (Doyle et al. 2001). While genetic diversity
of the random subsets was still 96% of preferentially-
mated subsets, the results suggested a means by which to
also reduce the rate of inbreeding and genetic drift pre-
dicted from theoretical considerations of N, by account-
ing for the genetic nature of founders.
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Empirical N}, and N, in captive salmonid populations

Table 4 provides available estimates of N, and N, and
levels of genetic diversity mainly at highly polymorphic,
nuclear DNA loci (microsatellite loci) in a number of sal-
monid hatchery/captive breeding programs (see Appen-
dix 1 for literature search details). Because of their high
polymorphism, microsatellite loci currently represent the
most widely used DNA technologies to detect whether
losses of genetic diversity have occurred within captive
breeding programs.

Several points and caveats of the studies in Table 4 are
worth noting that might make generalities difficult with
respect to what constitute typical N, and N, values in sal-
monid captive broodstocks. First, N, and N, estimates
were derived from systems involving supplementation
and/or captive breeding. In the case of supplementation
programs, information was often lacking on whether
broodstocks were being supplemented each generation
with wild-caught individuals, or whether they were being
entirely regenerated from previous generations of the cap-
tive broodstock (isolated from the wild). Second, it is
uncertain in some cases whether a loss of genetic diversity
might be attributable to low captive N, or whether it was
related to captive founder effects, because levels of genetic
diversity in the captive broodstock were compared to
those of the wild population and not to the initial found-
ing captive broodstock. These differences may affect inter-
pretations of the rate at which genetic diversity is lost
over time in captive broodstocks. Third, details were lack-
ing in many programs to assess what types of procedures
were employed to minimize reductions in N, in the
hatchery, so the results may not always be directly appli-
cable to current captive breeding programs (Table 1)
adopting procedures in Table 2. Fourth, N, and N, were
estimated from different methods, and in particular cases,
some of the underlying assumptions of these methods
were violated (Table 4). Similarly, N}, and N, point esti-
mates in some cases had fairly wide confidence intervals,
and many had no confidence intervals at all (Table 4).
Fraser et al. (2007a) have recently found that many com-
monly used methods for estimating N. do not always
generate correlated N, estimates in salmonids. Finally,
conversions of N}, estimates to a generational N, estimate
assumed that each year’s breeding population contributed
equally to the next generation regardless of the number of
breeders (Waples 1990, 2002a). However, Waples (2002b)
showed that variability in N, can substantially reduce
generational N, especially within semelparous salmonids,
and this reduction in N, is in addition to reductions in
the ratio of Ny/N in individual years.

Keeping these caveats in mind, it may not be overly sur-
prising that point estimates of Nj, and N, for salmonid
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broodstocks vary considerably (Ny: 5-133; N, = 15-690,
with the exception of two populations having estimates
much larger than these ranges but where it is evident that
the supplementation deviated from realistic N,/N, for cap-
tive-breeding programs) (Table 4). Assuming that these
estimates reflect true values, only crude generalities can be
made regarding the capacity of salmonid captive breeding
programs to conserve genetic diversity. For instance,
across all populations of different species (n = 26), only
eight broodstocks (31%) would fulfill Waples (1990) rec-
ommendation of Ny, = 100 (Table 4). Additionally, of the
26 broodstocks, about 15 (58%) and 21 (81%) would also
fulfill a minimum N;, = 50 and 24, respectively (Table 4).
These results suggest that a considerable number of salmo-
nid captive breeding programs might still lose a ‘fair’ pro-
portion of their allelic diversity within 30-60 years of
existence (/~8-15 generations; see above), perhaps unless
several of the procedures in Table 2 are instated which
might subdue these losses. Interestingly, in only one cap-
tive population (Oulujoki) was a statistically significant
reduction in heterozygosity and allelic richness detected
(Table 4). However, this population had existed for 10
generations in captivity, and declines in genetic diversity
over time that were not statistically significant could very
well reflect (i) the fewer number of generations accumu-
lated in these captive breeding programs, and/or (ii) a
limitation in statistical power to detect significant changes
in genetic diversity owing to insufficient sample sizes and/
or the modest numbers of loci employed (see Luikart et al.
1998). For example, in two of six captive populations
where data on the rate of loss of genetic diversity per gen-
eration existed, a loss of 4.8-8.2% of allelic diversity per
generation was estimated (Teno, Philip; Table 4).

Other considerations: captive-reared and wild population
components

The above discussion has dealt with cases where popula-
tions have become extirpated or nearly extirpated from
the wild. In such cases most, if not all, remaining popula-
tion members are involved in captive breeding. These are
relevant cases to consider in the context of the capacity of
captive breeding programs to conserve genetic diversity.
Nevertheless, during the process towards successful rein-
troduction into the wild, at some point there will be both
wild and captive-reared components to the population.
Likewise, when a wild population is experiencing drastic
declines and a decision is made to prevent its extinction
by supplementing the wild population with captive-reared
individuals, the population will comprise these same two
components.

Ryman and Laikre (1991) modeled the potential
increase or reduction in N, (even if N of the population
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is increased), and thus the potential for the rate of loss of
genetic diversity to be diminished or magnified, that
might occur when captive-reared individuals are released
into a wild population over a single generation. In partic-
ular, Ryman and Laikre (1991) focused on how captive
releases might lead to a reduction in N.. In such a situa-
tion, the reproductive rate of the captive-component of
the population is favored so the variance in family size
increases in the population, thereby decreasing the ratio
of N./N. Among other things, the model assumed discrete
generations, that captive-reared and wild fish had equal
probabilities of breeding in the wild, and that the number
of offspring produced by either wild or captive breeder
components was distributed binomially. For salmonids,
such assumptions are likely violated in many cases (Wa-
ples 1990; Wang and Ryman 2001; see below). Neverthe-
less, the model made an important conclusion. For
situations where the wild population was small, and thus,
most likely to go extinct, supplementation with captive-
reared fish could especially lead to a serious reduction of
genetic diversity of the overall population through a
reduction of N, (Ryman and Laikre 1991). This concern
was also most prominent when only a few captive-reared
individuals were used in attempts to recover populations
(Ryman and Laikre 1991).

On a positive note, however, in perhaps the only
detailed salmonid captive breeding program to effectively
apply the Ryman and Laikre method, supplementation
does not appear to have reduced genetic diversity in a
small, wild population, and it perhaps increased N, (Hed-
rick et al. 1995, 2000a,b). For instance, Hedrick et al.
(2000b) found that supplementation of endangered, win-
ter-run Chinook salmon led to apparent increases in the
lower and upper bound of N, of 16-81% and 2-11%,
respectively, for two different run years. Estimation of Ny,
in this study made several assumptions; most notably that
survival and return of released (captive-reared) individu-
als were random. Nevertheless, using genotypic pedigree
information to examine the representation of different
captive-reared families in returning breeders, Hedrick
et al. (2000a) were able to show that the numbers of
returning individuals were within 93.6% and 78.2% of
expected values. The results implied that if Ny, of the wild
population had not been increased with a captive-rearing
component, it had at least not been greatly reduced
(Hedrick et al. 2000a,b). Importantly, this program
attempted to equalize the contributions of captive breed-
ers by breeding each male and female as evenly as possi-
ble and by releasing the captive offspring generated from
different families as evenly as possible (Hedrick and
Hedgecock 1994; Hedrick et al. 1995, 2000a,b).

More recent models and simulations have evaluated
under what conditions supplementing a wild population
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over multiple generations could be either beneficial or
detrimental, in terms of increasing or reducing N,, and
related effects such as the rate of inbreeding and genetic
drift (Waples and Do 1994; Wang and Ryman 2001;
Duchesne and Bernatchez 2002). Both Wang and Ryman
(2001) and Duchesne and Bernatchez (2002) found that
supplementation did not result in either substantial
reductions in N, or increases in inbreeding under certain
conditions. For instance, in species where the variance in
family size in the wild component was much larger than
binomial variance (as may be common in salmonids, e.g.,
Hedrick and Hedgecock 1994), supplementation could be
favorable for increasing N, at least in the first generation
(Wang and Ryman 2001). In some circumstances, family
size variance in the captive component might even be
manipulated (i.e., reduced) to offset high family size vari-
ance in the wild (Wang and Ryman 2001). In addition,
Duchesne and Bernatchez (2002) found that scenarios,
where the rate of inbreeding with supplementation either
remained stable or declined (relative to a control of no
supplementation), were generally those involving a larger
than smaller captive N. In fact, captive N was more
important in determining the effect of supplementation
on inbreeding than (i) the degree to which the captive
component (or population) was ‘refreshed’ with breeders
from the wild component, or (ii) the generational dura-
tion of supplementation (Duchesne and Bernatchez
2002).

Nevertheless, the outcomes generated by these models
often changed considerably depending on the demo-
graphic scenario employed or the underlying assump-
tions. Wang and Ryman (2001) found that
supplementation could only increase N and N, if the
increase in N was substantial and continuous, in which
case, elevated rates of inbreeding and genetic drift could
ensue. The boost in N, over multiple generations was in
part due to the increase in N which compensated for the
effects of the enlarged variance in the genetic contribu-
tions between individuals in the whole population that
arose from initial supplementation (Wang and Ryman
2001). For the early stages of many captive breeding pro-
grams, however, such continual census size increase sce-
narios may be too optimistic (Waples and Do 1994;
Duchesne and Bernatchez 2002). Similarly, this model did
not explore how declining populations could affect
genetic diversity outcomes (Wang and Ryman 2001),
which is another realistic situation in which decisions to
initiate captive breeding programs are based. Additionally,
and particularly for smaller populations, initial supple-
mentation in the first couple of generations could be det-
rimental to wild N, given the negative demographic
effect of sampling the wild population to generate a cap-
tive broodstock. Just to potentially overcome such an ini-
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tial setback, captive rearing and successful supplementa-
tion (i.e., an increase in N) would have to be carried out
over several more generations (Wang and Ryman 2001;
Duchesne and Bernatchez 2002; see also Waples and Do
1994). Finally, neither Wang and Ryman (2001) nor
Duchesne and Bernatchez (2002) examined how reduced
reproductive success in captive-reared individuals (see
below) could affect genetic diversity outcomes in supple-
mented populations.

Collectively, few generalizations can be currently made
with respect to scenarios wherein both captive and wild
components are involved in the (i) supplementation of a
severely declining population or (ii) reintroduction of an
extirpated one. The outcomes of supplementation are dif-
ficult to predict based on current modeling, empirical
tests of the predictions of these models are very limited,
and outcomes may be specific to particular captive breed-
ing programs (Waples 1999; Duchesne and Bernatchez
2002; Naish et al. 2008).

Summary

While empirical and theoretical studies both suggest that
most salmonid captive breeding programs can maintain
genetic diversity over several captive generations, consid-
erable uncertainty remains with respect to the capability
of many programs to maintain genetic diversity over the
longer-term. In part, this is because many of the proce-
dures for maintaining captive N. (Table 2) have only
been implemented recently in most salmonid captive
breeding programs, often after considerable time had
passed since the programs were initiated. Thus, the
apparent low N, in some captive broodstocks might easily
be avoided today through the use of such procedures. On
the other hand, despite the plethora of procedures avail-
able to reduce the loss of genetic diversity in captivity
through the maintenance of N, (Table 2), few have been
systematically evaluated for long-term effectiveness. In
any event, the varying Ny, and N, estimates of different
broodstocks in Table 4 suggest that the capacity of cap-
tive breeding programs to maintain genetic diversity in
endangered salmonids will likely be case-specific.
Although it is clearly important to maintain genetic
diversity within captive-bred/reared populations, a main
caveat of Table 4 studies is that they are all based on neu-
tral genetic diversity. Standing levels of neutral genetic
diversity may not be a good correlate of quantitative
genetic diversity (Reed and Frankham 2001), and the level
of either can depend on many factors other than popula-
tion size (Willi et al. 2006). Recent studies suggest that,
on average, quantitative genetic variation may not be lost
within small populations as rapidly as neutral genetic
diversity, but that levels of quantitative genetic variation
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can be highly variable among small populations (Willi
et al. 2006). Similarly, putatively neutral microsatellite
loci are located in parts of the genome that are not sub-
ject to natural selection. As a result, allelic characteristics
at these loci they may have little or no relationship to
survival and fitness, and they tell us nothing about
genetic changes at quantitative traits that might be occur-
ring in the captive environment (Reed and Frankham
2001; McKay and Latta 2002). Consequently, even if levels
of neutral genetic diversity can be sufficiently maintained
in captivity, caution must be exercised in interpreting
such data for risk assessment and the ability of captive
breeding programs to maintain fitness, a subject treated
in detail in the next section.

Can captive breeding programs involving
hatcheries conserve fitness within populations?

A lengthy, two-sided debate surrounds the use of harvest
augmentation, supplementation and captive breeding pro-
grams to either increase salmonid harvest levels, give a
demographic boost to declining, at-risk populations, or to
recover endangered salmonid populations, respectively.
The debate is especially contentious with respect to
whether or not hatchery- or captive-rearing, in general,
can maintain attributes other than genetic diversity,
namely fitness.

A first predominant perspective argues that hatchery-
or captive-rearing has negative impacts on the long-term
persistence and fitness of wild salmonids. Under this
view, hatchery- or captive-rearing leads to unavoidable
genetic changes within hatchery-raised salmonids, chiefly
through domestication selection (Box 1). Domestication
selection results in a fitness reduction when hatchery- or
captive-reared fish are then introduced into the wild and
breed with wild fish. Such domestication selection can be
reduced (Table 2), but it cannot be eliminated entirely
(Hindar et al. 1991; Waples 1991b, 1999; Fleming and
Gross 1993; Campton 1995; Currens and Busack 1995;
Snyder et al. 1996; Reisenbichler and Rubin 1999; Flem-
ing and Petersson 2001; Frankham 2008). Theoretical
work also suggests that domestication selection in the
hatchery could have significant fitness consequences for a
wild population in the case of supplementation programs,
even if local, wild-born fish are used to generate hatchery
fish each generation (Lynch and O’Hely 2001; Ford 2002;
Reisenbichler et al. 2003; Theodorou and Couvet 2004;
Goodman 2005). A corollary to this perspective is that
hatchery programs, particularly hatchery augmentation
and supplementation programs which have been the main
focus of the debate, generally fail in their objective of
maintaining fitness and of contributing to the natural
productivity of wild salmonid populations (Reisenbichler
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and Rubin 1999; Fleming and Petersson 2001; Reisenbich-
ler et al. 2003).

A second and alternative perspective argues that hatch-
ery- or captive-rearing of salmonids can maintain fitness
within populations and play an important role in the
supplementation of declining or recovery of endangered
salmonid populations (Brannon et al. 2004). A corollary
to this perspective is that the genetic risks associated with
hatchery- or captive-rearing have been overstated. First,
proponents of this view argue that, aside from theoretical
studies on these genetic risks, the purported long-term
effects of hatchery- or captive-rearing have little or no
empirical basis (Incerpi 1996; Rensel 1997; Brannon et al.
2004). Second, in many cases, apparent effects on wild
populations have not been differentiated from the effect
of management decisions involving the misuse of the
hatchery fish (Campton 1995; Rensel 1997; Brannon et al.
2004). Most notably, in many instances, hatchery fish
from nonlocal rather than local source populations
(Box 1) were stocked into large geographic regions with-
out consideration that they may not have been adapted
to those areas (Brannon et al. 2004).

To objectively evaluate the comparative strength of
these divergent perspectives in the context of salmonid
captive breeding programs, the evidence for each one
must firstly be carefully sifted and presented (see Appen-
dix 1 for details of the literature search). Particularly rele-
vant are hatchery- or captive-rearing programs where (i)
wild-born broodstock (parents of hatchery fish) are col-
lected from a local river each generation, large numbers
of their offspring are raised under captive conditions for
a period of time, then released into the same local river,
and where (ii) the lifetime fitness performance of the
returning hatchery-born adults (or their wild-born off-
spring) versus wild adults can be directly evaluated in the
wild. Under these conditions, one can most legitimately
address the likelihood that current captive breeding pro-
cedures involving hatcheries will conserve fitness within
populations.

Laboratory studies

Table 5 summarizes 30 laboratory studies that evaluated
whether hatchery-rearing resulted in genetic changes in
hatchery relative to wild salmonids. This list of studies by
no means should be viewed as exhaustive as undoubtedly,
some other studies have been inadvertently overlooked.
The studies in Table 5 were not carried out in the wild,
so they only address the potential for genetic changes
incurred from captive breeding to have negative impacts
on the persistence and adaptability of wild salmonids.
Additionally, many of these studies have been based on
traditional supplementation practices (see Table 1; foot-

548

Fraser

notes of Table 5) and not necessarily on current captive
breeding program procedures.

Of the 30 studies comparing hatchery and wild fish in
Table 5, only five compared hatchery fish derived from
the same local population as the wild fish, and without
confounding environmental and genetic differences or
some degree of intentional artificial selection in the
hatchery, which is not a typical element of captive breed-
ing programs (see Table 5 footnotes). Of these five stud-
ies, three compared traits in hatchery and wild salmonids
after one generation of captive breeding (Dahl et al. 2006;
Fritts et al. 2007; Pearsons et al. 2007). Despite ample sta-
tistical power, only small, albeit significant, genetic differ-
ences were detected in two of three studies. Most
significantly was a 2.2% reduction in survival of first-gen-
eration hatchery Chinook salmon relative to wild fish
when exposed to natural predators (Fritts et al. 2007). In
another study, trait differences that had been detected
under hatchery conditions were not found when compar-
ing hatchery and wild fish in the wild (Dahl et al. 2006).
The other two studies compared traits in hatchery and
wild salmonids after four to six generations of captive
rearing (Johnsson et al. 1996; Ferno and Jarvi 1998).
Genetic differences were detected in three of four trait
comparisons for juvenile growth rate and antipredator
response. Finally, as expected, clear genetic differences
between hatchery and wild fish were also detected when
hatchery fish were nonlocal or had experienced inten-
tional selection (Table 5).

Field studies

Table 6 summarizes 20 studies that have directly evaluated
the fitness performance of hatchery and wild salmonid
fishes in the wild, with one additional study comparing
fitness between fish with different degrees of captive-rear-
ing (Carofinno et al. 2008), and another study comparing
the fitness between wild fish of local and nonlocal origin
(McGinnity et al. 2004). Again, this list of studies by no
means should be viewed as exhaustive as undoubtedly,
some other studies have been inadvertently overlooked.
Likewise, many of these studies have been based on com-
mon supplementation practices rather than current cap-
tive breeding procedures (see Table 1; footnotes of
Table 6).

Of these 20 studies comparing hatchery and wild fish
in Table 6, nine compared hatchery fish derived from the
same local population as the wild fish. Of these nine
studies, three detected survival differences between hatch-
ery and wild fish (Reisenbichler and Mclntyre 1977;
Unwin 1997; Araki et al. 2007¢c). However, the lifetime
performance of second generation hatchery and wild fish
in Reisenbichler and MclIntyre (1977) differed in only two
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of four stream comparisons (where hatchery fish survival
was lower), and the Unwin (1997) study was confounded
by rearing hatchery fish for 8-12 months in captivity
before release into the wild (from Brannon et al. 2004;
Table 6). In addition, all studies finding no survival dif-
ferences must be considered with caution because (i)
hatchery fish were larger than wild fish when released into
the wild (Rhodes and Quinn 1999; Bohlin et al. 2002),
(ii) hatchery fish comprised much of the ‘wild’ popula-
tion for many generations before studies were undertaken
(Dannewitz et al. 2003; Ford et al. 2006), (iii) hatchery-
wild performance comparisons were not carried out over
the entire life cycle (Dahl et al. 2006), or (iv) hatchery
fish had temporarily different rearing environments than
wild fish (Araki et al. 2007b; discussed in detail below)
(Table 5). On the other hand, unanimously, hatchery fish
had inferior fitness when they were nonlocal or had been
under intentional selection (Table 6).

To date, Araki et al. (2007b,c) are the only studies that
have evaluated whether a supplementation program with
some analogous features to many current captive breeding
programs can provide a boost to the size of a wild popu-
lation without fitness costs over one or two generations.
Based on steelhead trout (Oncorhynchus mykiss), the pro-
gram used wild-born broodstock (parents of hatchery
fish) that were collected each generation and from which
more numbers of offspring were raised in a hatchery for
a period of time before being released into the same local
river as l-year old, juvenile smolts. The program also
used DNA pedigree information to avoid kinship matings
of hatchery-reared fish, and hatchery-reared individuals
were released into the wild at ‘normal’ body sizes and
dates conducive to survival, features that should reduce
the genetic risks posed to wild populations from captive-
rearing (Table 2).

For a single generation, Araki et al. (2007b) compared
the reproductive success of returning, wild adults to that
of local hatchery adults and of adults from a nonlocal
(‘traditional’) hatchery strain raised under hatchery con-
ditions for several generations. Consistent with what
would be expected if captive breeding programs use local
broodstock and minimize the time that individuals are
kept in captivity, the authors found (i) no differences in
reproductive success between local hatchery fish and wild
fish, (ii) no differences in reproductive success between
local hatchery-wild crosses and wild-wild crosses, but (iii)
lower reproductive success in nonlocal hatchery fish rela-
tive to wild fish. The results were therefore encouraging
because they suggested that short-term captive-rearing
programs of one generation might be capable of generat-
ing fish with quasi-equal fitness to that of wild fish. Still,
Araki et al. (2007b) acknowledged that despite having
reasonable statistical power (80%), they might have failed
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in some cases to detect up to 10-15% lower reproductive
success in local hatchery relative to wild fish. The study
also could not rule out the possibility that initial differ-
ences in rearing environments between the local hatchery
and wild fish affected the former’s fitness performance in
the wild (Araki et al. 2007c¢).

Araki et al. (2007¢) avoided this problem by comparing
the reproductive success of captive-reared individuals
with different histories of captive breeding in the previous
generation. Specifically, they compared captive-reared
wild x wild crosses with captive-reared hatchery x wild
crosses (again, from the same population; egg-to-juvenile
stage captive rearing). Each type of crosses shared the
same generation in captivity under a common rearing
environment, but the hatchery x wild crosses had half
their genome from a captive-bred parent that had also
experienced a generation of captive rearing. The two chief
results of the study were as follows. First, the captive-
reared hatchery x wild fish had only 55-60% of the wild
fitness (reproductive success) of the captive-reared
wild x wild fish (Araki et al. 2007c). Second, relative to
pure wild fish with no history of captive-rearing, and
born and returning from sea in the same years (a replica-
tion of Araki et al. 2007b), captive-reared wild x wild fish
and hatchery X wild fish had only 60% and 31% of the
fitness of pure wild fish (Araki et al. 2007c).

The results of Araki et al. (2007¢) suggested that a con-
siderable degree of fitness may be lost within captive-bred
populations after one or two generations of captive rear-
ing. However, confidence intervals around point estimates
of reproductive success were large in both Araki et al.
(2007b,c). This might account for the conflicting conclu-
sions regarding whether one generation of captive-rearing
leads to or does not lead to a loss of fitness in the wild.
In addition, there are nuances of the study’s species/sup-
plementation program that might have affected fitness
estimates, or that make the study’s results difficult to
apply to other salmonids or other captive breeding pro-
grams (see below). First, steelhead trout often exhibit
alternative reproductive ecotypes in the form of anadro-
mous and nonanadromous (‘resident’) fish within the
same river system (including the Araki study system).
Araki et al. (2007a,b) could only account for the fitness
of anadromous individuals, but it was apparent that no-
nanadromous males were the fathers of many anadro-
mous offspring. If anadromous, hatchery-reared fish
generate a greater proportion of nonanadromous off-
spring than anadromous wild fish, or vice-versa, then the
relative fitness of hatchery-reared anadromous fish rela-
tive to wild fish in these studies would have been under-
overestimated, respectively.  Second,
steelhead are often raised in hatcheries for a whole year
to achieve a body size conducive to smoltifying which will

estimated  or
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increase survival chances in the wild (Araki et al. 2008).
This period of time in the hatchery is greater than in
other salmonids (e.g., Chinook, chum, and pink salmon),
where smoltifying can occur either just after emergence
or several months in freshwater, and so there may be
more time for fitness effects to arise (Araki et al. 2008).
Third, in many cases, hatchery- or captive-rearing pro-
grams for steelhead trout, and Chinook and coho salmon,
accelerate growth rates and smoltification to achieve lar-
ger yearling smolts (Mahnken et al. 1982; Dickhoff et al.
1995; ODFW and USFWS 1996; Kostow 2004), but this
may not apply to other species. Fourth, results from sup-
plementation or captive breeding programs that raise
juveniles to the smolt stage in salmonids (e.g., steelhead)
might not be applicable to programs that involve adult or
very early life-history stage releases, such as recently initi-
ated Canadian live-gene banking programs for Atlantic
salmon (see below).

A final informative study is that of Carofinno et al.
(2008), also on steelhead and based on fish derived from
the same population and raised in the hatchery to the fry
stage. The authors compared early life-history (fry stage)-
to-smolt survival in the wild of fish derived from parents
that had been raised in the hatchery to the fry stage (H,)
versus fish derived from parents raised in the hatchery to
age 1(H,). Fish with H,, parents had a 25-36% lower sur-
vival rate than fish with H, parents (Carofinno et al.
2008). These results were consistent with the hypothesis
that the duration of time in the hatchery environment
may increase the opportunities for domestication selec-
tion and hence reduce the fitness of fish released into the
wild. However, it was unclear to what degree maternal
effects might have affected the survival of fry from the
two groups. Namely, the study assumed that the extra
year of hatchery-rearing in mothers of H,, fish had a neg-
ligible effect on their own offspring’s survival relative to
mothers of H, fish (Carofinno et al. 2008).

Alternative mechanisms to domestication selection

More recent simulations have shown that the severe loss of
fitness in captive-reared steelhead trout (Araki et al. 2007¢;
Carofinno et al. 2008) could, in fact, be explained by
domestication selection alone, although these simulations
inevitably made a number of assumptions (discussed in
Araki et al. 2008). Other mechanisms associated with the
captive-breeding process (some already alluded to) might
also contribute to fitness declines, but these await empirical
testing or exploration in salmonids or other taxa.

First, manipulations during captive-rearing or breeding
could elicit unusually high chromosomal abnormalities or
epigenetic changes in salmonids, and thereby affect off-
spring fitness, (O’Reilly and Doyle 2007; Araki et al.
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2008). Epigenetic changes such as alterations to DNA or
mutations that affect gene regulation have been recently
shown to have considerable effects in mammals (Guerre-
ro-Bosagna et al. 2005; Jirtle and Skinner 2007; Reik
2007).

Second, deleterious mutations might accumulate in
captive breeding programs that rear juvenile life-history
stages because survival from egg to smolt stages in salmo-
nids is typically 85-95% in hatcheries but only 1-5% in
the wild (Reisenbichler et al. 2004). Araki et al. (2008)
have argued that mutation accumulation is an unlikely
explanation, at least in the first few generations of captive
breeding. For instance, typical rates of mutation, includ-
ing in salmonids, are too low to generate large fitness
effects over such short time-periods. Still, even though a
procedure such as equalizing family sizes has genetic and
fitness benefits (i.e., it halves the rate of inbreeding,
genetic drift, and domestication selection), it does not
prevent within-family selection (Rodriguez-Ramilo et al.
2006). The procedure still has the potential to increase
the likelihood that new mutations arising during the cap-
tive-breeding program will become fixed from domestica-
tion selection, in this case, because of a relaxation of
natural selection in the captive environment (Bryant and
Reed 1999; Rodriguez-Ramilo et al. 2006). Nevertheless,
the only empirical treatment of this topic involving fruit-
flies suggests that this may not be a great concern, even
for large captive populations and long periods of captivity
(Rodriguez-Ramilo et al. 2006).

Third, maternal effects are common in early life history
traits of salmonids (Einum and Fleming 1999; Heath
et al. 1999; Perry et al. 2005). These effects might influ-
ence the fitness of captive-reared fish if their mothers had
experienced a period of time in the hatchery, as environ-
mental variation in the captive environment (relative to
the natural environment) may elicit plastic changes in
reproductive investment. For instance, female salmonids
raised in hatcheries tend to exhibit smaller egg sizes than
wild females that are not necessarily genetically based
(Jonsson et al. 1996; Fleming et al. 2003), and depending
on environmental conditions, smaller salmonid offspring
generated from smaller eggs may have reduced fitness (Ei-
num and Fleming 1999, 2000).

Finally, prevention of free mate choice for adults dur-
ing captive-breeding might reduce the fitness of captive-
reared offspring (Berejikian et al. 2004). This may specifi-
cally inhibit sexual selection and the benefits gained from
mating with differentiated partners in genes associated
with improved immune responses [e.g. major histocom-
patibility (MHC) genes]. Indeed, in several salmonids, it
appears that males and females seek out partners with
maximal or at least intermediate MHC dissimilarity (Lan-
dry et al. 2001; Foresberg et al. 2007).
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Other qualifications with applying current knowledge to
‘current’ captive breeding programs

Although currently lacking critical empirical assessment in
any salmonid (or to my knowledge any other organism
besides fruitflies), captive breeding programs adopting
many recent procedures (see details in Table 2) might
reduce the severity of domestication selection or captive
generations in a number of ways that could mitigate fitness
reductions in captivity. These procedures may be especially
invaluable to programs dealing with the last remaining wild
founders from a population that has become extirpated
from the wild, given that some domestication selection in
capacity is likely unavoidable in such cases.

For instance, Atlantic salmon live-gene banking pro-
grams recently initiated in eastern Canada have individu-
als raised mainly or solely in the wild up to the end of
juvenile stages, with the captive phase being the marine
(subadult-adult) stage of the lifecycle because salmon are
unable to survive in the wild at this stage for currently
unknown reasons (O’Reilly and Doyle 2007). In salmo-
nids, wild exposure at the juvenile stages may be espe-
cially effective at reducing domestication selection,
because this is a stage when mortality in the wild is espe-
cially high (Waples 1999; Quinn 2005).

These same programs also equalize family sizes in cap-
tivity and at the time of release into the wild (O’Reilly
and Doyle 2007). Theoretical and empirical studies (King
1965; Allendorf 1986, 1993; Frankham et al. 2000; Allen-
dorf and Luikart 2007) support that this procedure alone
should halve domestication selection. However, the only
empirical study conducted to date (on fruitflies) did not
find that the procedure minimized the loss of fitness
upon the return of populations into the wild (Frankham
et al. 2000). Additionally, an inherent trade-off exists in
subsequently equalizing family size following a period of
exposure to the wild environment. While this may
increase levels of neutral genetic diversity in the successive
captive broodstock, it may negate the fitness benefits
accrued to the population from having natural selection
disproportionately favour some families more than others
during the period of wild exposure (Box 2). Such a trade-
off is perhaps one of the most perplexing issues facing
captive breeding programs that attempt to conserve both
genetic diversity and fitness, given that conserving each
has its merits (Box 2).

Cryopreserved sperm obtained from males in the foun-
der or early generations of captivity could also be used to
fertilize female eggs in subsequent generations (Sonesson
et al. 2002; discussed in detail below). This practice could
mitigate the loss of fitness in captivity due to domestica-
tion selection or the relaxation of natural selection in cap-
tivity, by minimizing captive generations before
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reintroduction in the wild. The technique has been initi-
ated in recently commenced live-gene banking programs
of Atlantic salmon in Norway and Canada (O’Reilly and
Doyle 2007), but like any tool, it has disadvantages that
merit consideration as well (discussed below).

Allowing captive-reared adults, or adults that have had
some degree of captive-rearing, to also breed in the wild
and thus have free mate choice, may generate offspring
that have benefitted from sexual selection and whose par-
ents have had exposure to natural breeding conditions
and breeding grounds (Berejikian et al. 2004; O’Reilly and
Doyle 2007). One potential constraint of the procedure is
that it requires the capture of some offspring from the
wild to produce the next captive generation, and this may
be resource/labour intensive. The procedure is currently
being attempted as part of some Pacific salmon captive
breeding programs (Berejikian et al. 2004) and Atlantic
salmon live-gene banking programs in eastern Canada (P.
O’Reilly, DFO, Halifax, Canada, personal communica-
tion).

Increasingly, hatchery-rearing procedures or environ-
ments are also being modified to more closely resemble
the natural environment. Modifications include reduced
juvenile densities, overhead or submerged cover, naturally
coloured substrate, antipredator behavior conditioning,
subsurface rather than overhead feeding, and even net-
pen rearing in natural environments (Maynard et al.
1996, 2004; Hebdon et al. 2004; Reisenbichler 2004). Rei-
senbichler (2004) pointed out that the effects of seminat-
ural environments on potentially reducing domestication
selection have not been empirically tested in salmonids,
and he discussed two potential approaches for assessing
this.

Summary

Considerable uncertainty remains with respect to the
short- and long-term fitness effects of captive breeding in
salmonids, despite the numerous laboratory and field
studies conducted to date on the performance of hatch-
ery-reared and wild salmonids. Most of these studies are
not relevant to the question of whether captive breeding
programs adopting current procedures (Table 2) can
recover endangered populations and conserve fitness: they
either used nonlocal hatchery strains in comparisons with
wild fish or hatchery strains that had undergone artificial
selection, their experimental design could have affected
the performance of hatchery fish, and/or they did not
truly examine the outcomes of current captive breeding
procedures.

The most relevant studies to date also appear to have
had limited statistical power to make general conclusions
regarding whether or not one generation of captive-rear-
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ing can reduce fitness in the wild (Araki et al. 2007b,c).
Caveats aside, the studies of Araki et al. (2007c) and Car-
ofinno et al. (2008) do raise concerns that captive breed-
ing has at least the potential to substantially reduce
fitness within wild populations after only 1 year (i.e.,
within a single generation) to up to two generations of
captive-rearing, at one or more life-history stages. Fur-
thermore, as discussed by Hard (1995) and Waples
(1999), the power of even the most ambitious monitoring
programs to statistically detect a captive-breeding effect
on phenotypic and life history traits is likely very low
because natural variability in the same traits is very high.
This means that the effects of captive-breeding might only
be detected long after considerable harm to wild fish has
occurred (Waples 1999). On the other hand, for several
reasons, the rate to which fitness was lost in Araki et al.
(2007¢) (10—40%, generation one; another 40%, genera-
tion two) might not be a general phenomenon in other
salmonid populations or species, or in captive-breeding
programs such as live-gene banking (see below). As a
result, clearer resolution of the magnitude of potential fit-
ness effects of captive-breeding/rearing awaits further
study.

Interestingly, fitness reductions in hatchery-reared sal-
monids detected in laboratory studies were not as strong
as the Araki study (2.2-29%, over one to four generations
of hatchery-rearing: Fritts et al. 2007; Berejikian 1995; see
Table 5 for caveats). This provides a cautionary note that
laboratory studies, especially those not considering corre-
lational selection between traits by evaluating only one or
a few traits separately, likely underestimate the degree to
which fitness is reduced in the wild from the captive-
breeding/rearing process (e.g., Hard 1995, 2004; Knudsen
et al. 2006).

Studies involving nonlocal hatchery fish also suggest
that fitness reductions will become elevated with increas-
ing generations of manipulation or rearing in the captive
environment (see also Araki et al. 2008; Carofinno et al.
2008). Indeed, many of the poorest performances of
hatchery fish relative to wild fish involved nonlocal
hatchery strains that had been in captivity for greater
than five generations or that had undergone intentional
artificial selection (e.g., McGinnity et al. 2003; McLean
etal. 2004; Miller etal. 2004; Araki 2007b;
Table 6).

Finally, a major issue meriting further debate and study
pertains to the trade-offs between maintaining genetic

et al.

diversity and fitness of captive broodstocks (Box 2; see
also the section below on whether to use single versus
multiple facilities to conserve genetic diversity and fit-
ness). For instance, there are clear fitness benefits to
exposing individuals to existing conditions in the wild for
some period of their lifecycle. There are also clear benefits
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to equalizing family sizes after a period of wild exposure
to maintain neutral genetic diversity. Yet, this may also
reduce the fitness benefits that were accrued during the
period of wild exposure.

Can captive-reared lines be reintroduced
successfully as self-sustaining populations if/when
the threats are removed?

Reintroduction attempts of a variety of captive-reared
endangered species or populations into the wild have his-
torically had mixed success (Griffith et al. 1989; Wolf
et al. 1996, 1998; Fischer and Lindenmayer 2000; Frank-
ham 2008). Wolf et al. (1996) found that 53% of avian
and mammalian reintroductions were successful in lead-
ing to apparently self-sustaining populations (Box 3),
whereas another global review of 145 reintroduction pro-
grams of captive-bred animals, mainly vertebrates, found
only 16 cases (11%) of successfully established wild popu-
lations (Beck et al. 1994). However, owing to the earlier
dates in which a considerable portion of the studies
within these reviews were conducted, many of these rein-
troduction attempts might have failed because the rein-
troduction programs did not account for all the
prerequisites for success identified in later documentation,
such as mitigating the factors originally leading to extir-
pation, behavioural deficiencies of the released animals,
or improper release dates (e.g., [IUCN 1998; acknowledged
in Beck et al. 1994; Snyder et al. 1996; Wolf et al. 1996).
Additionally, it has only been widely recognized more
recently that domestication selection may affect reintro-
duction success (Frankham et al. 2002; Frankham 2008).
Thus, many historical captive breeding programs probably
did not adopt procedures to reduce domestication selec-
tion or the loss of genetic diversity in captivity (see
Table 2).

Bearing these caveats in mind, I reviewed cases where
reintroductions of salmonids have been attempted and
whether these were successful in generating self-sustaining
populations if/when the threats imposed on them were
removed (Box 3; see also Appendix 1). I also considered
this issue from four additional contexts. First, was there
any evidence that hatchery-reared fish in supplementation
programs provided net long-term benefits to wild salmo-
nid populations? These programs differ somewhat from
reintroducing captive-reared salmonids into formerly
occupied habitats, but they provide another context for
assessing the potential for captive-reared lines to translate
into self-sustaining populations. Second, do general pat-
terns of successful/unsuccessful transplants of salmonids
within and outside of their native ranges shed light on
why reintroductions of endangered salmonids within their
species’ ranges might succeed or fail? Third, how can one
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improve the chances of successful reintroduction if the
wild environment has changed by the time the captive
population can be reintroduced? Fourth, was there any
indication that particular salmonid species or life-history
types may be more difficult to reintroduce successfully?

Summary of salmonid reintroductions in native ranges
using hatchery- or captive-reared fish

Table 7 summarizes cases in which hatchery-or captive-
reared salmonids have been used to reintroduce extir-
pated or ‘near-extirpated’ populations into previously
occupied habitats, the vast majority of which were anad-
romous or with other complex life-histories (e.g., lake
migratory). This list of studies by no means should be
viewed as exhaustive as undoubtedly, some other systems
have been inadvertently overlooked. There is a species
bias, with Atlantic and Chinook salmon representing 18
of 31 of the ‘population systems’. In 16 of 31 population
systems, captive-breeding programs are too recent to
assess whether they will ultimately be successful or not in
translating into self-sustaining populations. In six of the
remaining 15 systems, reintroductions have been unsuc-
cessful at generating self-sustaining populations. Reintro-
duction failures have occurred even after 30 years of
reintroduction attempts in some cases (Table 7). Reintro-
duction failure over this timeframe might not be too sur-
prising given that many historical programs probably did
not adopt procedures that are implemented in current
captive breeding programs (Table 2). However, the list of
reintroduction failures also includes two captive breeding
programs that incorporate many of these procedures (e.g.,
Atlantic salmon in Maine; winter-run Chinook salmon,
California). Importantly, not all of the obvious factors
that were likely contributing to reintroduction failure had
been removed in any of these six systems, regardless of
whether current captive breeding procedures had or had
not been adopted. While these factors were often multi-
faceted, it is noteworthy that environmental changes to
habitat were implicated in all six systems with unsuccess-
ful reintroductions (Table 7).

Conversely, there were no obvious habitat limitations
in the nine population systems, where captive-breeding
has led to apparently self-sustaining populations. Yet, in
one case, artificial liming of rivers was required to reduce
acidification (induced by acid rain) so that Atlantic sal-
mon populations inhabiting them could be self-sustaining
(Hesthagen and Larsen 2003). In another case, successful
reintroduction of sockeye salmon populations might have
been driven by dispersal and gene flow from neighboring,
healthy wild populations and not necessarily by captive-
reared fish (Withler et al. 2000; see also Pointe Wolfe
River Atlantic salmon, inner Bay of Fundy: Fraser et al.
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2007b). In four other cases, reintroduced populations
might be becoming self-sustaining but they are all still
dependent on supplementation (Spidle et al. 2004; U.K.
Environment Agency 2006b, 2007, Bosch et al. 2007;
Kozfkay et al. 2008).

Consequently, there is little long-term evidence regard-
ing whether captive-reared salmonids can or cannot be
reintroduced as self-sustaining populations. This is either
because (i) captive breeding programs that adopt a multi-
tude of procedures to reduce domestication selection and
the rate of loss of genetic diversity in captivity have been
initiated too recently to assess the performance of captive
releases in the wild, (ii) reintroduction failures were con-
founded by not having other threats removed that likely
impeded reintroduction success, most notably, habitat
loss or change, (iii) apparently successful reintroductions
may have been confounded by other factors which could
explain the success besides captive-breeding (e.g., natural
recolonization, artificial habitat manipulations), or
because (iv) reintroduction attempts involving captive-
breeding programs are still undergoing supplementation,
making it difficult to assess whether the reintroduced
populations have truly become self-sustaining. Overall,
however, and based on the duration of even more ‘mod-
ern’ programs’ (e.g., Hedrick et al. 2000a,b; Flagg et al.
2004a; O’Reilly and Doyle 2007), it would appear that a
minimum of 15-20 years will be likely necessary to poten-
tially achieve the conservation goal of establishing a self-
sustaining salmonid population. This estimate is based on
the realistic amount of time required to initiate a captive-
breeding program, carry out reintroduction attempts, and
monitor postrelease success after multiple generations.

Additional contexts: supplementation programs

Waples et al. (2007) recently conducted a meta-analysis
of 22 major supplementation programs from the Pacific
Northwest, specifically examining their ability to provide
net long-term benefits to wild Pacific salmon populations.
Most programs (17 of 22) used hatchery fish from the
local wild population for supplementation, but their data
had not previously been summarized and published in
the primary literature. For net long-term benefits to
occur, Waples et al. (2007) argued that evidence was
needed showing that hatchery fish could survive and
spawn in the wild, produce viable progeny, and thus con-
tribute to the natural population. Again, this situation is
somewhat different from that of reintroducing captive-
reared salmonids in an attempt to generate self-sustaining
populations into formerly occupied habitats — it more
typifies the situation where a captive-breeding program is
initiated to supplement a rapidly declining population.
Also, Waples etal. (2007) did not examine what
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procedures (e.g., Table 2) were employed in specific sup-
plementation programs to reduce the potential effects of
hatchery-rearing. Bearing these caveats in mind, the major
conclusions from the meta-analysis were as follows. First,
many supplementation programs have achieved a measure
of short-term success in terms of boosting overall num-
bers of fish, either through high survival of broodstock
and/or increases in the number of returning hatchery
(captive-bred) adults compared to the wild population
(Waples et al. 2007; see also Sharma et al. 2006; Berejiki-
an et al. 2008). Second, in the long-term, and in parallel
to the observations and conclusions above, there is con-
siderable uncertainty regarding the ability of supplemen-
tation programs to provide net long-term benefits to wild
salmonid populations. As a result, these authors high-
lighted that the lack of empirical demonstration that sup-
plementation provides net long-term benefits to wild
salmonids should be a cautionary note to those consider-
ing initiating new programs or continuing existing ones
(Waples et al. 2007: p. 396).

Species transplants

In light of threats such as habitat degradation that have
not been removed and are likely impeding current rein-
troduction efforts, transplants within and outside of the
species’ range of different salmonids provide another con-
text to consider the potential for captive-reared lines to
be reintroduced as self-sustaining populations. In a review
of anadromous Pacific salmon transplants, all of which
would have involved some form of hatchery-rearing,
Withler (1982) found no undisputed example of a suc-
cessful transplantation within a species’ range where there
were no obvious physical barriers to natural dispersal.
When natural, physical barriers were apparent and
removed within species’ ranges, successful transplanta-
tions have occurred (Federenko and Shepherd 1986; Bur-
ger etal. 2000; Withler etal. 2000; Hendry 2001;
Koskinen et al. 2002; Mullins et al. 2003; Thrower et al.
2004). In addition, transplants of hatchery-reared, anad-
romous salmonids outside of salmonid species’ ranges
have been successful at times (Waugh 1980; Crawford
2001; Pascual et al. 2001; Quinn et al. 2001; Pascual and
Ciancio 2007; Soto et al. 2007).

These patterns are interesting for two reasons. First,
successful introduction of salmonids outside of species’
ranges in the past 30-50 years (and even 100 years) sug-
gests that the historical failure of some reintroductions
within salmonid species’ ranges over the same timeframe
cannot be solely attributed to poorly developed hatchery-
or captive-rearing techniques at the time. Second,
where salmonids have historically been capable of dispers-
ing naturally, they have colonized all habitats currently
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suitable to them. Thus, within their species’ ranges, if
anadromous salmonids are not present within a system,
there is likely a good reason why they are not (Quinn
2005). An emerging conclusion is that the long-term
recovery of endangered salmonids within their species’
ranges is unlikely with captive breeding/rearing, unless
the factors that contributed to their initial decline are
addressed concurrently. Thus, given the uncertainty about
whether the underlying causes of salmonid declines can
be identified or remedied, an important societal question
meriting debate is, when does one initiate and/or termi-
nate captive breeding?

Wild environment changes

The wild environment of captive salmonid populations
might also change dramatically by the time fish can be
reintroduced. For instance, there is evidence that the Bay
of Fundy, Canada, a region with a number of endangered
Atlantic salmon populations, is undergoing ecosystem
changes (COSEWIC 2006b). The environment of the Bay
may therefore be very different than that of say 15 to
20 years before its salmon populations collapsed, and
these changes could have been the major reason for the
collapse in the first place (COSEWIC 2006b). Krueger
et al. (1991) and Frankham (2008) have suggested that in
such a circumstance, the crossing of all captive individu-
als and/or subpopulations prior to reintroduction would
result in a reintroduced population with maximum
genetic diversity. Such an approach would presumably
lead to a greater likelihood of that captive population
evolving the capacity to respond to environmental
change. To date, however, no empirical studies (on any
species) have addressed this possibility (Frankham 2008),
though research on this topic has recently been initiated
within live-gene banking programs for Atlantic salmon
populations in eastern Canada (P. O’Reilly, DFO, Halifax,
personal communication). Still, one potential risk of this
approach is that it could lead to an increase in straying to
nontarget areas and thereby potentially affect other native
populations. For instance, interbreeding of individuals
between pink salmon populations resulted in increased
straying rates to surrounding populations (Bams 1976).
In addition, and especially if the crosses will be carried
out at a hierarchical level greater than subpopulations
(e.g., at the population level), such a consideration would
have to consider the geographic scale at which the crosses
were being made and the potential for evolutionary and/
or adaptive divergence to exist between the populations.
For instance, the advantages of generating greater genetic
diversity in the released individuals might be outweighed
by the possible disadvantages of outbreeding depression
from mixing populations (reviewed in Edmands 2007).
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Species and/or life history differences in the chances of
successful reintroduction?

Currently, there appears to be insufficient quantitative
data on salmonid reintroductions to discern whether dif-
ferent species or life-history types vary in their chances of
being successfully reintroduced into previously occupied
habitats (Table 7). However, if the ability of a salmonid
species to be introduced successfully outside of its native
range reflects its ability to be reintroduced into previously
occupied parts of its native range, then two points merit
consideration. First, anadromous populations, followed by
lake migratory populations, may on average be more dif-
ficult to reintroduce than freshwater, resident popula-
tions. For instance, reviews of salmonid introductions
suggest that anadromous salmonid populations do not
transplant as well as freshwater species, perhaps because
of their more complex requirements in having intricate
life histories across multiple environments (Withler 1982;
Allendorf and Waples 1996; Utter 2000). Factors involved
in freshwater salmonid declines might also be easier to
rectify than those occurring across environments utilized
by anadromous populations. Second, species such as rain-
bow trout and brown trout might be easier on average to
reintroduce than species such as Atlantic salmon or sev-
eral other Pacific salmon species, the former having been
successfully introduced in many regions throughout the
world where the latter have not (Quinn 2005; references
therein; Crawford and Muir 2008).

One caveat of these predictions is that they assume the
potential fitness consequences of captive-rearing are uni-
form across species and captive-breeding programs (or
even life-history variants within species). But as previ-
ously mentioned, this is likely not the case. A sensible but
untested hypothesis is that captive-breeding programs eli-
cit the greatest reductions in fitness in species or popula-
tions with the greatest life-history and habitat differences
between captive and natural conditions (Reisenbichler
2004).

Can the demographic increase to population
abundance from captive breeding outweigh the
loss of fitness in captivity?

Even captive breeding programs that adopt some proce-
dures to reduce genetic changes during captive-breeding/
rearing might result in substantial fitness reductions
within wild populations after one or a few generations
(Araki et al. 2007c). In other words, no matter how good
the intentions, it would appear that as yet, humans have
not generated a group of captive-bred/reared fish that on
average will perform equally to wild fish once they are
released into the wild. On the other hand, it appears that
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some supplementation programs, at least those involving
juvenile releases, can achieve a measure of short-term suc-
cess in terms of boosting overall numbers of fish (Waples
et al. 2007; Berejikian et al. 2008). It would also seem that
many salmonid populations with long histories of intense
supplementation have not become extinct or severely
reduced in abundance. If fitness can be reduced so much
and so rapidly by domestication selection, why have not
many of these populations experienced rapid declines?
Thus, an unresolved enigma in evaluating the likelihood
that captive breeding programs can translate into self-sus-
taining salmonid populations, is whether, and how,
increases to population abundance (N) provided by cap-
tive-rearing could offset reduced fitness in the wild of
captive-reared fish and their progeny. Interestingly, there
are numerous examples of the ability of salmonids to
evolve rapidly in the wild over several generations (Hau-
gen and Vollestad 2000; Hendry et al. 2000; Quinn et al.
2001; Koskinen et al. 2002). Certainly, then, the possibil-
ity exists that a reintroduced population based on cap-
tive-reared fish could re-adapt to the wild environment
under a similar timeframe.

Consider firstly a simple scenario where the original
threats that led to the extirpation of a wild population
have been removed and a one-time reintroduction of the
captive-reared population is implemented. Owing to inev-
itable domestication selection in captivity, the captive-
reared population has experienced a shift away from the
wild optimum in quantitative trait variation related to fit-
ness. Thus, it is now maladapted to the wild environ-
ment. Gomulkiewicz and Holt (1995) introduced a model
examining conditions under which selection might pre-
vent extinction of the captive-bred population upon rein-
troduction (Fig. 2). They considered whether such a
population could evolve a sufficiently positive intrinsic
growth rate (r) at abundance (N) below carrying capacity
(K) before extinction from demographic stochasticity
took place. Gomulkiewicz and Holt (1995) did not con-
sider density-dependent effects but assumed that extinc-
tion risk was elevated below a threshold, critical
population size (Nc). In the context of attempting to
reintroduce populations with captive-reared fish, the
major implication of the model is that an initially mal-
adapted reintroduced population with a negative growth
rate could evolve a positive growth rate without going
extinct, provided that: (i) genetic diversity was sufficiently
high, (ii) fish were not too maladapted initially, and (iii)
initial N was large relative to Nc to allow the reintro-
duced population to persist long enough for evolution to
occur (Fig. 2). Note that these conclusions are also con-
sistent with those in previous sections relating to the
importance of maintaining as high a N, as possible in
captivity (Frankham et al. 2002), and maximizing genetic
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Population abundance (N)

>

Immigration/gene flow in D and E
Time

Figure 2 Potential relationships between reintroduced population
abundance and extinction risk with or without evolution by natural
selection, modified from Gomulkiewicz and Holt (1995) (see also
Kinnison and Hairston 2007). Population growth is density-indepen-
dent and Nc represents a threshold abundance below which extinc-
tion risk is high. Without evolution, or when evolution cannot achieve
replacement in the absence of gene flow, reintroduced populations
decline to extinction (A). Evolution is insufficient to prevent the rein-
troduced population from being at a high risk of extinction, but it
allows the population to avoid extinction if the population persists (B).
Evolution is sufficient to prevent the population from being at a high
risk of extinction (C). Immigration and resultant gene flow allows the
evolving population to avoid extinction more rapidly (D) than in its
absence (B). Immigration and resultant gene flow increases the sus-
ceptibility of extinction to the evolving population (E) than in its
absence. All cases assume the same reduction in wild fitness within
the captive-bred population before reintroduction.

diversity in the captive-release generation (i.e., just before
reintroduction; Frankham 2008). Note also, however, that
there is an inherent tension between keeping N. (and
genetic diversity) as high as possible and reducing domes-
tication selection in captivity, a subject treated in detail in
the next section.

Gomulkiewicz and Holt’s (1995) model thus also
assumed that mechanisms exist that allow for positive pop-
ulation growth despite reintroduction of maladapted indi-
viduals, and similarly, that at some point following the
initial drop in N from K, evolutionary contributions to
population growth would not be countered by density-
dependent factors (Gomulkiewicz and Holt 1995; Tufto
2001; Kinnison and Hairston 2007). Unfortunately, empiri-
cal assessments of these assumptions are currently very lim-
ited in salmonids. For instance, analogous to reintroducing
maladapted, captive-bred fish to a previously occupied
habitat, Kinnison and Hairston (2007) and Kinnison et al.
(2008) noted how founding or postfounding contributions
might influence evolution and resultant population growth
in salmon during colonisation of new habitat.

© 2008 The Author
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While it is easy to envision that evolution within a
maladapted, reintroduced population could be sufficient
in and of itself to result in a self-sustaining population, in
many cases this might not happen before the reintro-
duced population succumbs to extinction through demo-
graphic stochasticity (a delay in ‘A’ from Fig. 2). Under
what conditions, then, could repeated reintroduction
events increase the likelihood of successful overall reintro-
duction? On one hand, recurrent immigration from a
maladapted, captive-reared source could demographically
rescue a young, reintroduced population because the pop-
ulation literally never becomes extinct (Holt 1993). The
infusion of genetic diversity through ‘low’, constant gene
flow (perhaps even only one or two migrants per genera-
tion), particularly in the early stages of reintroduction,
might also generate the novel variation required by selec-
tion to shift a population’s growth from negative to posi-
tive, as well as to offset traditional problems associated
with small population size (e.g., inbreeding, genetic drift)
(Fig. 2D; Gomulkiewicz and Holt 1995; Tufto 2001; Tall-
mon et al. 2004; Kinnison and Hairston 2007). Indeed,
repeated influxes of immigrants have apparently been
involved in some successful introductions or species inva-
sions (Lambrinos 2004; Roman and Darling 2007). On
the other hand, immigrants would in general be mal-
adapted to the local environment and resultant gene flow
with the reintroduced population as it grows might con-
strain the effects of ongoing selection (Fig. 2E; Gom-
ulkiewicz and Holt 1995; Kinnison and Hairston 2007).
As a rough guide based on Gomulkiewicz and Holt
(1995), the reciprocal of the time a population first
reaches low densities (Nc) following the initial reintro-
duction could be used as the frequency of gene flow epi-
sodes required for population persistence due to regular
immigration or introductions. In short, assessments of
the relative degree to which these opposing effects might
affect reintroduction success are sorely needed.

Can single hatchery facilities maintain genetic
diversity and fitness, or are multiple facilities
required?

Whether single or multiple facilities are required to main-
tain both genetic diversity and fitness in captive breeding
programs of endangered salmonids raises some important
trade-offs to be factored in for biodiversity conservation.
On one hand, to avoid significant losses of genetic diver-
sity in captivity, captive populations must be kept at suf-
ficiently large N. to slow the rate of loss of genetic
diversity due to the genetic consequences of small N,
(Frankham et al. 2002). This suggests that the following
three options could be sufficient to maintain genetic
diversity: (i) a single large population, maintained at a
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single hatchery facility (‘Option 1°), (ii) several small pop-
ulations mixed frequently at a single hatchery facility (to
effectively comprise one large population of identical N,:
‘Option 2’), or (iii) several small populations mixed fre-
quently between multiple facilities (to effectively comprise
one large population of identical N.: ‘Option 3’).

Yet, paradoxically, larger N, populations respond more
readily to selection than smaller N, populations, all else
being equal (Robertson 1960; Weber and Diggins 1990;
Allendorf and Luikart 2007). That is, a large N, facilitates
adaptation by minimizing genetic drift, whereas a small
N, increases genetic drift, which can hinder adaptation
(Crow and Kimura 1970). Consequently, while a larger
N. is more advantageous than a smaller N, in the wild
(larger N, populations will on average be more capable of
responding to environmental change than smaller N,
populations), it might be disadvantageous in captivity
(larger N, populations may become more adapted than
smaller N, populations to the captive environment). Hav-
ing multiple small, isolated populations, maintained at
either a single hatchery facility (‘Option 4’) or at multiple
hatchery facilities (‘Option 5’), could thus be a better
means of reducing the loss of fitness in captivity. Never-
theless, Options 4-5 must be tempered with the fact that
in small N, populations, one gets more genetic drift, in
addition to some selection. In other words, both large
and small N, captive ‘options’ represent genetic changes
from the wild population state. Thus, a key issue for
accommodating fitness and genetic diversity is not only
the degree to which a captive population becomes
adapted to the hatchery environment, but also the degree
to which the selective regimes differ between the captive
and wild environment. If the difference in selective
regimes can be reduced considerably, at some point a
large N, captive population (‘Options 1-3’) could be the
way to go, because it would retain considerably more
genetic diversity while at the same time not becoming too
adapted to the captive environment relative to small N,
captive populations (‘Options 4-5).

To throw more complexity into the different options,
however, some theory (Kimura and Crow 1963; Nei and
Takahata 1993; see also Waples 2002b) predicts that
Options 4-5 could also result in the maintenance of more
overall genetic diversity and increase the overall N, com-
pared to Options 1-3. This would only happen if no
extinctions of the small populations occurred (Kimura
and Crow 1963; Nei and Takahata 1993; Lande 1995;
Toro and Caballero 2005). Yet, such extinctions can arise
in small captive breeding programs (e.g., Snyder et al.
1996; Toro and Caballero 2005), and indeed, all else being
equal, small populations are more likely to go extinct
than large ones. Thus, unless there is some means to
avoid these captive population extinctions altogether, the
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potential genetic diversity benefits of Options 4-5 might
not be realized.

Based on all of these considerations, it has been sug-
gested that a ‘best’ overall option might be an intermedi-
ate one (e.g., a compromise between Options 2/4 or 3/5).
For salmonids, this would involve the maintenance of
several small populations in captivity at one or multiple
hatchery facilities, with translocations occurring only
every several generations (see Margan et al. 1998; Frank-
ham 2008).

Empirical evidence

To my knowledge, no empirical studies have tested
whether the potential advantages of utilizing several small,
isolated captive breeding populations with periodic mix-
ture are upheld in salmonid captive breeding programs.
In fact, only one empirical study has addressed theoretical
predictions relating to the general ‘single-large versus sev-
eral-small’ captive population issue, using fruit flies (Dro-
sophila spp.) as a model (Margan et al. 1998). These
authors generated replicate populations and compared the
genetic diversity and reproductive fitness of populations
with the following N compositions: (i) 50 vs. 2 X 25, (ii)
100 vs. 2 X 50 vs. 4 x 25, and (iii), 500 vs. 2 X 250 vs.
4 x100 +2x50 vs. 8x25+ 6 x50.
(1998) maintained all of these populations separately at
their indicated sizes for 50 generations (including subdi-
vided populations). The N compositions involving popu-
lation subdivision (e.g., 2 X 25, 2X50 etc.) were
subsequently pooled and all populations were maintained

Margan et al.

an additional 8 to 10 generations prior to evaluating their
fitness and genetic diversity. The authors found that the
‘several-small with periodic mixing’ captive breeding pop-
ulation option was more advantageous than the ‘single-
large with no mixing’ option. Namely, cases involving
subdivided populations that were then pooled, when
compared to single large populations of equivalent total
size, had lower inbreeding levels, significantly higher or
similar reproductive fitness, and higher levels of genetic
diversity (i.e., heterozygosity) (Margan et al. 1998).

Summary

There is only very limited empirical research to suggest
that maintaining several small isolated populations with
periodic mixing may be more effective at reducing losses
of genetic diversity and fitness than maintaining a single
large population. Periodic mixing might also reduce the
risks associated with regular translocations (e.g., the
introduction of infectious diseases). This raises the possi-
bility that a compromise between either Options 2/4 or
Options 3/5 (i.e., several small, isolated populations with
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periodic mixing, housed in either a single hatchery facility
or multiple hatchery facilities, respectively) might be the
best way to maintain endangered salmonid populations in
captivity. Again, though, the tentative conclusion here is
based on the assumption that no extinctions of the small
populations occur in captivity.

Although Frankham (2008) recently acknowledged that
such a fragmentation regime had considerable merit, he
did not recommend its application, perhaps because of
the limited research on the subject. I now consider some
potential pros and cons of these options as they may per-
tain to salmonids. For example, relative to a mix of
Options 2/4 (single facility), a mix of Options 3/5 (multi-
ple facilities) could also act as a safeguard against catas-
trophes such as extreme weather, water shortages or fires
(Margan et al. 1998; Frankham 2008). However, in the-
ory, catastrophes like disease outbreaks might still be con-
tained at the same hatchery facility with Options 2/4. In
addition, relative to Options 3/5, the use of a single
hatchery facility with Options 2/4 would not require
translocations between facilities when periodic mixing
was required. This might have advantages in reducing (i)
financial costs associated with translocations, (ii) the
stresses that translocations impose on animals (depending
on the life-history stage of salmonid being translocated),
and (iii) the potential asynchrony that might arise in
breeding times and embryonic developmental times by
using multiple facilities that realistically vary in their ther-
mal regimes (i.e., from different water sources).

Assuming  either ‘several-small-occasional ~mixing’
approach is adopted in salmonids (Options 2/4 or 3/5),
substantial uncertainty remains with respect to its imple-
mentation, as only generalized recommendations have
been discussed in the primary literature. A first recom-
mendation is that the small populations should not be so
small that rapid inbreeding (and loss of genetic diversity)
arises.

A second recommendation, based on the results of
Margan et al. (1998), is that the genetic benefits of using
small isolated populations might increase with the num-
ber of small populations involved. For instance, relative
to a single large population of N = 100, four replicates of
N = 25 subsequently pooled together led to a ~60%
increase in fitness under simulated wild conditions and a
~41% increase in genetic diversity (heterozygosity),
whereas pooling of two replicates of N = 50 led to ~28%
and ~17% increases. Thus, further splitting populations
in captivity might accrue greater fitness/genetic diversity
benefits but might also require (i) more space and
resources to house endangered populations, (ii) more risk
of extinction of some captive populations, and/or (iii)
more frequent translocations to offset inbreeding and the
loss of genetic diversity. Consequently, decisions to adopt
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such a strategy would have to weigh such benefits against
their added financial costs, perhaps especially for (i) given
the kind of space required to house adult salmonids.

Finally, it is difficult to gauge how long the small pop-
ulations should be maintained before pooling them.
Again, any extinction of the small populations will coun-
teract the benefits of the ‘several-small-occasional mixing’
strategy, and if left too long, rapid inbreeding will ensue
in small populations (Margan etal. 1998; Toro and
Caballero 2005). Inbreeding thresholds in salmonids are
poorly characterized within species (Wang ef al., 2002)
and likely vary among populations. Yet, available data
indicate that the fitness effects of inbreeding might be
considerable in salmonid populations (at a minimum of a
half-sibling inbreeding coefficient) without long histories
of small population size (Pante et al. 2001; Myers et al.
2001; but see Su et al. 1996). As an overall cautionary
approach, Margan et al. (1998) suggested monitoring
inbreeding levels each generation and using as low an
inbreeding threshold as possible to avoid extinction of the
individual small populations. This may be unachievable
in some cases unless pedigree information is available.

Are there technical alternatives to hatchery facili-
ties for conserving genetic diversity and fitness?

Preceding summaries of certain sections in this review
have suggested that salmonid captive-breeding programs
may be unsuccessful in many cases because the root or
purported causes of population decline or extirpation
have not been mitigated. This implies that technical alter-
natives to hatchery facilities for conserving genetic diver-
sity and fitness will also be unsuccessful unless at least
some of the root causes of salmonid extirpation are cor-
rected. Nevertheless, such technical alternatives may have
practical utility in particular circumstances for conserving
biodiversity.

Sperm cryopreservation

O’Reilly and Doyle (2007) recently reviewed the potential
for cryopreservation techniques to reduce losses of genetic
diversity and fitness in long-term live-gene banking pro-
grams. Namely, cryopreserved sperm obtained from sal-
monid males in the founder or early generations of
captivity could be used to fertilize female eggs in subse-
quent generations (Sonesson et al. 2002). Because it can
keep the genes within sperm largely intact for long peri-
ods of time (hundreds to thousands of years; Stoss and
Refstie 1983), sperm cryopreservation has several advanta-
ges for biodiversity conservation. First, it could conserve
a large proportion of the genetic variation in the founder
generation of live-gene banking programs (up to 50%), as
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alleles from founder females would be represented in the
sperm of first generation males (Sonesson et al. 2002).
Second, the technique could minimize inbreeding and
reduce domestication selection to captivity, as half of the
gametes contributing to later generations would be
obtained from individuals collected originally from the
wild, or that had experienced only a single generation of
captive rearing (O’Reilly and Doyle 2007). Importantly,
sperm cryopreservation techniques have been developed
for a wide variety of endangered salmonids (e.g., Stoss
and Refstie 1983; Piironen 1993; Lahnsteiner et al. 1996;
Kusuda et al. 2005; see also Harvey 1993; Lahnsteiner
2000 and O’Reilly and Doyle 2007 for details of tech-
niques).

Sperm cryopreservation is not without its disadvan-
tages. Because of its reduced viability relative to fresh
sperm, more sperm than might be available through cryo-
preservation storage could be required to produce ample
numbers of individuals that will in turn ensure modest
numbers of mature adults for a live-gene banking pro-
gram (O’Reilly and Doyle 2007). Thus, cryopreserved
sperm could not be depended upon to produce the last
live-gene banking generation intended for release into the
wild. Also, significant genetic divergence might occur
between the founder and prerelease or release generations
in live-gene banking programs (O’Reilly and Doyle 2007).
This could lead to outbreeding depression (Box 1) in the
release generations of a program if the cryopreserved
sperm was not used within a few generations (O’Reilly
and Doyle 2007). Similarly, the wild environment might
simply change during the generations of cryopreservation
such that release generations may be maladapted to the
wild by the time they are released. Finally, sperm cryo-
preservation cannot be viewed as a true alternative to
hatcheries because it is necessarily dependent on breeding
and rearing facilities.

Androgenesis

Techniques to preserve female eggs or fertilized embryos
have not been developed for salmonids, so Thorgaard and
Cloud (1993) and O’Reilly and Doyle (2007) reviewed
two methods for reconstituting original wild populations
from cryopreserved sperm. Either cryopreserved sperm
from an extirpated population can be used to fertilize
eggs from a nearby healthy population, or embryos can
be produced with all-paternal inheritance (androgenesis).
The latter involves obtaining unfertilized eggs from
females of a nearby extant donor population that are then
irradiated to inactivate their genetic material, and then
fertilizing them using cryopreserved sperm from the origi-
nal native (extirpated) population (Thorgaard and Cloud
1993; O’Reilly and Doyle 2007). The resulting androgenic
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diploids consist of DNA solely derived from the original
native population by repressing the first cleavage division
(Thorgaard and Cloud 1993). Overall, these methods
require considerable time and labour to reconstitute the
original native gene pool, and suitable nearby extant pop-
ulations may not be available to carry them out. Addi-
tionally, some introgression of genetic material from the
original native population is unavoidable, and maternal
genetic material (mtDNA and any sex-linked nuclear
DNA: nDNA) is lost (O’Reilly and Doyle 2007). Genetic
changes associated with multiple generations of captive
breeding and rearing will also arise when producing the
final generation of juveniles intended for release into the
wild. Finally, for androgenesis, the treatment used to
block cleavage greatly reduces the survival of embryos, so
additional crosses would likely be necessary with this
method to retain heterozygosity and wild fitness. There-
fore, these methods cannot be viewed as complete alter-
natives to captive breeding in salmon biodiversity
conservation because they still require some captive
breeding/rearing to be effective.

Surrogate broodstock technologies

The most promising technical alternatives to captive
breeding for conserving endangered salmonids are very
recently developed surrogate broodstock technologies
(reviewed in Okutsu et al. 2007). These technologies
involve the transplantation of primordial germ cells or
spermatogonia from a target species into a related species,
wherein the related species can then produce both viable
sperm and eggs of the target species (Okutsu et al. 2007).
Okutsu et al. (2007) carried out such a procedure by
injecting cryopreserved rainbow trout (Oncorhynchus my-
kiss) spermatogonia into newly developing, triploid (ster-
ile) masu salmon embryos (Oncorhynchus masou). The
authors were able to raise the injected masu salmon to
maturity at which time the adults produced viable trout
gametes. A total of 55% of the trout spermatogonia died
under cryopreservation, and only 10% of the triploid sal-
mon females had trout eggs that could be fertilized by
triploid salmon males carrying trout sperm. Nevertheless,
intriguingly, the surrogated sperm and eggs when mixed
created an F1 generation of normal trout, and this gener-
ation was subsequently able to produce a normal F2 gen-
eration of trout.

For biodiversity conservation, the implication of
Okutsu et al. (2007) work is that it is possible to generate
individuals of an endangered or extirpated salmonid pop-
ulation (in the case, provided the primordial germ cell
tissue was collected prior to extirpation) using a widely
available surrogate species. Thus, it may be possible to
maximize generation length ‘in captivity’ by (i) preserving
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most if not all of the genetic diversity within an endan-
gered population initially brought into captivity for sev-
eral generations and (ii) preventing substantial fitness
reductions in captivity before generating that population
again in the future when the threats posed to it have been
removed.

I foresee five potential limitations of the technique.
First, it is currently unclear how well the technique will
work when adopted on different target and surrogate spe-
cies of salmonids. The success rate of surrogate brood-
stock technologies might vary among species (or even
within species), or be considerably lower when using
other species. Second, as in the case of sperm cryopreser-
vation, the wild environment might simply change during
the generations of cryopreservation such that captive-
release generations may be unable to track selective
changes in the wild by the time they are released. Third,
the maternal environment of the surrogate might affect
the performance of offspring. Fourth, there is potentially
a political danger that efforts to protect endangered spe-
cies habitat may be diminished if it is viewed that species
can be brought back at any given future date. Fifth,
chemicals and treatments involved in both surrogate
broodstock technologies and sperm cryopreservation
might generate epigenetic changes in captive-bred individ-
uals. Epigenetic changes, such as alterations to DNA or
mutations that affect gene regulation, have been recently
shown to have considerable effects in mammals (Guerre-
ro-Bosagna et al. 2005; Jirtle and Skinner 2007; Reik
2007). These changes might not be readily apparent in
the hatchery environment but could have important fit-
ness consequences when returning hatchery-fish into the
wild (P. O’Reilly, DFO Halifax, personal communication).
Overall, such risks would have to be addressed if these
techniques are to be considered sole alternatives to cap-
tive-breeding in endangered species restoration.

Translocations to new habitats

Other alternatives to hatcheries for conserving species
such as endangered anadromous salmonids might include
(A) translocation to landlocked freshwater habitat, (B)
transfer to other rivers that enter the sea, or (C) some
mixture of artificial or semi-natural breeding from adult
releases into natural river habitat, and then exclusive rear-
ing of juveniles in freshwater and rearing of adults in sea
pens, especially for those populations where marine sur-
vival is negligible. For instance, alternative (A) has been
successful in generating new populations that act as safe-
guards against species extinction for endangered subspe-
cies of cutthroat trout (Oncorhynchus clarki spp.) in
western North America (Young et al. 2002). Alternative
(A) has also recently been adopted in a live-gene banking

© 2008 The Author
Journal compilation © 2008 Blackwell Publishing Ltd 1 (2008) 535-586

Genetic diversity and fitness in captive breeding

program of Atlantic whitefish (Coregonus huntsmani),
wherein individuals have been introduced into a lake that
shares many environmental features of the species’ tradi-
tional range (A. Cook, Dalhousie University, personal
communication). However, though alternatives (A) and
(B) do not necessarily require the extent of labour or
resources as hatcheries, they may not be feasible in some
cases. These alternatives also generate a host of new chal-
lenges/issues to deal with. First, alternative (A) might not
be applicable to some semelparous salmonids which show
less evidence that they can support freshwater landlocked
populations (but see Laurentian Great Lakes chinook and
pink salmon; Crawford 2001). Second, alternatives (A) or
(B) also might not be justifiable if the endangered salmo-
nid is nonnative and thus has the potential to impact
native fauna, or if populations of the same species already
exist there and interbreeding might occur. Third, both
alternatives (A, B) would also face similar challenges to
restoring the ‘original’ fitness of the endangered popula-
tion. This is because the new environments, perhaps espe-
cially alternative A, might lead to potentially irreversible
evolutionary change, or at least shifts in phenotypic trait
distributions of populations. Finally, alternative (C)
would likely still require some degree of hatchery support
to assist in the artificial spawning of fish and to ensure a
good representation of genetic diversity through the gen-
erations. It, therefore, cannot be viewed as a complete
alternative to captive-breeding/rearing.

Conclusions

This review on the extent to which captive breeding pro-
grams can conserve salmonid biodiversity reveals numer-
ous trends and uncertainties. It also has
implications for ongoing salmonid captive breeding pro-
grams. Many of these implications are directly relevant to
the assessments of captive breeding programs in other
taxa, especially for species with indeterminate growth,
high fecundities, or complex migratory lifecycles (e.g.,
other fishes, amphibians, and insects):
1 Encouragingly, for most captive breeding programs,
neutral (and perhaps quantitative) genetic diversity

several

within populations can be sufficiently maintained in
captivity for several generations. However, tremendous
variation likely exists among programs in their capacity
to retain genetic diversity over the longer-term because:
(i) adopted procedures for maintaining high Ny/N or
N./N ratios in captivity vary among programs and (ii)
Np/N, estimates of different captive broodstocks vary
widely and are sometimes small. Uncertainty over the
longer-term also exists because programs adopting
many procedures to reduce the loss of genetic diversity
are still young, and these procedures have not been
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systemically evaluated for long-term effectiveness in sal-
monids (and very rarely in other taxa). There is, never-
theless, great scope for current and future salmonid
captive breeding programs to reduce the rate of loss of
genetic diversity in captivity (Table 2).

2 Perhaps more importantly however, is that even with
proper care, the captive environment may lead to
unavoidable genetic changes and/or wild fitness changes
in quantitative traits. In other words, maintenance of a
large N, captive broodstock does not necessarily ensure
the retention of genetic diversity pertaining to fitness.
Though limited, the most relevant research suggests
that quantitative genetic changes are likely manifested
more rapidly than losses of overall neutral genetic
diversity in captivity. Fitness losses may potentially
arise even within one generation, or after one or two
generations of captive-breeding/rearing. There is also
some indication that the magnitude of fitness loss
increases as the duration in captivity increases. Yet, tre-
mendous variation likely exists between different pro-
grams, species and populations within species with
respect to the type and magnitude of fitness-related
costs that can be accrued each generation from captive-
breeding/rearing. Clearer resolution of the magnitude
of potential fitness effects of captive breeding/rearing
and their overall risks to wild populations awaits fur-
ther investigation, especially over the longer-term.

3 There is an unavoidable trade-off between reducing
domestication selection during captive-rearing by hav-
ing a period of wild exposure, and maintaining genetic
diversity by equalizing family sizes of wild-exposed
individuals when generating new broodstocks. What
should be considered optimal in this regard merits seri-
ous discussion.

4 Mechanisms reducing fitness in captivity and in the
offspring of captive-wild matings are likely multifac-
eted, affecting behavior,
imprinting, stress responses, growth, run-timing, devel-
opmental stability, developmental time to hatch,
embryo size, maternal reproductive investment, body
morphology and age-at-maturity, all of which may be
linked to fitness. Identification of such mechanisms in
specific cases could suggest ways to improve the
chances of successful reintroduction in the long term.

5 Owing to several confounding factors, there is currently
little empirical evidence that captive-reared lines of sal-
monids can or cannot be reintroduced as self-sustaining

swimming performance,

populations. However, a wide body of circumstantial
evidence supports that captive breeding programs alone
will not be sufficient to re-establish endangered salmo-
nids within their species’ ranges, unless the factors con-
tributing to their initial decline are concurrently
addressed (see also Frazer 1992; Meffe 1992; Flagg et al.
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1995, 2004a; Snyder et al. 1996; Waples and Drake 2004;
Waples et al. 2007).

6 Based on the duration of more ‘modern’ captive breed-
ing programs (e.g., Hedrick et al. 2000b; Flagg et al.
2004a; O’Reilly and Doyle 2007), a minimum of 15—
20 years will likely be necessary to potentially achieve
the conservation goal of re-establishing a self-sustaining
salmonid population in the wild, in a previously occu-
pied habitat within the species’ native range.

7 Research is sorely needed on whether the demographic
advantages of increasing population abundance via cap-
tive breeding can outweigh the genetic disadvantages of
losing fitness in captivity.

8 There are biological pros and cons to maintaining cap-
tive broodstocks as either single or multiple popula-
tions within one or more hatchery facilities. This is
especially the case when the objective is to retain both
their genetic diversity and fitness. There is currently lit-
tle empirical support for any one approach, but there
are several sound reasons for favouring multiple popu-
lations and periodic mixing, housed in multiple facili-
ties (e.g., to reduce the risk of catastrophes).

9 As potential technical alternatives to conserving salmo-
nid genetic diversity, surrogate broodstock technologies
may hold the most promise in the future, but as yet
have not been tested in a real-world conservation situa-
tion. Thus, for practical reasons, cryopreserved sperm
may be a more useful means of retaining genetic diver-
sity. However, both surrogate and cryopreservation
methods require some level of captive breeding and
therefore cannot be viewed as a replacement for captive
breeding. Other alternatives include translocations to
new habitats, which may be available in some cases but
for several biological reasons must also be considered
with caution.

Management recommendations

As illustrated by a review of salmonid fishes, ongoing, in-
depth research and evaluation of existing captive breeding
programs is needed to facilitate proper-decision making on
when, where, and how such programs might be most useful
for conserving biodiversity in the future. In a parallel situa-
tion, an independent scientific panel also recently identified
three key principles for the reform of traditional hatchery
programs (Mobrand et al. 2005; see also Waples 1999;
Waples and Drake 2004; Flagg et al. 2004b; Waples et al.
2007; Naish et al. 2008). First, the goals of each program
needed to be explicitly stated. Second, the programs had to
be scientifically defensible. Third, the programs had to be
capable of adapting to new information as it came in (Mo-
brand et al. 2005). Such principles may easily apply to cap-
tive breeding programs as well.
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For instance, the specific management goals of particu-
lar captive-breeding programs or their captive-rearing
practices have not always been readily apparent. Follow-
ing Mobrand et al. (2005), I suggest that the goals of cap-
tive breeding programs be more specific and related to
‘success’, beyond preventing the imminent extinction of
the target population. This might include (i) scientific
research results relating to the maintenance of genetic
diversity and fitness within captive-bred populations, and
re-establishment of self-sustaining populations in the
wild, (ii) knowledge generated for decision-making
regarding the initiation or continued-monitoring of par-
ticular programs, and (iii) endangered species/population
education through public outreach.

In addition, to date, salmonid captive breeding research
has not always been structured to gain reliable knowledge
for maintaining genetic diversity and fitness or generating
self-sustaining populations in the wild. Inadequate experi-
mentation in captive salmonids is likely explained by
three reasons. First, many procedures which might reduce
the loss of genetic diversity and fitness in captivity have
only been recently adopted in most programs. Second, in
dealing with endangered populations, there are inherent
trade-offs between preventing extinction, having repli-
cated controlled experiments over multiple generations,
and ensuring sufficient adult returns and/or families to
carry out such studies effectively or simultaneously.
Third, salmonids require several years to reach maturity
and ample space for captive-rearing. In some cases, addi-
tional space for multiple generations of experimentation
may not be feasible. Nevertheless, where feasible, there is
a critical need for captive breeding manipulations and
monitoring to include, a priori, greater application of
hypothesis testing through the use of well-designed exper-
iments. In this regard, analogous guidelines for carrying
out effective experimentation in salmonid supplementa-
tion programs or in general reintroductions might be very
useful (see Waples 1999; Reisenbichler 2004; Waples and
Drake 2004; Seddon et al. 2007; Armstrong and Seddon
2008). On a positive note as well, many new procedures
and theoretical models are available to tackle challenges
related to conserving genetic diversity and fitness, and
they await testing in terms of their long-term effectiveness
(e.g., Fernandez and Caballero 2001; Wang and Ryman
2001; Duchesne and Bernatchez 2002; Fernandez et al.
2003, 2004; Vales-Alonso et al. 2003; Wang 2004; Rodri-
guez-Ramilo et al. 2006).

Inferences gained to date by salmonid captive breeding
programs have also been largely based on a case-by-case
basis. Furthermore, many publications have not included
details of procedures adopted to reduce the rate of loss of
genetic diversity and fitness in captivity (but see Flagg
et al. 2004a; O’Reilly and Doyle 2007). Clearly, differences
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between captive breeding programs might demand evalu-
ations on a case-by-case basis within the context of pro-
gram goals (Waples 1999; Berejikian et al. 2004). On the
other hand, the origin of more general principles and
guidelines for effective salmonid captive breeding and
reintroduction might only be achievable if the documen-
tation of procedures adopted is improved. Similarly, the
knowledge generated by captive-breeding programs could
be made more accessible to governmental, nongovern-
mental and academic researchers as well as to policy-mak-
ers. Perhaps encouragement to publish timely, peer-
reviewed literature would be a means of ensuring that (i)
captive-breeding programs adhere to evaluating their
goals, (ii) knowledge from captive-breeding programs can
be integrated for meta-analyses, and (iii) captive-breeding
procedures can be modified if new information suggests
that this would improve the effectiveness of programs.
Such points may be especially pertinent for endangered
species/populations, where time is indeed of the essence.
As previously mentioned, a myriad of procedures are
now available for potentially slowing the rate of loss of
genetic diversity and fitness in captivity. But many of
these will likely demand additional resources and labour
to carry them out effectively. There is consequently an
imminent need to know and prioritize which procedures
might simultaneously work best towards achieving captive
breeding goals while keeping cost-benefit ratios as low as
possible. For example, one major trade-off exists between
the potentially greater productivity accrued from the
release of older and larger juveniles versus the presumed
genetic and ecological benefits of egg/early life-history
releases (Berejikian et al. 2004). In this regard, referral to
cost-benefit analysis guidelines developed for more tradi-
tional hatchery or supplementation programs might be
very useful (e.g., Waples 1999; Waples and Drake 2004;
McKinlay et al. 2004; see also Naish et al. 2008).

A final comment on uncertainty

It is encouraging that salmonid captive breeding pro-
grams can clearly fulfill the proximate goal of preventing
the imminent extinction of an endangered species or pop-
ulation (Flagg et al. 2004a; O’Reilly and Doyle 2007).
Nevertheless, a central conclusion of this review for both
salmonids and other taxa is that considerable uncertainty
remains regarding the ability of captive breeding to realize
its ultimate goals: maintaining genetic diversity and fit-
ness over the long-term and re-establishing populations
into previously occupied habitat within species’ native
ranges. In a parallel situation on traditional hatchery pro-
gram reform for salmonids, Waples (1999) pointed out
that improved research would not by itself be sufficient
because it would not resolve all uncertainties, but of equal
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importance, that much key information would likely not
be available for many years. Waples (1999) therefore
argued that it was essential to develop workable methods
for dealing with uncertainty.

Three points are worth noting in this regard in the case
of salmonids. First, the number of endangered salmonid
populations is already substantial (e.g., Canada’s Species
at Risk Act; U.S. Endangered Species Act) and will most
likely increase in the future from human activities. Sec-
ond, although research on several species is now under-
way that will improve existing captive-breeding programs,
such research generally takes a decade to complete (e.g.,
Araki et al. 2007c). Third, this review points to a mini-
mum duration of 15-20 years for captive-breeding pro-
grams to  potentially  re-establish  self-sustaining
populations in the wild. Consequently, now might be a
good time to ask similar critical questions that previous
authors have (sensu Waples 1999). For instance, where
should the burden of proof lie given the inevitable uncer-
tainty? Should captive breeding programs be used persis-
tently because they can prevent imminent extinction
(thus preventing, in the short-term, irreversible losses of
diversity)? Or, conversely, should they be used only very
cautiously given the uncertainty in the long-term of (i)
whether they can conserve genetic diversity/fitness or re-
generate self-sustaining populations and (ii) whether
underlying causes of salmonid declines can be remedied?
In this case, allocation of resources might be placed in
potentially more cost-effective long-term strategies, such
as in situ preservation of other populations. In the end,
the benefits and risks of initiating, continuing, or termi-
nating a captive breeding program from a management
perspective can only be weighed from (i) estimating the
probabilities of different possible outcomes and (ii) care-
ful consideration of the potential consequences of being
wrong (Currens and Busack 1995; Waples 1999).
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gene loci; otherwise known as allelic diversity.

Box 1. Glossary of terms used throughout the review.

Allelic richness — A measure of genetic diversity, usually expressed as the mean number of alleles found at multiple

Effective population size - The size of a stable, randomly mating population that would have the same rate of gene
loss or increase in inbreeding as the real population (size N). All finite populations are inbred to some degree and
generally do not choose mates at random, so N, is typically 1/10 N or less (Frankham 1995). Frankham (1995)
reviewed the factors that reduce N, relative to N and found that fluctuating population sizes, variance in family sizes
and unequal sex ratios are the most important factors driving N./N downwards.
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Domestication selection — For the purposes of this review, this term is defined broadly following Currens and
Busack (1995) and Waples (1999). Domestication selection firstly relates to genetic changes in a captive population
resulting directly or indirectly from either intentional or nonintentional selection within the captive breeding environ-
ment. It also relates to temporary relaxation of selection in the captive environment which might not lead to genetic
change in the captive environment but which would otherwise occur in the wild (Waples 1999). In other words,
domestication selection can be any change in the selection regime of a cultured population relative to that experi-
enced by the natural population (Waples 1999). Also known as, broadly speaking, genetic adaptation (reviewed in
Frankham 2008).

Genetic drift - Stochastic fluctuations in allele frequencies or loss of rare alleles due to the random sampling of
gametes at each generation.

Heterozygosity — A measure of genetic diversity. Having different alleles at one or more corresponding gene loci.

Inbreeding - A regime of reproduction that implicates the union of related gametes (gametes sharing a common
ancestor).

Inbreeding depression- A reduction in the fitness of offspring from the mating of related individuals.

Live-gene banking program — A form of captive breeding program that (i) involves multiple generations of captive
breeding to protect populations that are at immediate risk from extinction and (ii) implements a number of procedures
from Table 2 to minimize genetic and fitness-related risks associated with captive breeding or rearing (O’Reilly and
Doyle 2007). Typically, and by necessity, most if not all of the population is housed under captive conditions for at least
a part of the species’ lifecycle.

Local source population — The creation of a captive-bred population from a particular wild population that is then
reintroduced into the same environment (e.g., river) occupied by that wild population, for the purposes of re-estab-
lishing or supplementing the wild population.

Neutral genetic markers- DNA technologies targeting and amplifying genomic regions (gene loci) that are not subject
to natural selection (i.e., that are selectively neutral). Genetic differentiation within or between populations can be evalu-
ated using neutral genetic markers, to evaluate the relative roles of genetic drift, gene flow and/or mutation in population
differentiation, or to identify family relationships (kinship) between individuals within populations. Genetic differentia-
tion at neutral genetic markers is common in salmonids, including at small geographic scales (e.g., within large river sys-
tems, between geographically proximate lakes) (Taylor 1991; Garcia de Leaniz et al. 2007). Genetic differentiation at
neutral genetic markers is also sometimes positively correlated with phenotypic or life-history trait differentiation in sal-
monids, suggesting that selection has played a role in driving the differentiation at these traits (e.g., Fraser and Bernat-
chez 2005). However, in general, it would appear that differentiation at neutral genetic markers is often a poor proxy for
adaptive genetic differentiation between and/or within populations (e.g., Reed and Frankham 2001).

Nonlocal source population — The creation of a captive-bred population from a particular wild population that is
then reintroduced into a different environment (e.g., river) than that of the wild population from which it was
derived, for the purposes of re-establishing or supplementing the wild population; similar to the use of the term ‘out-
of-basin hatchery stock’ in the primary literature (Brannon et al. 2004; Araki et al. 2007b).

Outbreeding depression — A reduction of fitness in the offspring (hybrids) of crosses between divergent popula-
tions. Outbreeding depression can occur either through the disruption of intrinsic interactions between genes or dis-
ruption of extrinsic interactions between genes and the environment (reviewed by Edmands 2007). Outbreeding
depression in hatchery—wild hybrids through the disruption of extrinsic interactions between genes and the environ-
ment would be expected primarily if differential selective pressures drive population differentiation. Conversely, out-
breeding depression in hatchery—wild hybrids through the disruption of intrinsic interactions between genes would be
expected if the ancestral wild population of the hatchery strain and the other wild populations were historically iso-
lated. In reality, both mechanisms might act simultaneously, especially if the hatchery fish originate from a nonlocal
source population.

© 2008 The Author
584 Journal compilation © 2008 Blackwell Publishing Ltd 1 (2008) 535-586



Fraser Genetic diversity and fitness in captive breeding

Box 2. Trade-offs between conserving genetic diversity and fitness: equalize family sizes following
wild exposure?

Owing to its potential advantages for reducing domestication selection in captivity, there is growing interest in having
captive-bred individuals exposed to the wild for at least some portion of the lifecycle (e.g., Hebdon et al. 2004;
O’Reilly and Doyle 2007). However, following a period of wild exposure, an unavoidable trade-off exists between
retaining genetic diversity and fitness when generating the new captive broodstock. Casual arguments for conserving
genetic diversity versus fitness might proceed as follows, and striking a balance between them may very well depend
on the specific case:

‘Genetic diversity: equalization of family sizes following wild exposure is essential to maximize the retention of
genetic diversity when generating the new captive broodstock.

‘Fitness’: but equalizing family sizes following wild exposure would reduce (in theory, halve) the fitness benefits
accrued in the wild if some family genotypes are disproportionately favored over others by natural selection. It is
individuals from these better-surviving families that should be used disproportionately to generate the new captive
broodstock.

‘Genetic diversity’: but this assumes that the families with higher survival at the life-history stage exposed to the
wild (e.g., juvenile) would also have higher survival at other stages (e.g., adult). One cannot rule out that inter-family
survival varies at different life history stages. Additionally, even with equalizing family sizes after wild exposure, the
benefits of exposing genotypes within families to natural selection would still be gained. Furthermore, the dispropor-
tionate use of individuals from better-surviving families for generating the new broodstock would result in an irre-
versible loss of genetic diversity. Some families would be under-represented and others potentially not represented at
all. Such diversity may be important for the population to respond to future environmental change.

‘Fitness™: perhaps, but there is uncertainty in what the future environmental conditions might be for the reintro-
duced captive population. Disproportionately using individuals from families with a greater fitness performance is
most in line with what existing conditions in the wild can support. This practice should improve the likelihood that
the reintroduced population will become self-sustaining.

‘Genetic diversity’: perhaps, but there may be temporal variability in selective pressures within the wild environ-
ment. Captive-bred families favored by natural selection in the wild this year or the next might not be those favored
several years or a decade down the road.

Box 3. When is a reintroduction ‘successful’?

Seddon (1999) summarized a variety of definitions that have been considered regarding what constitutes a successful
reintroduction. The definitions put forth have included (i) breeding by the first-wild born generation, (ii) a breeding
population with recruitment exceeding adult death rates for 3 years, (iii) an unsupported wild population of a mini-
mum of 500 individuals, (iv) establishment of a self-sustaining population (Griffith et al. 1989; Beck et al. 1994;
Sarrazin and Barbault 1996). Evidently, the applicability of any one criterion might be limited depending on the life
history characteristics of the species targeted for reintroduction (Seddon 1999).

For the purposes of this review, I consider a salmonid reintroduction to be successful if it leads to the establish-
ment of a self-sustaining population in the native species’ range. I define a self-sustaining population as a population
that persists for multiple generations in the absence of any human intervention, such as supplementation, artificial
habitat enhancement or any degree of captive breeding or genetic modification. In many ways, this definition is most
in line with one of the ultimate goals of captive-breeding programs; that is, to re-establish a species in an area which
was once part of its historical range (IUCN 1998). The definition is also formulated with the hope that self sustain-
ability will represent the long-term persistence of the reintroduced species, but does not assume that self sustainability
is equated with long-term persistence. For instance, a salmonid population could be reintroduced as a self-sustaining
population for several generations, but then a new threat might render it no longer viable (e.g., climate change, intro-
duced pathogens).
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Appendix 1. Literature search details

Roberts et al. (2006) recently established ‘systematic
review’ guidelines for review papers in conservation, ecol-
ogy, and environmental management. They suggested that
a comprehensive and documented search strategy be
included to reduce bias in review papers and to facilitate
updating in light of further advances. To address ques-
tions throughout the review relating to how well captive
breeding programs conserve salmonid biodiversity, I
performed a rigorous literature search for primary, peer-
reviewed journal articles in Web of Science™, ICES Jour-
nal of Marine Science and Google Scholar™ search
engines. After a first collection of literature was made, rel-
evant literature cited within these articles was collected.
In addition, major authors of peer-reviewed articles
involving relevant key words were searched in databases
to ensure that all related works were researched. Wher-
ever necessary, major contributing authors were contacted
directly for article reprints or PDFs. The following 84
search terms (in alphabetical order) or combinations
thereof were used to find relevant primary literature for
various review sections:

‘allelic diversity’, ‘allelic richness’, ‘androgenesis’, ‘artifi-
cial supplementation’, ‘atlantic whitefish’, ‘biodiversity’,
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‘biodiversity conservation’, ‘biological diversity’, ‘Canada’,
‘captive’, ‘captive-bred’, ‘captive breeding’, ‘captive breed-
ing program’ ‘captive breeding programme’, ‘captive-
reared’, ‘captive-rearing’, ‘char’, ‘charr’, ‘coancestry’,
‘Coregonus’, ‘COSEWIC’, ‘cryopreservation’, ‘cryopre-
served’,  ‘domestication’,  ‘domestication  selection’,
‘embryo’ opulati ize’, ‘end d’
, population size’, ‘endangered’,
enhancement’, ‘environmental change’, ‘epigenetic’,
‘extirpated’, ‘extirpation’, ‘fitness’, ‘function’, ‘gamete’,
< D < : : b < : : : bl < .
genetic’, ‘genetic adaptation’, ‘genetic diversity’, ‘genetic
drift’, ‘genetic variability’, ‘genetic variation’, ‘Great
Lakes’, ‘hatcheries’, ‘hatchery’, ‘heterozygosity’, ‘inbred’,
‘inbreeding’, ‘inbreeding coefficient’, ‘lake trout’, ‘lifetime
> q: > e . 5
performance’, ‘live gene bank’, ‘live gene banking),
< b < : > < : el : b <
Oncorhynchus’, ‘population’, ‘recovery initiative’, ‘recov-
ery initiatives’, ‘re-established’, ‘re-establish’, ‘rehabili-
tated’, ‘rehabilitation’, ‘reintroduced’, ‘reintroduction’,
‘restore’, ‘restoration’, ‘Sacremento River’, ‘Salmo’, ‘sal-
mon’, ‘salmonid’, ‘Salvelinus’, ‘self-sustaining’, ‘sperm’,
‘stock’, ‘stock enhancement’, ‘supplementation’, ‘support-
ive breeding’, ‘supportive breeding program’, ‘supportive
breeding programme’, ‘supportive rearing’, ‘temporal
data’, ‘trout’, ‘USA’.

‘effective

© 2008 The Author
Journal compilation © 2008 Blackwell Publishing Ltd 1 (2008) 535-586



