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Evolutionary analysis of microbes at the community level represents a new research avenue linking
ecological patterns to evolutionary processes, but remains insufficiently studied. Here we report a relative
evolutionary rates (rERs) analysis of microbial communities from six diverse natural environments based
on 40 metagenomic samples. We show that the rERs of microbial communities are mainly shaped by
environmental conditions, and the microbes inhabiting extreme habitats (acid mine drainage, saline lake
and hot spring) evolve faster than those populating benign environments (surface ocean, fresh water and
soil). These findings were supported by the observation of more relaxed purifying selection and potentially
frequent horizontal gene transfers in communities from extreme habitats. The mechanism of high rERs was
proposed as high mutation rates imposed by stressful conditions during the evolutionary processes. This
study brings us one stage closer to an understanding of the evolutionary mechanisms underlying the
adaptation of microbes to extreme environments.

U
nderstanding the mechanisms underlying the adaptation of microbes to extreme environments is of
fundamental importance from both evolutionary and ecological perspectives1,2. Despite the philosophical
controversy over the definitions of ‘‘extreme’’, a physical definition of ‘‘extreme’’ as unfavorable envir-

onmental factors that depress the ability of organisms to function is commonly used in ecological studies3. Several
typical environments, including saline lake, acid mine drainage (AMD) and hot spring, are widely perceived as
extreme environments for their stressful factors such as extensive osmotic stress, low pH and high temperature,
respectively3–5. Over the past decade, an increasing number of studies have been focused on how microorganisms
populating extreme environments cope with stress6. Several works have found that genome plasticity, including
codon bias, nucleotide skew and horizontal gene transfers (HGTs), enables evolutionary adaptation to extreme
conditions7,8. A more recent study highlighted the role of frequent recombination in rapid adaptation within
AMD communities since the bacterial hybrids showed remarkable ecological success9. However, general patterns
have not been detected regarding the adaptive mechanisms of microbes living under the harsh conditions. This is
likely due to the variety of selective pressures in extreme environments. For most microbes, adaptation to such
stressful environments is a highly dynamic and complex process that involves the interaction of multiple evolu-
tionary forces10,11.

In contrast to the examination of the adaptive mechanisms of specific taxa individually, the study of microbial
evolution at the community level represents a new research approach that links ecological patterns to evolution-
ary processes2. Indeed, prokaryotes typically evolve as consortia comprising a phylogenetic mosaic in natural
environments12. These heterogeneous groups have been described as the units responsible for habitat selection13

and thus are likely to represent the true units of evolution14. Therefore, metagenomics approaches that involve
sampling the genetic content of the whole community inhabiting natural environments have potentials in
shedding light on the integrative aspect of microbial evolution.

Although comparative metagenomics analyses are providing valuable insight into the adaptive strategies of
microbes in their natural settings8,15,16, the question of how environments may impact the evolution of microbial
communities remains unanswered. The exploration of adaptive fingerprints in natural communities has been
hindered by the fact that rapidly evolving genetic modules are difficult to capture17. Additionally, direct mea-
surement of the absolute rates of molecular evolution in natural assemblages is plagued by the problem of
complex phylogenetic composition and the necessity of long-term tracking9. In contrast, relative evolutionary
rate (rER) has been shown to enable a robust assessment of evolutionary differences among lineages18. A previous
study of community rERs through a comparison of the branch length of phylogenetic marker genes13 indicated
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that microbes from the ocean surface evolve faster than those from
other habitats, including AMD environment. However, a sampling
bias may have arisen due to the overrepresentation of pathogen
genomes in the reference tree, making the previous results
questionable.

To date, few studies have attempted a direct comparison of
microbes from extreme conditions with their counterparts in rela-
tively benign environments to explore microbial adaptation and
evolution at the community level19. Furthermore, the relatedness
between environment and evolution tempo remains poorly under-
stood. The increasing amounts of metagenomics and fully sequenced
genome data now allow us to systematically explore these important
but unsolved questions. This study has illustrated the differences in
rERs between microbial communities from extreme and normal
environments based on an in-depth comparative analysis of 40 meta-
genomic samples from multiple heterogeneous habitats. The rERs
assessment that we have outlined here is a necessary step toward a
comprehensive understanding of the mechanisms of evolutionary
change that underlie the adaptation of microbes to extreme
conditions.

Results
Habitat profiling and evolutionary characterization of natural
microbial communities. The 40 communities were clustered
based on the functional distance matrix of the COG categories to
provide a habitat profile. The exploratory clustering pattern generally
matched the corresponding six habitats: Saline lake, AMD, surface
ocean, hot spring, freshwater and soil (Figure 1). For an overall
assessment of the evolutionary pattern of these natural
communities, we estimated the community-scale rER, dN/dS,
HGTs (indicated by the occurrence of transposases encoding
genes) and species diversity (estimated via ACE) (See Methods
section for details). Results showed that microbial communities
from different habitats exhibited distinct evolutionary variations,
ranging from evolutionary tempo to species diversity (Supplement-
ary Table S1). Firstly, the rER measures the evolutionary tempo of
organisms in natural communities based on the estimation of
accumulated number of sequence changes in a phylogenic refe-
rence tree. Our analysis revealed different evolutionary rates for
microbes dwelling in different habitats. In particular, organisms

populating AMD generally evolve faster than those from other
habitats except saline lake (pairwise Mann–Whitney U-tests, P ,
0.05 after correction for multiple testing, a 5 0.05, one-tailed)
(Figure 2). In contrast, the seven soil communities (including
farmland, forest and grassland) displayed fairly stable rERs that
were lower than those of aquatic environments (pairwise Mann–
Whitney U-tests, P , 0.05 after correction for multiple testing, a
5 0.05, one-tailed) (Figure 2). Secondly, metagenome-scale pairwise
dN/dS analysis showed an overwhelming purifying selection in these
communities, suggesting that the purging of deleterious mutations
plays a key role in community evolution. Thirdly, the estimated
transposases levels differed remarkably among the six habitats,
with a range between 1.0% in AMD and 0.06% in surface ocean.
These values were comparable to those previously reported for
similar environments15,20. The distinct transposases levels might
reflect that HGTs were ecologically structured. Similarly, the
difference in species diversity might be attributable to the distinct
environmental conditions associated with the diverse habitats.
Overall, our metagenome-based characterization of natural
communities provided an initial look at the evolutionary patterns
of organisms living in different environments.

Environmentally dependent rERs of microbial communities. The
rER analyses revealed a signal of generally similar community rERs
within the same habitat category (Supplementary Table S1), except
that two of the saline lake samples exhibited inconsistent rates. The
saline lake communities were sampled across a considerably wide
range of salinity gradient and harbored large variance inherently4.
Thus, the inconsistent rERs in the saline lake habitat appeared to
reflect the impact of heterogeneous environmental conditions on
genome evolution. In addition, communities from different habi-
tats displayed distinct rERs (Figure 2). Further analyses using
Spearman rank correlations showed a significant relatedness
between habitats and community rERs (permutation test, R 5
0.49, P , 2.2E-16, a 5 0.001). To test whether the heterogeneous
phylogenetic compositions of the various communities have a major
influence on the above trends, we subsequently estimated the
expected distributions of rERs for all samples by simulating the
communities from weighted datasets and the matching correspond-
ing phylogenetic compositions (see Methods section). Of all 36
samples (the five subsamples from AMD C75 site were pooled due
to the small numbers of marker gene fragments), 28 (78%) deviated
significantly from expectations (pairwise Kolmogorov-Smirnov
tests, P , 0.05 after correction for multiple testing, a 5 0.05, two-
tailed) (Figure 3), suggesting that the pattern of rERs cannot be well
explained by the distinct phylogenetic structures of the communities.
These results indicated that the in situ rERs of microbial
communities were largely environment dependent.

Higher rates of evolution in extreme habitats than in normal
habitats. An exploratory clustering analysis based on the four
community-scale evolutionary variables (Supplementary Table S1)
showed that the 40 samples were generally clustered into two groups
(Figure 4), implying two different evolutionary patterns for these
microbial communities. One group encompassed the samples from
extreme habitats (saline lake, AMD and hot spring), and the other
group included the samples representing relatively benign environ-
ments (surface ocean, freshwater and soil) (Figure 4). Quantitative
comparison of the evolutionary differences between the two groups
further revealed that microbes living in the extreme and normal
habitats had an average rER of 0.296 and 0.133, respectively,
indicating that organisms thriving under the harsh conditions
evolve significantly faster (Mann–Whitney U-tests, P 5 2.81E-04,
a 5 0.001, one-tailed; Figure 5a). Additionally, significantly higher
dN/dS and transposases level were observed in the extreme habitats
(Mann–Whitney U-tests, P 5 2.77E-05 for dN/dS; P 5 2.623E-05 for
transposases level, a 5 0.001, one-tailed; Figure 5b, c), reflecting

AMD
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Soil
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Figure 1 | Discriminant analysis of principal components (DAPC)
based on relative abundances of COG categories showing habitat
profiling of 40 microbial communities across six habitats. The six habitats

were denoted by corresponding cluster and colors.
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more relaxed purifying selection and frequent HGTs in these
extraordinary environments.

Our analysis also revealed interesting negative correlations
between species diversity (ACE index) and community rERs (R 5

20.43, P 5 6.00E-03, a 5 0.001; Figure 6), which implies that the
evolutionary tempo in low diversity microbial communities was
generally higher than that in more complex communities. This
observation coincided with our expectation since habitat conditions
could be generally reflected by community complexity in this study.
This was supported by the finding that extreme environments exhib-
ited generally lower diversity compared to normal environments
(ACE index 152 vs. 240, Mann-Whitney U-tests, P 5 1.449E-05, a
5 0.001, one-tailed) (Supplementary Table S1).

Case study of AMD communities. The AMD communities were
found to be highly enriched in genes for replication, recombination
and repair compared to all sequenced prokaryotes (Figure 7),
reflecting the necessity of evolving extensive DNA repair systems
to cope with the harsh conditions. Similarly, the overrepresenta-
tion of genes that code for post-translational modification and
molecular chaperones likely arose to redress incorrect protein
folding partly due to the oxidative stress in the AMD environment.
In contrast, genes related to transcription, signal transduction,
secondary structure and related processes were found significantly
underrepresented in the AMD communities (Figure 7). Differential
gene loss and overlapping genes in AMD habitats could likely be
means of directionally retaining indispensable genes and com-
pressing accessory genetic information as the result of habitat
selection and evolutionary pressure to minimize genome size21,
suggesting that adaptive specialization in metabolism is important
to adaptation to stressful environments.

Discussion
Our community-scale analyses have revealed the overall rERs of
natural microbial assemblages and their relatedness with diverse
environments. It should be noted, however, that the calculation of
rER of each phylogenetic marker gene sequence is dependent on the
differences of branch length comparing to the relatives in the ref-
erence tree. Consequently, the rERs assessment may be biased due to
the poor representation of organisms from relevant environments in
the reference tree and the imprecise sequence placements13. To
reduce these adverse effects, 982 species from a wide range of distinct
environments were selected to build the reference tree in our study
(Supplementary Figure S1). Compared to the method used prev-
iously13, this strategy expanded the phylogenetic breadth from 23
to 30 phyla, considerably increasing the representation of free-living
organisms from the relevant environments and the accuracy of
sequence placement. Moreover, in order to ensure the topological
reliability, we adopted the strategy of using a convincing starting tree
of 250 tips based on the previous study13 when building the reference
tree. As a result, more than 70% of the branches of our maximum
likelihood tree had high bootstrap supports (.80%), and the relative
species representative of different phyla could be well separated into
clear monophyletic groups (Supplementary Figure S1). As such, the
resolution of our reference tree was sufficient to gain reliable results.

Our results have demonstrated that the rERs of naturally occur-
ring communities were habitat-dependent. Although the samples
belonging to the same habitat were widely distributed (Supple-
mentary Table S2), their signals of community rER were consistent
regardless of the long geographic distance, suggesting the importance
of environmental conditions to the evolutionary pattern. Parallel
evolution driven by environmental conditions might be a reasonable
explanation for this observation. Similar traits have been reported to

   Saline lake (n = 6)
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Figure 2 | Scatter plot showing the distribution of rERs of the six habitat categories, based on the pooled data of all samples in each category.
The 5%, 25%, 50%, 75%, and 90% quartiles are indicated. The significant differences of rERs among different habitat categories were determined using

pairwise Mann–Whitney U-tests based on the average rER for each habitat as displayed in Supplementary Table S1. (*P , 0.05; **P , 0.01; a 5 0.05,

two-tailed. All P-values were adjusted for multiple testing using the ‘‘BH’’ correction in R. Detailed P-values were listed as follows: saline lake vs.

freshwater, 0.029; saline lake vs. soil, 0.010; saline lake vs. hot spring, 0.033; AMD vs. hot spring, 0.007; AMD vs. surface ocean, 0.020; AMD vs. freshwater,

0.007; AMD vs. soil, 0.007; hot spring vs. surface ocean, 0.028; hot spring vs. soil, 0.040; surface water vs. freshwater, 0.017; surface water vs. soil, 0.007;

freshwater vs. soil, 0.020).
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be parallelly developed in related but distinct species under similar
environmental selections22. In supporting this, a previous study of
microbial laboratory evolution has found a strong pattern of conver-
gence at the level of genome content under the same selective pres-
sure23. In the current study, natural communities from a specific
habitat presumably suffer from similar selections and these hab-
itat-specific pressures plausibly facilitate the adaptation of microor-
ganisms to the environment. Indeed, increasing evidence has
demonstrated that free-living microbes are subject to parallel evolu-
tion to respond to environment with high temperature24,25 and hab-
itat-specific selective environment in Methylobacterium26 which
were widely distributed in soil and freshwater.

Perhaps the most interesting finding of this study is that microbial
communities from extreme environments evolve faster than those
from normal habitats. While it might be argued that such a conclu-
sion made via the estimation of rERs is doubtable, some previous
studies addressing the absolute rates of molecular evolution in
extreme environments partly support this result. For example, the
in situ measured genome-wide substitution rate for Leptospirillum
bacterium from an AMD community was approximately 1.4 3 1029

per site per generation9, which was fairly high for free-living bacteria
from natural environments. For previous study revealed that this rate
was just a little lower than that of symbiotic and pathogenic associa-
tions27, which was thought to evolve extremely fast.

Existing studies suggest that genome size scales negatively with
mutation rates28. Our additional analyses showed that organisms in
extreme environments tend to exhibit a trend of smaller average
genome size compared to those in normal environment (2.72 Mb
vs. 3.13 Mb) (Supplementary Table S3), but this pattern is not sig-
nificant, presumably due to a specific case of extensive genome
‘‘streamlining’’ in ocean surface communities29. Another explanation
for the contrasting community rERs between the two habitat groups
might be that the organisms inhabiting extreme environments had
lower effective population sizes (Ne). Although direct measurement
of Ne was not possible in the current study due to the limited genetic
information on the microbial populations between the two groups,
whether Ne is a determinant for shaping this evolutionary pattern
among distinct habitats merits future study. Additionally, some other
critical clues found in our study may, to some extent, explain the
observation of high community rERs in extreme environments. As it
was previously suggested that natural selection is less efficient in
small populations30, our results supposed that relaxed purifying
selection might occur more frequently in extreme environments
because of the relatively smaller population sizes. Similarly, a more
relaxed selective constraint was found in microbial communities in
the deep sea rather than the surface water19. Generally, relaxed select-
ive constraint increases the proportion of low frequency variants31

that might directly contributes to higher mutation rates, and this
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effect could facilitate the evolution of phenotypic plasticity32. Thus,
relaxed purifying selection might be a common evolutionary strategy
accelerating the adaptive response of microbes to extreme environ-
ments by increasing their metabolic versatility. Another explanation
accounting for fast evolution in extreme habitats was the higher
frequency of HGTs. Theoretically, higher frequency of gene recom-
bination would directly lead to more extensive variation of gene
content (such as the formation of mosaic genomes10), and the high
genomic divergence of microbes comparing to their relatives in the
reference tree would consequently raise the rERs. In this study, the
level of transposases that representing the frequency of gene transfers
was significantly higher in extreme environments. Furthermore, our
odds ratio analysis also suggested the gene enrichment involving in

recombination in extremely acidic communities (e.g., AMD,
Figure 7). Overall, frequent recombination might be an alternative
strategy enabling rapid adaptation of microbes to extreme conditions9.

The contrasting community rERs between extreme and normal
environments may reflect distinct evolutionary histories as well. As
microorganisms populating relatively benign environments have
likely reached a steady-state of environmental adaptation, most
mutations may have deleterious or neutral effects on fitness and thus
have limited opportunities for fixation33,34. In contrast, the fitness of
microbes inhibiting more stressful environments is far from optimal,
and thus adaptive evolution is expected to occur more frequently34,35.
For example, AMD environments are typically characterized by
extremely low pH and heavy metal toxicity, which are stressful for
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the growth of microorganisms. Thus, adaptation by merely fixing
pre-existing variations could not meet the demand of innovation36,
resulting in relatively high community rERs. However, the remark-

ably high frequency of mutations could also lead to a high genetic
load because of the accumulation of excessive deleterious muta-
tions37. Consequently, to counteract the effects of deleterious muta-
tions, the cost of balancing the necessity of adaptive changes is
presumably high. Two evolutionary signals observed in our AMD
communities may support this assumption. Firstly, the overrepre-
sentation of genes related to repair systems in existing taxa (Figure 7)
might counteract the high rates of stress-induced mutations.
Secondly, there is clear evidence suggesting that mismatch repair
(MMR) genes lost or inactivated during early colonization may be
restored by HGTs38, reflecting a compensatory strategy to redress
this balance. Collectively, the accelerated evolution implies the
ongoing adaptation of microbes living in extreme environments.

Our community-scale evolutionary study across distinct habitats
suggested that the evolutionary rate of microbial communities under
extreme conditions was higher. This seemed, to some extent, incon-
sistent with previous reports that (hyper)thermophilic organisms
generally exhibited lower mutation rates compared with meso-
philes39. Indeed, evidences implied a relatively low evolutionary rate
of (hyper)thermophiles possibly due to their unusual evolutionary
pattern such as distinct mutational spectra40,41 and repair strategies42.
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In this study, only microbes dwelling in hot spring were thermophiles
with an average optimal growth temperature (OGT) . 50uC, while
the others in diverse habitats including AMD, saline lake, surface
ocean, freshwater and soil were mesophiles (The community average
OGT was estimated based on previous methods7). Statistically, our
additional analysis supported the previous idea when comparing the
average evolutionary rate of hot spring communities with that of
other habitats (0.117 vs. 0.226, t-test, P 5 0.0023, a 5 0.001, one-
tailed). However, this result was habitat-dependent. For example,
although the thermophiles in hot spring had a lower evolutionary
rate than mesophiles from extreme environments like AMD and
saline lake, they significantly evolved faster than mesophiles in nor-
mal habitat such as soil (detailed P values see Figure 2). Thus, results
made by previous classical studies focusing on a single envir-
onmental factor (e.g., temperature) may not always be convinced.
It should be noted that the evolution of microorganisms in natural
environments are shaped by multiple environmental factors, and our
comparison of community-scale evolutionary rates between
‘‘extreme’’ and ‘‘normal’’ habitats highlight their integrated impact
on microbial evolution. Consequently, our conclusion is still reas-
onable and from the point of view of this study, thermophiles do not
necessarily evolve slower than mesophiles at the community level.

Our current study has provided a significant insight into the evolu-
tionary mechanisms underlying the adaptation of microbes to
extreme environments. This promising framework extended from
previous approaches highlights the importance of exploring the
evolutionary processes of microorganisms at the community level.
Meanwhile, we recognized the potential bias associated with using
the midpoint rooting method, as considerable variations of evolution
rates may exist across the full spectrum of phylogeny. Additionally,
the number of phylogenetic marker gene sequences detected from
the metagenomic samples was relatively small. Thus, the observed
patterns may be largely contributed by the dominant taxa and thus
could not comprehensively reflect the overall community structure
particularly for the complex habitats. Finally, some important popu-
lation genetic parameters such as effective population size and gen-
eration time were not assessed in this study because of the technical
limitations of their precise estimation at the community level. In
sum, the application of our framework addressing the evolution
processes of the overall community is feasible to reveal the evolu-
tionary mechanisms of natural microbial communities. Future stud-
ies may benefit from the quantitative evaluation of evolutionary life
history traits and more exhaustive sampling of genetic content using
high throughput sequencing.

Methods
Dataset acquisition and metagenomic analyses. The metagenomic sequences from
40 samples across six habitats were downloaded from the NCBI SRA, MG-RAST,
IMG/M and CAMERA databases (Supplementary Table S2). Only prokaryotic
sequences were retrieved for the subsequent analyses. All these sequences were
generated by 454 platform except for those from six samples which were generated by
Sanger sequencing. For the 454 pyrosequencing data, raw reads were trimmed with an
average Phred quality score , 20, and quality sequences were de-replicated using a
454 replicate filter43. The sequence assembly was carried out using the Newbler de
novo assembler (version 2.6) with default parameters. The resulting contigs and
singletons $ 300 bp and all the Sanger sequences were further analyzed as described
below: (1) For taxonomic binning, sequences were compared against the NCBI-nr
database using BLASTX, then the species diversity estimated by ACE index was
calculated following the pipeline of QIIME44. (2) For functional annotation, the
protein encoding genes were firstly predicted using GeneMark45. The predicted
protein sequences were then compared against the STRING (Version 9.0)46 database
using BLASTP with a reliable hit standard as ‘‘match length $ 100, identity $ 50%,
coverage $ 50% and BLAST score $ 60’’. The hits were assigned to the corresponding
Clusters of Orthologous Group (COG) catalogues and COG categories.

Average genome size (AGS) estimation. The average genome size for each
metagenomic sample was estimated as previously described47. Firstly, reads sequences
were directly BLASTX against STRING database, and the number of hits annotated as
phylogenetic marker was counted. Then the average genome size was calculated based
on the equation as below:

AGSs~
18:26z3650|Ls

Rm,s
Rs

Where Ls denotes the average read length of sample s, Rm,s stands for the number of
reads annotated as phylogenetic marker m from sample s, and Rs represents the total
number of base pairs sequenced from sample s.

Functional clustering of microbial communities across different habitats. To
assess the functional distribution pattern of microbial communities across different
habitats, functional clustering was performed using a discriminant analysis of
principal components (DAPC) in R package ‘‘adegenet’’48 based on the relative
abundances of the COG categories.

Detection of phylogenetic marker genes. A set of 31 well-defined phylogenetic
marker genes described previously by Ciccarelli et al.49 was suggested as the estimator
of rER in natural communities13. In this study, we scanned these phylogenetic
markers for the subsequent community rER measurement based on the annotated
COG catalogue information. Generally, 952 6 2363 (mean 6 sd) phylogenetic
marker sequences were detected among the 40 samples.

Reference species selection. To establish a robust reference phylogeny for assessing
the community rER, 982 species including 883 bacteria, 69 archaea and 30 eukaryotes
from the STRING (version 9.0)46 database were selected to build the reference tree.
The 31 phylogenetic marker sequences were retrieved from these species, of which
none were reported to have potentially undergone HGTs in these phylogenetic
markers50. The 982 species were sampled from a wide range of distinct environments
and cover the most major 30 prokaryotic phyla, thus considerably increasing the
representation of free-living organisms from the relevant environments.

Building concatenated phylogenetic marker alignment. Based on the approach
described by Ciccarelli et al.49, the alignments were built respectively for the 31
phylogenetic maker sequences from the 982 genomes using muscle51 and then
concatenated. Gaps and poorly aligned regions were eliminated using Gblocks52 with
the same parameters described by Ciccarelli et al.49, and finally 5475 positions were
remained in the alignment.

Reference tree construction and sequence placement. A maximum likelihood tree
was constructed based on the concatenated alignment mentioned above using
Raxml53 (version 7.2.7) with the evolution model WAG 1 G8 1 Invariable 1 F. The
topological consensus was assessed using 100 bootstrap replicates on a parallel
cluster. A well-established starting tree (250 tips) that covers major microbial phyla
from the previous study13 was used as a priori method to improve the topological
accuracy during the reference tree construction. The root was determined by the
method of automatic mid-point rooting using the R package of ‘‘phangorn’’54. The
branch length was calculated using ‘‘adephylo’’ package55 in R. Before placement, each
individual sequence of the 31 phylogenetic markers detected from the 40 samples was
re-aligned respectively based on the concatenated alignment using hmmalign13. Then
according to the new alignment, this sequence could be placed onto the reference tree
using pplacer56.

Quantitative phylogenetic assessment of community rERs. Branch length indicates
the accumulated number of sequence changes in a rooted tree. Based on the approach
previously reported by von Mering et al.13, the rER of each phylogenetic marker was
inferred from the branch length variations between the query sequence and the
median of those of all relatives in the same phylum from the reference tree.
Accordingly, the community rER of each sample could be assessed as the median of
the rERs of all phylogenetic markers, while the mean of the community rERs of
samples from the same habitat reflected the overall rER of that specific habitat type
(see detailed pipeline for community rER estimation in Supplementary Figure S2).

Simulation analysis of community rER. To test the influence of community
composition on community rER, all phylogenetic marker sequences from a specific
habitat were pooled and randomly assigned to each relevant community according to
its phylogenetic composition57. The number of sequences that was used to re-create
the communities was based on the smallest dataset among the samples from the same
habitat. The expected community rERs of the simulated communities were estimated
and compared to the observed values using two-sided Kolmogorov-Smirnov tests.

Detection of natural selection signature. For each community, all orthologous
proteins were aligned using muscle51, and the ratio of nonsynonymous to
synonymous substitutions between orthologs (dN/dS) was calculated using PAML58,
which was used to infer the natural selection force.

Assessment of community-wide HGTs. Previous approaches based on substitution
distribution or phylogeny for inferring the HGT events largely addressed certain
genes or taxa using whole genome data with scaffolds larger than 10 kb59,60. No
relevant studies have characterized the overall HGT at the community level with short
reads (typically less than 1 kb) derived from metagenomic sequencing. In this study,
the transposase level, which was previously suggested to correlate with the frequency
of HGT8,15,20, was used as an approximate proxy for the assessment of community-
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wide HGTs. Prior to the transposases level calculation20, we tested the correlation
between the number of transposases and the HGT events of 328 complete prokaryotic
genomes based on the dataset retrieved from a previous study50. The positive
relationship (see Supplementary Figure S3) implied that the transposases level could
be used as an alternative estimator to assess the community-wide HGTs.

Clustering analysis. An exploratory clustering analysis of all the 40 samples was
conducted using R package ‘‘hclust’’ according to the four evolutionary indexes
including community rERs, dN/dS, HGTs and species diversity (Supplementary
Table S1). The result was visualized with FigTree (http://tree.bio.ed.ac.uk/software/
figtree/).

AMD community evolutionary analysis. The AMD habitat was selected to perform
detailed analyses to reveal the potential link between evolutionary adaptation and
environmental conditions at the community level. The odds ratio method described
by Hemme CL et al.8 was used to detect the genes enriched in the AMD habitat by
comparing genes that were assigned to COG functional categories from all 10 AMD
communities against those from all the sequenced prokaryotes genomes in IMG. The
result was visualized as ln (odds ratio) with positive and negative trends denoting
over- and under-representation, respectively. The significance was assessed using
one-tailed Fisher’s exact test.

Average optimal growth temperature (OGT) estimation. The community average
OGT for each metagenomic sample was estimated based on previous methods7 as
follow: OGT 5 937F-335, where F denotes the average fraction of amino acids sets
(IVYWREL) in the total protein sequences of each metagenome.
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