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INTRODUCTION 
 

Colon cancer (COAD) is one of the most common 

malignancies and the third most common cause of 

tumor-related mortality worldwide [1]. The survival of 

COAD patients highly depends on the stage of the 

tumor; thus, the diagnosis of COAD at an early stage 

can greatly enhance patients’ chances of survival [2]. 

The five-year survival rate is about 90% for early 

COAD patients, but is < 10% for advanced COAD 

patients [3]. Although the American Joint Committee on 

Cancer (AJCC) tumor, lymph node, metastases (TNM) 

staging system has contributed to the treatment of  

 

COAD patients, it cannot adequately predict prognosis 

due to the molecular heterogeneity of COAD [4]. 

Therefore, early diagnostic and prognostic evaluations 

are important to improve the treatment and overall 

survival (OS) of COAD patients. 

 

Epigenetic modifications such as DNA methylation, 

genomic imprinting and RNA editing alter multiple 

signaling pathways during the development and 

progression of COAD [5]. The accumulation of 

aberrantly methylated DNA sites in intestinal epithelial 

cells is known to promote the occurrence of COAD [6]. 

DNA methylation is an important regulator of gene 
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ABSTRACT 
 

Abnormal DNA methylation is a major early contributor to colon cancer (COAD) development. We conducted a 
cohort-based systematic investigation of genome-wide DNA methylation using 299 COAD and 38 normal tissue 
samples from TCGA. Through conditional screening and machine learning with a training cohort, we identified 
one hypomethylated and nine hypermethylated differentially methylated CpG sites as potential diagnostic 
biomarkers, and used them to construct a COAD-specific diagnostic model. Unlike previous models, our model 
precisely distinguished COAD from nine other cancer types (e.g., breast cancer and liver cancer; error rate ≤ 
0.05) and from normal tissues in the training cohort (AUC = 1). The diagnostic model was verified using a 
validation cohort from The Cancer Genome Atlas (AUC = 1) and five independent cohorts from the Gene 
Expression Omnibus (AUC ≥ 0.951). Using Cox regression analyses, we established a prognostic model based on 
six CpG sites in the training cohort, and verified the model in the validation cohort. The prognostic model 
sensitively predicted patients’ survival (p ≤ 0.00011, AUC ≥ 0.792) independently of important 
clinicopathological characteristics of COAD (e.g., gender and age). Thus, our DNA methylation analysis provided 
precise biomarkers and models for the early diagnosis and prognostic evaluation of COAD. 
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expression [7], and the DNA methylation status has 

been found to be more reliable than gene expression for 

the diagnosis of certain cancers [8]. DNA methylation 

analysis has several advantages, including a high 

clinical sensitivity and dynamic range, and may provide 

more dependable markers of COAD than gene mutation 

analysis [9]. 

 

Despite the benefits of DNA methylation analysis, there 

are limitations to the existing studies. In terms of the 

genome-wide DNA methylation level, non-CpG-island 

regions including ‘Open sea,’ ‘Shore’ and ‘Shelf’ 

regions account for a large proportion of total 

methylated positions and thus are quite likely to have 

important effects [10]; however, most studies have 

focused on abnormal DNA methylation levels in CpG 

islands in promoter regions. Moreover, in previous 

studies, methylated diagnostic biomarkers of COAD 

have not been able to distinguish COAD accurately and 

consistently from common cancers such as bladder 

cancer (BLCA), breast cancer (BRCA), cervical cancer 

(CESC), etc. For example, Sobhani et al. reported that 

the promoters of certain genes (including SFRP1, 2, 3, 

PENK, etc.) were hypermethylated in COAD, and 

Beggs et al. reported that five marker groups (SFRP2, 

SFRP4, WIF1, APC1A and APC2) could detect COAD 

precancerous lesions with modest predictive power 

(area under the curve [AUC] = 0.83), but the models in 

these studies could not precisely distinguish COAD 

from other cancers [11, 12]. Therefore, there is an 

urgent need for a combined diagnostic model with this 

ability. 

 

Previous studies have examined not only diagnostic 

biomarkers, but also prognostic biomarkers of COAD. 

One feature of a good prognostic biomarker is its 

independence from clinicopathological prognostic 

factors. Clinicopathological characteristics such as age 

[13], gender [14], race [15], AJCC stage [16], examined 

lymph node count [17] and lymphatic invasion [18] 

have been identified as the primary predictors of 

prognosis in COAD. However, studies of methylated 

prognostic biomarkers thus far have not produced 

combined prognostic models based on genome-wide 

CpG sites that can effectively predict the OS of COAD 

patients independently of these important 

clinicopathological characteristics. Lind et al. reported 

that patients with greater methylation of a COAD 

biomarker group had a worse prognosis, although the 

difference was not dramatic in multivariate analysis 

[19]. Liang et al. found that methylation-regulated 

differentially expressed genes (5 upregulated and 81 

downregulated genes) were associated with OS, but the 

authors did not construct a combined model to 

systematically predict COAD prognosis [20]. Ahn et al. 

demonstrated that genes such as WNT5A, SFRP1 and 

SFRP2 were prognostic indicators of the high CpG 

island methylator phenotype in COAD; however, cancer 

recurrence could only be predicted in resected stage III 

proximal COAD, not in distal COAD [21]. Thus, there 

is also a great need for a combined prognostic model 

that can accurately predict the OS of COAD patients 

independently of clinicopathological parameters. 

 

A differentially methylated CpG site (DMP) is a CpG 

site with significantly different mean methylation levels 

in different groups (e.g., cancer versus normal) [22]. In 

this study, we used conditional screening and machine 

learning to obtain DMPs that could be used as specific 

diagnostic biomarkers for COAD. Then, we constructed 

and validated a COAD-specific diagnostic model using 

these DMPs, and evaluated its ability to distinguish 

COAD from normal tissues and other cancers. Finally, 

we constructed a combined COAD prognostic model 

based on six CpG sites, and verified that it could 

accurately predict high-risk and low-risk COAD 

patients independently of important clinicopathological 

parameters. 

 

RESULTS 
 

Genomic distribution of hypermethylated and 

hypomethylated DMPs 
 

To explore the abnormal methylation status of the entire 

genome, we conducted in-depth studies on the early 

diagnosis and prognostic evaluation of COAD patients 

(Figure 1). First, we performed CpG site expression 

profiling analysis between COAD tumor samples (N = 

25) and paired normal samples (N = 25) from The 

Cancer Genome Atlas (TCGA) cohort. Then, 13716 

Hyper-DMPs and 11403 Hypo-DMPs were obtained in 

these included cohorts. Specifically, unsupervised 

cluster analysis distinguished these Hyper-DMPs and 

Hypo-DMPs in 25 paired COAD and normal samples 

from TCGA (Figure 2A). When we assessed the 

locations of these Hyper-DMPs and Hypo-DMPs 

among genomic region types, we observed that Hyper-

DMPs were most abundant in Island regions (39%), 

whereas Hypo-DMPs were mainly distributed in Open 

sea regions (42%) (Figure 2B). We also determined the 

enrichment of the DMPs by calculating the ratio of 

Hyper-DMPs to Hypo-DMPs in each region. The results 

indicated that Hyper-DMPs were enriched in Island 

regions (66%; Hyper/Hypo = 5421/2689), whereas 

Hypo-DMPs occurred more frequently in Open sea 

regions (58%; Hypo/Hyper = 4882/3588). 

 

More importantly, Hyper-DMPs were mainly located 

near promoter regions, including TSS1500 (the region 

200 to 1500 nucleotides upstream of the transcription 

start site), TSS200 (the region from the transcription 
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Figure 1. Workflow diagram for biomarker screening and model construction. The DNA methylation levels of genome-wide CpG 
sites were used to screen biomarkers and construct diagnostic and prognostic models of COAD. Left side: diagnostic biomarker selection and 
COAD-specific diagnostic model construction. Conditional screening and machine learning using the selected attributes and BayesNet 
functions of WEKA were performed to obtain the final nine Hyper-DMPs and one Hypo-DMP as potential biomarkers in the training cohort 
from TCGA (including 200 COAD and 25 normal samples). BayesNet was used to evaluate the COAD-specific diagnostic model based on these 
DMPs in the validation cohort from TCGA (including 99 COAD and 13 normal samples) and five independent GEO cohorts (GSE42752, 
GSE53051, GSE77718, GSE48684 and GSE77954). Right side: prognostic biomarker selection and COAD prognostic model construction. 
Univariate Cox hazard regression analysis and multivariate Cox stepwise regression analysis were applied to 143 TCGA COAD samples as the 
training cohort to obtain six CpG sites as potential biomarkers. The prognostic model based on these six CpG sites was evaluated using 144 
TCGA COAD samples as the validation cohort. 
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start site to 200 nucleotides upstream of the 

transcription start site), the 5′ untranslated region (UTR) 

and the 1st Exon (Figure 2C). However, Hypo-DMPs 

were mostly enriched in the Body and the 3′UTR, which 

occupied a large percentage of the regions, genome-

wide. The DMP distribution ratio also indicated that 

proximal promoter regions were mainly 

hypermethylated (69%; hyper/hypo = 6245/2738), while 

the proportions of Hyper- and Hypo-DMPs in the Body 

and 3′UTR were almost equal (51%; hypo/hyper = 

4551/4307). Notably, both Hyper-DMPs and Hypo-

DMPs occupied a large proportion of the whole 

genome, about 3.42%.  

 

Next, we calculated Pearson correlation coefficients to 

determine the correlation between the DNA methylation 

of the DMPs and the expression of their corresponding 

genes (Figure 2D). Among the 17112 DMPs for which 

both the DNA methylation levels and the corresponding 

mRNA expression profiles were available, the 

methylation levels of 6565 Hyper-DMPs and 4112 

Hypo-DMPs were significantly associated with the 

mRNA levels of the corresponding genes (|r| > 0.1, false 

discovery rate [FDR] < 0.05). When we analyzed the 

distance between these DMPs and promoter regions, we 

found that DMPs in or near promoter regions (i.e., in 

the 1st Exon, 5′ UTR, TSS200 or TSS1500) were 

negatively associated with mRNA expression, whereas 

those outside promoter regions (i.e., in the Body or 3′ 

UTR) were positively associated with gene expression. 

Moreover, the DMPs had a higher distribution 

frequency on chromosomes 7 and 1 than on the other 

autosomes (Figure 2E). Since the DMPs that 

significantly altered the expression of their 

corresponding genes were not limited to promoter 

regions, we screened the whole genome for potential 

biomarkers of COAD and constructed a diagnostic 

prediction model based on the genome-wide Hyper- and 

Hypo-DMPs. 

 

Identification of COAD-specific methylation 

biomarkers and construction of a COAD-specific 

diagnostic model  
 

Next, in order to construct a diagnostic model to 

distinguish COAD tumor tissues from normal intestinal 

epithelial tissues and the tumor tissues of nine other 

cancer types (BLCA, BRCA, CESC, glioblastoma 

[GBM], head and neck cancer [HNSC], liver cancer 

[LIHC], lung adenocarcinoma [LUAD], lung squamous 

cell carcinoma [LUSC] and endometrial cancer 

[UCEC]), we performed conditional screening and 

machine learning studies based on the genome-wide 

DMPs obtained from TCGA above (13716 Hyper-

DMPs and 11403 Hypo-DMPs). For the conditional 

screening, we determined the average β values (a 

measure of CpG site methylation) of these Hyper-

/Hypo-DMPs in all the samples for the nine cancer 

types in TCGA. Then, we selected DMPs based on an 

average methylation level difference of at least 0.2 units 

in COAD. After screening under the above conditions, 

we obtained 17 Hyper-DMPs and 8 Hypo-DMPs as 

candidate biomarkers. Further analysis revealed that 

these 17 Hyper-DMPs and 8 Hypo-DMPs were among 

the 6565 Hyper-DMPs and 4112 Hypo-DMPs that were 

significantly associated with the expression of their 

corresponding genes (log2 |fold change| > 1, FDR < 

0.05). 

 

For machine learning, two-thirds of the total tumor and 

normal samples from the COAD cohort of TCGA (200 

COAD and 25 normal samples) were randomly set as 

the training cohort, while the remaining one-third of the 

total samples (99 COAD and 13 normal samples) were 

used as the validation cohort. The β values of the 17 

Hyper-DMPs and 8 Hypo-DMPs in the training cohort 

were input into WEKA, and the selected attributes 

function of WEKA was used to filter these candidate 

biomarkers. As potential diagnostic biomarkers, nine 

Hyper-DMPs (cg26036626, cg03882585, cg08130988, 

cg16733654, cg12587766, cg08808128, cg13004587, 

cg05038216 and cg09746736) and one Hypo-DMP 

(cg26718707) were selected to construct a COAD-

specific diagnostic model (Table 1). Finally, based on 

the nine Hyper-DMPs and one Hypo-DMP, we 

constructed a COAD-specific diagnostic model with 

BayesNet [23]. 

 

The average β values of the nine Hyper-DMPs and one 

Hypo-DMP selected for our diagnostic model in all the 

COAD tissues, normal tissues and nine types of 

cancerous tissues from TCGA are visualized in Figure 

3A. We performed an unsupervised cluster analysis to 

evaluate these β values (Figure 3B), and found that they 

were clearly divided into four clusters. The COAD 

tumor samples were significantly differentiated from all 

the normal samples and the tumor samples from the 

nine other cancer types based on the nine Hyper-DMPs 

and one Hypo-DMP.  

 

Subsequently, we used the COAD-specific diagnostic 

model to train the training cohort (including 200 COAD 

and 25 normal samples from TCGA) in WEKA. Using 

BayesNet, we determined that the COAD-specific 

diagnostic model had a sensitivity of 100%, specificity 

of 99.5% and accuracy of 99.6% in the training cohort 

(Figure 3C). In the validation cohort (99 COAD and 13 

normal samples from TCGA), the diagnostic model had 

a sensitivity of 100%, specificity of 96% and accuracy 

of 96.4% (Figure 3D). Therefore, our COAD-specific 

diagnostic model was confirmed to perfectly distinguish 

between COAD and normal samples in the training 
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cohort (AUC = 1) (Figure 3E) and the validation cohort 

(AUC = 1) from TCGA (Figure 3F).  

 

To demonstrate the versatility of our diagnostic model, 

we conducted a population heterogeneity analysis using 

the validation cohort from TCGA, which included 

samples from 4 Asian, 25 black or African American 

and 73 white patients. The sensitivity, specificity and 

accuracy are shown in Table 2. Our diagnostic model 

exhibited no significant population heterogeneity, 

suggesting that it can be applied to people of different 

races. In addition, we used the five independent GEO 

COAD cohorts mentioned above (GSE42752, 

GSE53051, GSE77718, GSE48684 and GSE77954) as 

validation cohorts. In receiver operating characteristic 

(ROC) analyses, the AUCs of these five cohorts were 

0.991, 0.964, 0.979, 0.951 and 0.966, respectively 

(Figure 3G). These results further illustrated the 

reproducibility and stability of our COAD-specific 

diagnostic model.  

 

We also analyzed the correlation between the DMP 

methylation level and the expression of the 

corresponding genes for the nine Hyper-DMPs and the 

 

 
 

Figure 2. Distribution of DMPs. (A) Unsupervised hierarchical clustering and heat map display of the methylation levels of the Hyper- and 
Hypo-DMPs in 25 paired COAD and normal samples from TCGA. (B) The distribution of Hyper-DMPs and Hypo-DMPs in different genomic 
region types. Island, a CpG site located within a CpG island; Shore, a CpG site located < 2 kilobases from a CpG island; Shelf, a CpG site located 
> 2 kilobases from a CpG island; Open sea, a CpG site not in an island or annotated gene. (C) The numbers and ratios of Hyper-DMPs and 
Hypo-DMPs according to their distance from the promoter. TSS1500, 200-1500 base pairs upstream of the transcription start site; TSS200, 
200 base pairs upstream of the transcription start site; 5′UTR, 5′ untranslated region; 1st Exon, exon 1; 3′UTR, 3′ untranslated region. (D) The 
positional distribution (in terms of promoter distance) of the DMPs in which the methylation level correlated positively or negatively with the 
expression of the corresponding gene (FDR < 0.05). (E) Chromosome distribution of Hyper-DMPs and Hypo-DMPs. Chr: chromosome.  
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Table 1. Characteristics of 9 Hyper-DMPs and 1 Hypo-DMP in the COAD-specific diagnostic model. 

Biomarkers Ref Gene Chromosome Start End CGI Coordinate Feature CGI FDR Type 

cg26036626 FBLIM1 chr1 15759102 15759103 15758576-15759367 5'UTR Island 1.79e-15 Hyper-DMP 

cg03882585 SYNE1 chr6 152636775 152636776 
152636675-

152637337 
5'UTR Island 1.29e-05 Hyper-DMP 

cg08130988 EFEMP1 chr2 55923790 55923791 55923205-55923813 1st Exon Island 6.49e-05 Hyper-DMP 

cg16733654 PTPRS chr19 5293072 5293073 5292760-5294200 5'UTR Island 7.65e-09 Hyper-DMP 

cg12587766 LIFR chr5 38556333 38556334 38556120-38557461 1st Exon Island 2.19e-11 Hyper-DMP 

cg08808128 CLIP4 chr2 29115566 29115567 29115117-29116043 1st Exon Island 4.48e-09 Hyper-DMP 

cg13004587 SCGB3A1 chr5 180590349 180590350 
180590099-

180592062 
Body Island 0.0448 Hyper-DMP 

cg05038216 CLIP4 chr2 29116225 29116226 29115117-29116043 5'UTR Shore 1.82e-09 Hyper-DMP 

cg09746736 SLC6A2 chr16 55656218 55656219 55655686-55656983 TSS 1500 Island 2.38e-08 Hyper-DMP 

cg26718707 DIP2C chr10 472430 472431 472252-472531 Body Island 0.0107 Hypo-DMP 

CGI: CpG island 
 

one Hypo-DMP in our diagnostic model. The Hypo-

DMP (cg26718707) corresponded to DIP2C, while the 

nine Hyper-DMPs corresponded to eight genes: 

FBLIM1 (cg26036626), SYNE1 (cg03882585), 

EFEMP1 (cg08130988), PTPRS (cg16733654), LIFR 

(cg12587766), CLIP4 (cg08808128 and cg05038216), 

SCGB3A1 (cg13004587) and SLC6A2 (cg09746736). 

The results of the correlation analysis are shown in 

Figure 3H and Supplementary Table 1. The expression 

of DIP2C correlated positively with the methylation 

level of the Hypo-DMP (r > 0.1, FDR < 0.05), and the 

expression of the other eight genes correlated negatively 

with the methylation levels of the corresponding nine 

Hyper-DMPs (r < -0.1, FDR < 0.05). 

 

Next, using the five independent GEO cohorts, we 

compared our COAD-specific diagnostic model with 

three previously reported methylation-based diagnostic 

models: a Bayesian model including four CpG sites 

from Azuara et al. [24], a logistic regression model 

including five CpG sites from Beggs et al. [25] and a 

logistic regression model including 12 CpG sites from 

Naumov et al. [26] (Figure 4A). As expected, our model 

exhibited better sensitivity, specificity and accuracy 

than the three previously reported diagnostic models in 

most cases for the five GEO COAD cohorts. We also 

compared our diagnostic model with these three models 

in terms of its ability to distinguish COAD from normal 

tissues and nine other types of cancerous tissues. For 

this purpose, we divided all the samples from the five 

GEO COAD cohorts and nine various TCGA cancerous 

cohorts into a tumor group and a normal group, and we 

calculated the proportion of samples that were predicted 

to be COAD among all the samples (Figure 4B, Table 

3). In the cohorts from the nine different types of 

cancers, the ideal proportion would have been 0. When 

we tested our COAD-specific diagnostic model, almost 

none of the normal intestinal epithelial samples or the 

tumor tissues from the nine other cancer types were 

predicted as COAD (0-5%, median: 0%). However, 

when we tested the three previously reported diagnostic 

models, 0-97.7% of the normal tissues (median: 0%, 

33.3% and 0%, respectively) and 20.2-98.7% of the 

tumor tissues from the nine other cancer types (median: 

45.4%, 93.5% and 75.2%, respectively) were predicted 

as COAD. Therefore, our COAD-specific diagnostic 

model based on nine Hyper-DMPs and one Hypo-DMP 

not only distinguished COAD from normal samples, but 

also compensated for the deficiencies of previous 

COAD diagnostic models that could not differentiate 

COAD from nine other cancer types. 

 

Then, we used the STRING database to construct a 

protein-protein interaction network for the nine genes 

corresponding to the nine Hyper-DMPs and the one 

Hypo-DMP (Figure 4C). We also performed Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway enrichment analyses on 

these genes (Figure 4D and 4E). We found that the nine 

genes were involved in important signaling pathways of 

tumorigenesis and development, such as Salmonella 

infection, Janus kinase (JAK)/signal transducer and 

activator of transcription (STAT) signaling, focal 

adhesion, proteoglycans in cancer, cytokine-cytokine 

receptor interactions, etc. All the results of the KEGG 

pathway analysis and the top 10 results of the GO 

analysis are shown in Supplementary Tables 2 and 3. 

 

The above results demonstrated that our COAD-specific 

diagnostic model could accurately and precisely 

distinguish COAD tissues from normal intestinal 

epithelial samples and tumor samples from nine cancer 

types, and that the nine Hyper-DMPs and one Hypo-

DMP included in this model may be potential 

biomarkers for the early prediction and specific 

diagnosis of COAD. 
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Figure 3. Evaluation of the COAD-specific diagnostic biomarkers and diagnostic model. (A) Heat maps of the average methylation 
levels of the nine Hyper-DMPs and one Hypo-DMP in all the samples from 10 cancer types. The legend on the right marks the source and CpG 
type. The picture on the left represents the tumor samples in TCGA, while the picture on the right represents the normal samples in TCGA. (B) 
Unsupervised hierarchical clustering of the methylation levels of the nine Hyper-DMPs and one Hypo-DMP in all the samples from 10 cancer 
types. The legend on the right marks the source and CpG type. (C–F) Confusion tables (C, E) and corresponding ROC curves (D, F) for the 
binary results of the COAD-specific diagnostic model in the training cohort (N = 225) and the validation cohort (N = 112) from TCGA. (G) ROC 
curves of the COAD-specific diagnostic model in five GEO COAD validation cohorts (GSE42752, GSE53051, GSE77718, GSE48684 and 
GSE77954, which included 22 COAD and 41 normal samples, 35 COAD and 18 normal samples, 96 paired COAD and normal samples, 64 COAD 
and 41 normal samples, and 20 COAD and 11 normal samples, respectively). (H) The correlation between the DMP methylation level and the 
expression of the corresponding gene for each diagnostic biomarker, determined through Pearson correlation tests (r > 0.2, FDR < 0.05). 
Gene expression is presented as the RSEM normalized count converted by log2 (x + 1).  
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Table 2. The stratification analysis of the sensitivity, specificity, and accuracy from  
different races including 4 Asian, 25 Black or African American, and 73 White upon  
TCGA validation cohort. 

Race Asian Black or African American White 

Sensitivity 0 1 1 

Specificity 1 0.913 0.97 

Accuracy 1 0.92 0.973 

 

Identification of prognostic biomarkers of COAD and 

construction of a combined COAD prognostic model 
 

A total of 287 COAD tissue samples in the cohort from 

TCGA had both methylated β values and corresponding 

prognostic information. The distribution and 

corresponding demographic characteristics of these 

patients are summarized in Table 4. The patients were 

divided into a training cohort (N = 143) and a validation 

cohort (N = 144). The training cohort was used to obtain 

prognostic biomarkers and construct a COAD prognostic 

model, while the validation cohort was used to test the 

COAD prognostic model. Univariate Cox hazard 

regression analysis of the training cohort revealed 64 CpG 

sites that correlated significantly with the OS of COAD 

patients (FDR < 0.05); thus, these CpG sites were 

identified as candidate prognostic biomarkers. 

Multivariate Cox stepwise regression analysis was applied 

to these 64 CpG sites, and six sites (cg00177496, 

cg01963906, cg05165940, cg12921795, cg19414598 and 

cg25783173) were included in our final hazard ratio 

model, which was constructed as a combined COAD 

prognostic model for OS prediction (Table 5). The six 

CpG sites from our COAD prognostic model were found 

to correspond to BDH1 (cg00177496), SYTL1 (cg019 

63906), SATB2 (cg05165940), WDR20 (cg12921795), 

DMC1 (cg19414598) and ZNF35 (cg25783173) (Figure 

5A and Supplementary Table 4). The expression of 

SYTL1 correlated positively with the methylation level of 

cg01963906 (r > 0.1, FDR < 0.05), and the expression of 

the other five genes correlated negatively with the 

methylation levels of the remaining CpG sites (r < -0.1, 

FDR < 0.05). 

 

The risk score formula for our COAD prognostic model 

was based on the regression coefficients and methylation 

levels of the six CpG sites, as follows: risk score = (38.52 

× cg00177496 β value) – (4.13 × cg01963906 β value) + 

(2.574 × cg05165940 β value) – (79.32 × cg12921795 β 

value) + (2.31 × cg19414598 β value) + (6.061 × 

cg25783173 β value). In the risk score formula, a positive 

coefficient for a CpG site (cg00177496, cg05165940, 

cg19414598 and cg25783173) indicates that 

hypermethylation of that site was associated with shorter 

OS in COAD patients. In contrast, a negative coefficient 

for a CpG site (cg01963906 and cg12921795) indicates 

that greater methylation of that site was associated with 

longer OS. Our COAD prognostic model revealed that 

there were significant differences in DNA methylation 

levels between patients with long-term (> 5 years) and 

short-term (< 5 years) survival (FDR < 0.05) (Figure 5B). 

Consistent with the results of the multivariate Cox 

stepwise regression analysis, the CpG sites with positive 

coefficients (cg00177496, cg05165940, cg19414598 and 

cg25783173) exhibited lower methylation levels in 

patients who survived long-term, while the CpG sites with 

negative coefficients (cg01963906 and cg12921795) 

exhibited higher methylation levels in patients who 

survived long-term. Thus, our combined COAD 

prognostic model based on six CpG sites successfully 

distinguished long-term from short-term surviving 

patients in the training cohort of 143 COAD samples from 

TCGA.  

 

Based on the Cox regression analyses, risk scores were 

used as continuous variables in the training and 

validation cohorts. The risk scores obtained from the 

combined COAD prognostic model correlated 

significantly with the OS of COAD patients (Training 

cohort: likelihood ratio test = 45, p < 0.0001; Wald test 

= 41.93, p < 0.0001; score [log-rank] test = 50.34, p < 

0.0001. Validation cohort: likelihood ratio test = 27.63, 

p < 0.0001; Wald test = 33.48, p < 0.0001; score [log-

rank] test = 39.33, p < 0.0001). Using the median risk 

score of the training cohort as a cut-off value, we 

generated Kaplan-Meier curves and performed log-rank 

tests on the training cohort (Figure 5C) (p = 0.00011) 

and the validation cohort (Figure 5D) (p = 2e-05). 

Through these analyses, we sought to compare the OS 

of patients in the high-risk and low-risk groups and thus 

determine the predictive value of the combined COAD 

prognostic model based on six CpG sites. The risk 

scores for the training and validation cohorts are shown 

in Supplementary Tables 5 and 6. The survival rate of 

patients was significantly greater in the low-risk group 

than in the high-risk group. These results confirmed that 

our combined prognostic model based on six CpG sites 

could classify patients into high-risk and low-risk 

groups, demonstrating its clinical practicability.  

 

To further evaluate the specificity of our combined 

COAD prognostic model in predicting survival, we used 
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Figure 4. Performance comparison of diagnostic models and enrichment analysis of the corresponding genes. (A) Table 
displaying the classification performance of different methylation models for COAD and normal tissues in five independent GEO cohorts 
(GSE42752, GSE53051, GSE77718, GSE48684 and GSE77954). In addition, Azuara et al. [24] (Article 1) reported four CpG sites as diagnostic 
biomarkers for COAD, and the methylation values for each of them were available in the COAD cohort from TCGA; Beggs et al. [25] (Article 2) 
reported six CpG sites as diagnostic biomarkers for COAD, and the methylation values for five of them were available in the COAD cohort 
from TCGA; and Naumov et al. [26] (Article 3) reported 14 CpG sites as diagnostic biomarkers for COAD, and the methylation values for 12 of 
them were available in the COAD cohort from TCGA. (B) Heat map comparing our diagnostic model with the previous methylation models. 
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Rows are labeled with the different sources of methylation data. The legend indicates that the range is 0-1. The color represents the 
percentage of the total samples predicted to be COAD. In the cohorts for the nine different cancer types, the ideal results should be 0. (C) 
Predicted protein interaction network of the genes corresponding to the COAD-specific diagnostic biomarkers. Version 11.0 of the STRING 
protein database was used. The different line colors represent different kinds of correlations between the proteins corresponding to the 
model (dark blue for coexistence, black for co-expression, pink for an experiment, light blue for a database, green for text mining, and purple 
for homology). The red genes are the corresponding genes of the diagnostic biomarkers. Note that CLIP4 is the corresponding gene for both 
cg08808128 and cg05038216. (D, E) KEGG (D) and GO (E) enrichment analysis results from the STRING protein database. All seven results are 
shown for the KEGG enrichment analysis, and the top 10 results are shown for the GO enrichment analysis, with p-values arranged from large 
to small. In the KEGG enrichment graph (D), the X-axis represents the Rich factor, indicating the degree of enrichment (Rich factor = observed 
gene counts/background gene counts), and the Y-axis represents the enriched KEGG terms. The color represents the -log10 (p-value), and the 
size of the dot represents the number of genes. In the GO enrichment graph (E), the GO term indicates the GO enrichment pathway. 
 

the AUC values obtained from time-dependent ROC 

analyses as categorical variables. In both the training 

cohort and the validation cohort, the combined COAD 

prognostic model precisely predicted the survival of 

COAD patients, with AUC values of 0.826 and 0.792, 

respectively (Figure 5E and 5F). We also performed 

univariate Cox regression analyses of the six individual 

CpG sites included in the COAD prognostic model 

(Supplementary Figure 1). The calculated AUC values 

indicated that the six individual CpG sites could also 

distinguish high-risk from low-risk patients; however, 

the predictive effect of any one CpG site was not as 

good as the predictive effect of the combined prognostic 

model using all six CpG sites. These results 

demonstrated that the six CpG sites may be potential 

prognostic biomarkers of COAD, but the combined 

COAD prognostic model based on six CpG sites is 

more valuable than the individual sites for clinical 

validation and prognostic evaluation.  

 

Independence of the combined COAD prognostic 

model in OS prediction, and comparison of our 

prognostic model with other known prognostic models  
 

To evaluate the stability and independence of our 

combined COAD prognostic model based on six CpG 

sites, we stratified patients according to 

clinicopathological characteristics such as age, gender, 

race, AJCC stage, examined lymph node count and 

lymphatic invasion. Remarkably, the Kaplan-Meier 

plots displayed significant extension of OS in the low-

risk groups for all these characteristics in the 287 

COAD samples from TCGA. Nevertheless, the 

combined COAD prognostic model predicted the 

survival of COAD patients more precisely than these 

factors, with an AUC value of 0.687 (Figure 6A–6C, 

Figure 7A–7C and Supplementary Figure 2). These 

results confirmed that the combined COAD prognostic 

model based on six CpG sites provided an excellent 

reference for different populations and was an 

independent predictor of patient survival.  

 

In recent years, DNA methylation biomarkers have been 

increasingly recognized as important prognostic 

predictors in COAD. Previously identified markers of 

COAD prognosis have included hypermethylation of 

FAM134B [27], higher expression of MMP-11 [28], 

abnormal methylation and expression of DIRAS1 [29], 

upregulation of the long non-coding RNA BLACAT1 (a 

cell cycle regulator) [30] and abnormal expression of 10 

microRNAs (including hsa-mir-891a, hsa-mir-6854, 

etc.) [31]. Dai et al. [32] demonstrated that combined 

biomarkers of DNA methylation were more sensitive 

and specific than individual DNA methylation markers. 

To compare the survival prediction ability of our 

combined prognostic predictive model with those of 

previously reported biomarkers, we performed ROC 

analyses of the previous mRNA, long non-coding RNA 

and microRNA biomarkers in the validation cohort. Our 

combined COAD prognostic model based on six CpG 

sites had a much higher AUC value than the other 

prognostic biomarkers assayed by ROC analysis in the 

COAD validation cohort from TCGA (N = 144) (Figure 

8A). These results suggested that our combined COAD 

prognostic model provided more reliable and sensitive 

predictions of OS than other biomarkers in COAD 

patients.  

 

Next, we performed a gene set enrichment analysis 

(GSEA) on the high- and low-risk groups that had been 

classified according to the median risk score. The 

pathways that correlated significantly with risk are 

illustrated in Figure 8B, Supplementary Figure 3 and 

Supplementary Table 7 (enrichment score [ES] > 0.4, 

|normalized enrichment score [NES]| > 1, p-value < 

0.05 and FDR q-value < 0.25). We selected the 

intestinal immune network for IgA production (IINIP) 

for further analysis, since this pathway is known to be 

involved in COAD. The core enrichment genes of the 

IINIP pathway were obtained via GSEA 

(Supplementary Table 8). To determine whether the 

genes corresponding to the combined COAD prognostic 

biomarkers functioned in IINIP pathways, we 

conducted a one-to-one correlation analysis on the 

expression of the core enrichment genes from the IINIP 

pathway, the combined methylation level of our 

prognostic model and the expression of the genes 

corresponding to the individual CpG sites of the COAD 
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Table 3. Comparison of the performance of different methylation models in all samples of 9 kinds of cancers. 

Accuracy BLCAC BLCAN BRCAC BRCAN CESCC CESCN GBMC GBMN HNSCC HNSCN 

10 DMPs biomarker 0.022 0 0.05 0 0.05 0 0 0 0.02 0 

4 CpGs of Article 1 0.593 0.095 0.584 0.01 0.663 0 0.327 0 0.742 0.02 

5 CpGs of Article 2 0.939 0.333 0.92 0.388 0.977 0 0.928 0 0.977 0.977 

12 CpGs of Article 3 0.872 0.19 0.749 0.143 0.625 0 0.242 0 0.87 0.02 

Accuracy LIHCC LIHCN LUADC LUADN LUSCC LUSCN UCECC UCECN   

10 DMPs biomarker 0.03 0 0.01 0 0 0 0.04 0   

4 CpGs of Article 1 0.413 0 0.454 0 0.202 0 0.348 0   

5 CpGs of Article 2 0.871 0.08 0.987 1 0.935 0.93 0.843 0.043   

12 CpGs of Article 3 0.375 0 0.752 0 0.815 0 0.944 0.043   

The vertical axis shows the different sources of the methylation models. The horizontal axis shows the tumor and normal 
methylation cohorts from 9 kinds of cancer. Affix C represents the tumor samples of the methylation data sets. Affix N 
represents the normal sample of the methylation cohorts. The numbers represent the percentage of samples predicted to be 
COAD in the total samples. The cohorts in the table are from 9 kinds of cancers, and the ideal result should be 0. Azuara D et 
al. [24] (Article 1)reported 4 CpG sites as diagnostic markers for COAD, and 4 of them had methylation values in the TCGA 
COAD cohort; Beggs AD et al. [25] (Article 2)report 6 CpG sites as diagnostic markers for COAD, and 5 of them had 
methylation values in the TCGA COAD cohort; Naumov VA et al. [26] (Article 3)reported 14 CpG sites as diagnostic markers 
for COAD, and 12 of them had methylation values in the TCGA COAD cohort. 
 

Table 4. Clinicopathological characteristics of COAD patients from the TCGA database. 

Characteristics 

 

Patients 

Total 

(N = 287) 

Training cohort  

(N = 143) 

Validation cohort 

(N = 144) 

No % No % No % 

Age       

≤64 130 45.30 58 40.56 72 50 

>64 157 54.70 85 59.44 72 50 

Histological type       

Colon Adenocarcinoma 246 85.71 119 83.22 127 88.19 

Colon Mucinous Adenocarcinoma 38 13.24 22 15.38 16 11.11 

Unknown 3 1.05 2 1.40 1 0.70 

Pathologic M       

M0 195 67.94 102 71.33 93 64.58 

M1 40 13.94 21 14.69 19 13.19 

MX  49 17.07 19 13.29 30 20.83 

Unknown 3 1.05 1 0.07 2 1.39 

Pathologic N       

N0 166 57.84 73 51.05 93 64.58 

N1 73 25.44 46 32.17 27 18.75 

N2 48 16.72 24 1.40 24 16.67 

Pathologic T       

T1 7 2.44 2 1.39 5 3.47 

T2 42 14.63 17 11.89 25 17.36 

T3 199 69.34 105 73.43 94 65.28 

T4 38 13.24 19 13.29 19 13.19 

Unknown 1 0.35 0 0 1 0.70 

Gender       

Female 134 46.69 70 48.95 64 44.44 

Male 153 53.31 73 51.05 80 55.56 

Race       

American Indian or Alaska Native 1 0.35 1 0.70 0 0 

Asian 11 3.83 4 2.80 7 4.86 
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Black or African American 57 19.86 20 13.98 37 25.70 

White 201 70.04 108 75.52 93 64.58 

Unknown 17 5.92 10 7.00 7 4.86 

Tumor stage       

Stage I 43 14.98 16 11.19 27 18.75 

Stage II 110 38.33 52 36.36 58 40.28 

Stage III 84 29.27 51 14.69 33 22.92 

Stage IV 40 13.94 21 2.10 19 13.19 

Unknown 10 3.48 3 27.27 7 4.86 

Lymphatic invasion       

Yes 76 26.48 39 27.27 37 25.69 

No 175 60.98 88 61.54 87 60.42 

Unknown 36 12.54 16 11.19 20 13.89 

Primary lymph node presentation assessment       

Yes 265 92.33 134 93.70 131 90.97 

No 14 4.88 5 3.50 9 6.25 

Unknown 8 2.79 4 2.80 4 2.78 

Vital status       

Alive 218 75.96 107 74.83 111 77.08 

Dead 69 24.04 36 25.17 33 22.92 

Longest dimension       

≥2 43 14.98 27 18.88 16 11.11 

<2 175 60.98 90 62.94 85 59.03 

Unknown 69 24.04 26 18.18 43 29.86 

Sample type       

Metastatic 1 0.35 0 0 1 0.69 

Primary Tumor 285 99.30 142 99.30 143 99.31 

Recurrent Tumor 1 0.35 1 0.70 0 0 

Lymph node examined count       

≥12 226 78.75 117 81.82 109 75.70 

<12 42 14.63 19 13.28 23 15.97 

Unknown 19 6.62 7 4.90 12 8.33 

 

Table 5. Characteristics of prognostic biomarkers and their coefficients in the combined COAD prognostic model. 

Biomarkers Ref Gene Coefficients HR CI (lower) CI (upper) SE z value CGI FDR 

cg00177496 BDH1 38.52 5.3E+16 3.55E+02 8.02E+30 16.66 2.312 Island 2.541e-05 

cg01963906 SYTL1 -4.13 0.01608 1.86E-03 1.39E-01 1.102 -3.75 Island 2.996e-02 

cg05165940 SATB2 2.574 13.12 2.70E+00 6.38E+01 0.8072 3.189 Island 1.76e-16 

cg12921795 WDR20 -79.32 3.58E-35 2.16E-57 5.91E-13 26.1 -3.039 Island 7.72e-04 

cg19414598 DMC1 2.31 10.07 2.75E+00 3.68E+01 0.6616 3.491 Island 9.708e-17 

cg25783173 ZNF35 6.061 429 1.60E+01 1.15E+04 1.677 3.614 Island 4.496e-06 

HR: Hazard Ratio; CI: 95.0% confidence interval; SE: standard errors of coefficients; z value: Wald z-statistic value. 
 

prognostic biomarkers (Figure 8C and Supplementary 

Figure 4). As expected, the expression of BDH1 and 

SATB2 and the combined methylation level of our 

COAD prognostic model based on six CpG sites 

correlated significantly with the IINIP signaling 

pathway (p < 0.05). The above results indicated that 

our combined COAD prognostic model not only 

accurately predicted prognosis, but also included CpG 

sites that may directly or indirectly influence the IINIP 

pathway.  

DISCUSSION 
 

This study was based on a comprehensive Illumina 

Infinium Human Methylation 450K array dataset in 

TCGA. To screen for potential diagnostic biomarkers, we 

first used 25 paired COAD and normal samples from 

TCGA to obtain Hyper-/Hypo-DMPs. Then, using 

conditional screening and machine learning based on 

these genome-wide DMPs, we obtained nine Hyper-

DMPs and one Hypo-DMP as the final diagnostic 
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Figure 5. Characteristics of the potential prognostic biomarkers and evaluation of the combined prognostic model based on 
six CpG sites. (A) The correlations between the methylation β levels of the prognostic biomarkers and the expression of the corresponding 
genes were evaluated with Pearson correlation tests. Gene expression is presented as the RSEM normalized count converted by log2 (x + 1). 
(B) Violin plots of the methylation β values for patients with longer (> 5 years) and shorter (< 5 years) OS in the training cohort, with the 
median in the centerline. A Wilcoxon test was used to determine the difference between the two groups. The corresponding CpG sites, cor-
values and p-values are shown at the top of the plot. (C, D) Kaplan-Meier analysis was performed on the OS of high-risk and low-risk patients 
using our prognostic model in the training (N = 143) (C) and validation (N = 144) (D) cohorts from TCGA. The difference in OS between the 
two groups was determined with a log-rank test. Higher risk scores were associated with significantly poorer OS. Patients were divided into 
low-risk and high-risk groups using the median risk score as the cut-off. (E, F) ROC curves showing the sensitivity and specificity of the 
prognostic model in predicting patients’ OS in the training (N = 143) (E) and validation (N = 144) (F) cohorts from TCGA. 
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biomarkers for inclusion in our COAD-specific diagnostic 

model. Our model could accurately and precisely 

distinguish COAD from normal tissues and nine types of 

cancerous tissues. Next, to screen for potential prognostic 

biomarkers, we performed a univariate Cox hazard 

regression analysis and a multivariate Cox stepwise 

regression analysis based on genome-wide CpG sites. We 

identified six CpG sites as potential prognostic biomarkers 

and used them to construct a combined COAD prognostic 

model. This model could predict the prognosis of COAD 

patients independently of important clinicopathological 

characteristics such as age, gender, race, AJCC stage, 

examined lymph node count and lymphatic invasion. 

 

Combined DNA methylation models for the diagnosis 

of COAD have been constructed previously [24–26], 

and we compared our model with these models. A 

common problem with most of the previous COAD 

methylation diagnostic models was that they were only 

screened and constructed using COAD datasets. 

Although our diagnostic model was based on data from 

multiple cancer types, we could not identify DMPs that 

differentiated COAD from rectal cancer by this 

modeling method. Colon and rectal tumors were 

previously considered to differ in their epidemiology 

and treatment requirements [33]; however, newly 

published data from TCGA project [4] suggest that the 

overall patterns of methylation, mRNA and microRNA 

changes in colon and rectal cancers are 

indistinguishable. Thus, in future studies, we can try 

other modeling methods to distinguish COAD from 

rectal cancer and other cancers of the intestinal system. 

 

 
 

Figure 6. Kaplan-Meier and ROC analysis results based on age, gender and race. (A) Grouping of COAD patients according to their 
age at first diagnosis: ≤ 64 years (N = 130, 45.30%), > 64 years (N = 157, 54.70%). (B) Grouping of COAD patients according to gender: male (N 
= 153, 53.31%), female (N = 134, 46.69%). (C) Grouping of COAD patients according to race: black or African American (N = 57, 21.19%), white 
(N = 201, 74.72%). 
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We conducted in-depth KEGG and GO pathway 

enrichment analyses of the genes corresponding to the 

nine Hyper-DMPs and one Hypo-DMP, and we 

analyzed their protein-protein interactions in the 

STRING database. The leukemia inhibitory factor 

signaling pathway and the ciliary neurotrophic factor-

mediated signaling pathway, both of which can activate 

the JAK2/STAT3 signaling pathway [34, 35], were 

found to be enriched in our GO analysis. 

Coincidentally, the JAK/STAT pathway was found to 

be enriched in our KEGG pathway analysis. JAK/STAT 

signaling, especially the overactivation of STAT3 and 

STAT5, is known to promote tumor cell survival, 

proliferation, and invasion [36]. Therefore, it is 

significant that our COAD-specific diagnostic 

biomarkers were both directly and indirectly associated 

with the JAK/STAT pathway. 

The parameters of age, gender, race, AJCC stage, 

examined lymph node count and lymphatic invasion 

have been identified as important clinicopathological 

features of COAD prognosis. Specifically, age was 

found to be the most important prognostic factor for 

stage II COAD patients [13], women had a better 

prognosis than men [14], whites had a higher colorectal 

cancer survival rate than blacks [15], the AJCC TNM 

staging system was found to be a necessary adjuvant 

chemotherapy guide for stage II and III COAD patients 

[16], the examined lymph node count had excellent 

prognostic value for COAD patients undergoing surgery 

[17] and lymphatic invasion diagnosis was found to be 

an important indicator of lymph node metastasis in T1 

COAD [18]. Since early-stage patients are more likely 

to be cured, prognostic markers that can effectively 

predict the risk of these patients will have higher

 

 
 

Figure 7. Kaplan-Meier and ROC analysis results based on stage, examined lymph node count and lymphatic invasion. (A) 
Grouping of COAD patients according to stage: early (stage I and II [N = 153, 53.31%]) and advanced (stage III and IV [N = 124, 43.21%]). (B) 
Grouping of COAD patients according to examined lymph node count: < 12 (N = 42, 14.63%) and ≥ 12 (N = 226, 78.75%). (C) Grouping of 
COAD patients according to lymphatic invasion: lymphatic invasion (N = 76, 26.48%) and no lymphatic invasion (N = 175, 60.98%). 
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clinical value [37]. Importantly, our combined 

prognostic prediction model based on six CpG sites was 

independent of these important clinicopathological 

characteristics of COAD, and had the potential to 

accurately predict the biological behavior of COAD at 

an early stage. 

The six CpG sites included in our prognostic model 

were all CpG islands (dense clusters of CpG sites). 

Abnormal methylation of CpG islands is associated 

with the silencing of tumor suppressor genes. Two 

mechanisms have been proposed to explain the 

transcriptional inhibition caused by CpG island

 

 
 

Figure 8. ROC analysis of different prognostic biomarkers and functional enrichment analysis of the corresponding genes. (A) 
ROC curve showing the sensitivity and specificity of our prognostic model and other known models in predicting the OS of patients in the 
validation cohort from TCGA. (B) COAD samples were divided into high-risk and low-risk groups, and the enrichment of IINIP pathway gene 
expression was analyzed using GSEA. ES, concentration fraction; NES, standardized ES; p-value, normalized p-value; FDR q-value, p-value 
corrected by the FDR method. (C) Correlation of the expression of the core enrichment genes from the IINIP pathway, the combined 
methylation level of our prognostic model and the expression of the genes corresponding to the individual CpG sites of the COAD prognostic 
biomarkers. The red signature represents the expression of the genes corresponding to the six CpG sites and the six-site combined 
methylation value; the blue signature represents the expression of the core enrichment genes in the IINIP pathway. Lower triangle: grids 
showing the correlation between two signatures, where blue indicates a positive correlation and red indicates a negative correlation. Upper 
triangle: circles represent the one-to-one correlation coefficients, differentiated by the fill area and intensity of shading. Blue indicates a 
positive correlation and red indicates a negative correlation. 
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 methylation. One proposed mechanism is that CpG 

islands directly impede the binding of specific 

transcription factors to recognition sites in promoters 

[38, 39]. The other proposed mechanism is that proteins 

that recognize methylated CpG sites, namely methyl 

CpG binding proteins, stimulate the inhibitory potential 

of methylated DNA [40]. 

 

When we searched the literature for information about the 

genes corresponding to the six CpG sites in our prognostic 

model (BDH1, SYTL1, SATB2, WDR20, DMC1 and 

ZNF35), we found that ZNF35 and SATB2 have already 

been established as reliable prognostic marker genes for 

COAD. For example, ZNF35 was found to differentiate 

the prognoses of COAD patients in a validation on 

independent test sets [41], and the transcription factor 

SATB2 was identified as a highly specific marker in 

colorectal adenocarcinoma when used in conjunction with 

CK20 [42]. On the other hand, low expression of DMC1 

has been reported as a poor prognostic marker of ovarian 

cancer, together with high expression of XPC and RECQL 

[43]. These studies indirectly illustrate the reliability of 

our prognostic model. 

 

Notably, GSEA revealed that our combined COAD 

prognostic model based on six CpG sites was significantly 

associated with core enrichment genes of the IINIP 

pathway, including HLA-DQB1, interleukin (IL)-6, IL-15 

and CCR9. The IINIP pathway has been reported to alter 

the proliferation of COAD cells, the prognosis of COAD 

patients, the susceptibility of individuals to COAD, the 

effectiveness of immunotherapy for COAD, etc. [44–47]. 

These results suggested that our combined prognostic 

model could not only predict the prognosis of patients 

with COAD, but also reflect the immune pathways of 

COAD. Interestingly, IL-6 has been reported to 

participate with JAK2/STAT3 in a signaling pathway that 

promotes COAD cell proliferation [48], and the genes 

corresponding to the nine Hyper-DMPs and one Hypo-

DMP in our COAD-specific diagnostic model were 

associated with the JAK/STAT pathway. 

 
In summary, by analyzing the genome-wide 

methylation data of 299 COAD samples and 38 normal 

samples from TCGA, we found nine Hyper-DMPs and 

one Hypo-DMP that could be used as potential 

methylation biomarkers for the diagnosis of COAD. 

Our COAD-specific diagnostic model based on these 

DMPs not only differentiated COAD tissues from 

normal tissues with excellent accuracy and stability, but 

also precisely distinguished COAD from nine other 

cancer types (BLCA, BRCA, CESC, GBM, HNSC, 

LIHC, LUAD, LUSC and UCEC). Furthermore, using 

287 COAD samples with prognostic information, we 

constructed a combined COAD prognostic evaluation 

model based on six CpG sites. Our model predicted the 

prognosis of COAD independently of important 

clinicopathological characteristics such as age, gender, 

race, AJCC stage, examined lymph node count and 

lymphatic invasion. Thus, both our COAD-specific 

diagnostic model and our combined prognostic model 

have high predictive capabilities and can be applied to 

the design of adjuvant chemotherapy clinical trials for 

early COAD patients. 

 

MATERIALS AND METHODS 
 

Data source 
 

We downloaded DNA methylation, gene expression and 

COAD clinical data from TCGA using the University of 

California Santa Cruz Xena tool (http://xena.ucsc.edu). 

The DNA methylation data were generated using the 

Illumina Human Methylation 450 Bead Chip platform, 

with methylation levels ranging from 0 to 1. We 

collected the methylation levels of ten types of tumor 

tissues and normal tissues from TCGA: COAD (299 

tumors, 38 normal), BLCA (413 tumors, 21 normal), 

BRCA (790 tumors, 98 normal), CESC (309 tumors, 3 

normal), UCEC (432 tumors, 46 normal), GBM (153 

tumors, 2 normal), HNSC (530 tumors, 50 normal), 

LIHC (379 tumors, 50 normal), LUAD (460 tumors, 32 

normal) and LUSC (372 tumors, 43 normal). We 

calculated the average methylation level of multiple 

samples as the methylation level of a given CpG site. 

The level-3 gene expression data were downloaded 

from RNA-seq HiSeqV2 based on the Illumina HiSeq 

2000 RNA sequencing platform, and were obtained as 

RNA-Seq by Expectation-Maximization (RSEM) [49] 

normalized counts converted by log2 (x + 1). RSEM 

software was used to normalize counts on the Xena 

website. 

 

In addition, we downloaded five DNA methylation array 

cohorts from GEO (https://www.ncbi.nlm.nih.gov/geo/) 

as independent validation cohorts. (1) The GSE42752 

cohort [26] included 22 COAD samples and 41 normal 

samples from Russia. Quality control was performed 

using the R package GenomeStudio (v. 2011.1). Samples 

were removed if p was > 0.05 and the CpG coverage was 

< 95%. Thereafter, GenomeStudio was used to normalize 

the DNA methylation data. The methylation levels of the 

CpG sites were calculated as β values, where β = intensity 

(methylated)/intensity (methylated + unmethylated). The 

data were further normalized using a peak correction 

algorithm embedded in the IMA R package. Finally, CpG 

sites on sex chromosomes were removed, and the 

remaining CpG sites were retained for further analysis. (2) 

The GSE53051 cohort [50] included 35 COAD samples 

and 18 normal samples from the US. The R package minfi 

was used to preprocess the methylation data. To analyze 

the methylation levels of CpG sites, we averaged the 

http://xena.ucsc.edu/
https://www.ncbi.nlm.nih.gov/geo/
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values of all individuals in normal colon and colon cancer. 

We compared the data from colon cancer and normal 

control tissues using t-tests. We defined CpG sites with q 

values < 0.05 and a difference magnitude > 0.1 as 

important CpG sites. (3) The GSE77718 cohort [51] 

included 96 COAD samples and 96 normal samples from 

New Zealand. The CpG sites of each sample were 

preprocessed and rescaled to ensure that the internal 

control CpG sites had a common mean across samples. 

CpG sites located on sex chromosomes or known to cross-

react with other regions of the genome were excluded 

from further analyses. The methylation of the remaining 

CpG sites was corrected using the COMBAT algorithm to 

account for batch effects (between-array effects). (4) The 

GSE48684 cohort [52] included 64 COAD samples and 

41 normal samples from the US. CpG sites were removed 

if p was > 0.05 in the Illumina Infinium DNA methylation 

data. Thereafter, the R package minfi was used for 

normalization, including Illumina background level 

correction, color adjustment and Subset-quantile Within 

Array Normalization. CpG sites beginning with “rs” on 

the array were excluded, along with non-CpG sites 

associated with the X chromosome. The COMBAT 

algorithm was used to evaluate and correct the batch 

processing effects of all array runs. (5) The GSE77954 

cohort [53] included 20 COAD samples and 11 normal 

samples from the US. The microarray data were collected 

at Expression Analysis Inc. (Durham, NC, USA) and 

preprocessed using the R package methylamine. The array 

platform was the Human Methylation 450 Bead Chip 

(GPL13534). We normalized the data from each cohort 

using the R package limma. 

 

Difference and correlation analysis of DNA 

methylation and corresponding gene expression 

 

Paired samples are the most suitable for assessing 

differential methylation levels among individuals [54]. 

Therefore, we used 25 paired samples to obtain DMPs. 

CpG sites with > 10% missing values were excluded 

during the screening process. Missing values in the 

remaining CpG sites were replaced by the median of the 

cohort. Then, a paired t-test was used to obtain DMPs 

between COAD and normal tissues, and the FDR values 

were adjusted by the Bonferroni method. CpG sites on 

the sex chromosomes were removed. CpG sites with 

|Δβ| > 0.2 and FDR values < 0.05 were considered 

differentially methylated. The R package Pheatmap 

[55] was used for heat mapping and unsupervised 

cluster analysis. 

 

When a CpG site corresponded to multiple genes, the 

optimal corresponding gene was obtained using the R 

package Champ [56]. We used TCGA data from 25 

paired patients with both COAD and normal expression 

profiles for differential gene expression analysis. The R 

package limma was used to identify differentially 

expressed genes from the original data. Genes with a 

log2 |fold change| > 1 and FDR < 0.05 were considered 

differentially expressed. Pearson correlation coefficients 

were calculated to assess the association between DNA 

methylation and gene expression. Correlations were 

considered significant based on an |r (cor-value)| > 0.1 

and FDR < 0.05. All FDR values were adjusted by the 

Bonferroni method. 

 

Acquisition of candidate diagnostic biomarkers and 

construction of a diagnostic model 

 

The 299 COAD and 38 normal samples from TCGA 

were randomly assigned to the training and validation 

cohorts at a ratio of 2:1. Five independent GEO cohorts 

(GSE42752, GSE53051, GSE77718, GSE48684 and 

GSE77954) were also used as validation cohorts. 

Firstly, 25 paired COAD and normal samples were 

compared to obtain DMPs. Secondly, TCGA data from 

10 cancer types were used to further screen and narrow 

the range of candidate DMPs. Candidate Hyper-DMPs 

were required to have an average methylation level in 

COAD that was 0.2 units higher than the average 

methylation level in the normal samples and the nine 

other types of tumor and normal samples (BLCA, 

BRCA, CESC, GBM, HNSC, LIHC, LUAD, LUSC and 

UCEC). Candidate Hypo-DMPs were required to have 

an average methylation level in COAD that was 0.2 

units lower than the average methylation level in the 

normal samples and the nine other types of tumor and 

normal samples. Thirdly, we evaluated whether the 

candidate Hyper-/Hypo-DMPs were significantly 

associated with the expression of their corresponding 

genes (|r| > 0.1 and FDR < 0.05), and whether the 

corresponding genes were differentially expressed 

genes (log2 |fold change| > 1 and FDR < 0.05). Then, 

the selected attributes function in the data mining tool 

WEKA [57] was used to obtain the final list of potential 

diagnostic biomarkers (nine Hypo-DMPs and one 

Hypo-DMP). Lastly, for machine learning in WEKA, 

we used BayesNet to construct the COAD-specific 

diagnostic model with the nine Hyper-DMPs and one 

Hypo-DMP in the training cohort from TCGA 

(including 200 COAD and 25 normal samples).  

 

Then, the diagnostic model was verified with the 

validation cohort from TCGA (including 99 COAD and 

13 normal samples) and five independent GEO COAD 

cohorts. Firstly, we imported the methylation values of 

the nine Hyper-DMPs and one Hypo-DMP from the 

training cohort using the Filter option of the WEKA 

Preprocess panel. Then, we selected BayesNet in the 

Classifier option of the Classify panel to build our 

model. Thereafter, we imported the methylation values 

of the nine Hyper-DMPs and one Hypo-DMP from the 
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validation cohort (TCGA validation set or GSE42752 or 

GSE53051 or GSE77718 or GSE48684 or GSE77954) 

to the Supplied test set option of the Classify panel. 

Finally, selecting BayesNet in the Classifier option, we 

identified the sensitivity, specificity, and accuracy of 

our model in the evaluated cohort. 

 

Acquisition of candidate prognostic biomarkers and 

construction of a prognostic model 

 

A total of 287 COAD tissue samples in the cohort from 

TCGA had both methylated β values and corresponding 

prognostic information. These samples were randomly 

assigned to the training cohort and the test cohort at a 

ratio of 1:1. Firstly, univariate Cox proportional hazard 

regression analysis was performed in the training cohort 

from TCGA (143 COAD samples) to identify 

significant methylation markers associated with the OS 

of COAD patients (p < 0.05). Then, multivariate Cox 

stepwise regression analysis was performed on these 

CpG sites, and sites with p-values > 0.05 were removed 

from the feature cohort in each iteration. The R 

packages Survival and Mass were jointly used to 

complete the multivariate Cox stepwise regression 

analysis. 

 

The Cox proportional risk model was used to determine 

patients’ hazard ratios and corresponding 95% confidence 

intervals. The linear combination of model predictors 

weighted by their regression coefficients was used as the 

formula to predict the survival risk of patients. The high-

risk and low-risk groups were classified according to the 

median risk value. The R packages Survival and Plot were 

then used to plot Kaplan-Meier survival curves to 

visualize the cumulative survival of the patients at risk at 

some time point. A log-rank test was used to evaluate the 

difference in OS between the high- and low-risk groups. 

Finally, the area under the ROC curve was determined by 

ROC analysis using the R package SurvivalROC. The 

effectiveness of the risk score in predicting OS was also 

evaluated. All statistical calculations were performed 

using the R statistical environment (R version 3.5.4). 

 

STRING database 

 

The genes corresponding to the diagnostic model were 

analyzed using the STRING functional protein-protein 

interaction network (9.1) [58]. The same website was used 

to analyze the input GO biological processes and KEGG 

pathways. P-values < 0.05 were considered significant. 

 

GSEA 
 

After the prognostic prediction model was used to 

calculate patients’ risk scores, GSEA (JAVA version) 

[59] (http://software.broadinstitute.org/gsea/index.jsp) 

was performed for the high-risk and low-risk groups. 

GSEA includes four key statistics: the ES, NES, FDR q-

value and p-value. An ES > 0.4, |NES| > 1, p-value < 

0.05 and FDR q-value < 0.25 were used to filter the 

GSEA results. Based on these statistics, all the genes in 

the list of specific genes were scored and ranked. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. The ROC curve analysis of 6 individual CpG site of prognostic biomarkers in the TCGA validation 
cohort (N=144). 

 

 

 
 

Supplementary Figure 2. Kaplan-Meier and ROC analysis results based on different regrouping methods. Grouping COAD patients 

according to race: Asian (N=11, 4.09%).  
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Supplementary Figure 3. The results of GSEA analysis with high-risk and low-risk groups from the TCGA COAD cohort (N = 
287). 

 

 



 

www.aging-us.com 22651 AGING 

 
 

Supplementary Figure 4. Correlation between the genes corresponding to prognostic methylation biomarkers and the core 
enrichment genes of the intestinal immune network for the IGA production pathway. The circled area reflects Pearson's 
correlation coefficient. The red signature represents the expression value of the corresponding genes of 6 CpG sites and the 6-site combined 
methylation value; blue signature represents the expression of the core enrichment genes in the intestinal immune network for the IGA 
production pathway. Lower triangle: grids showing the correlation between two signatures; blue for positive correlation, red for the negative 
correlation. Upper triangle: numbers represent the one-to-one correlation coefficient, which increases uniformly as the correlation value 
moves away from 0; blue for positive correlation, red for the negative correlation. It is the digital form of the main diagram. 
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Supplementary Tables 
 

 

Supplementary Table 1. The result of correlation analysis between the methylation level of diagnostic biomarkers 
and the expression of corresponding genes (N=10). 

Probe Gene name Cor-Value FDR Type 

cg26036626 FBLIM1 -0.862 1.79e-15 Hyper-DMP 

cg03882585 SYNE1 -0.579 1.29e-05 Hyper-DMP 

cg08130988 EFEMP1 -0.539 6.49e-05 Hyper-DMP 

cg16733654 PTPRS -0.715 7.65e-09 Hyper-DMP 

cg12587766 LIFR -0.786 2.19e-11 Hyper-DMP 

cg08808128 CLIP4 -0.723 4.48e-09 Hyper-DMP 

cg13004587 SCGB3A1 -0.288 0.0448 Hyper-DMP 

cg05038216 CLIP4 -0.735 1.82e-09 Hyper-DMP 

cg09746736 SLC6A2 -0.699 2.38e-08 Hyper-DMP 

cg26718707 DIP2C 0.362 0.0107 Hypo-DMP 

 

Supplementary Table 2. The result of the KEGG pathway analysis about diagnostic biomarkers by STRING database. 

Category Term ID Count Term description p value Genes Rich Factor 

KEGG_PATHWAY hsa05132 3 Salmonella infection 0.0007 FLNA, FLNB, FLNC 0.035714286 

KEGG_PATHWAY hsa04630 3 Jak-STAT signaling pathway 0.0022 CNTF, LIF, LIFR 0.01875 

KEGG_PATHWAY hsa04510 3 Focal adhesion 0.0026 FLNA, FLNB, FLNC 0.015228426 

KEGG_PATHWAY hsa05205 3 Proteoglycans in cancer 0.0026 FLNA, FLNB, FLNC 0.015384615 

KEGG_PATHWAY hsa04060 3 Cytokine-cytokine receptor interaction 0.0037 CNTF, LIF, LIFR 0.011406844 

KEGG_PATHWAY hsa04010 3 MAPK signaling pathway 0.0042 FLNA, FLNB, FLNC 0.010238908 

KEGG_PATHWAY hsa04550 2 Signaling pathways regulating pluripotency of stem cells 0.0103 LIF, LIFR 0.014492754 

 

Supplementary Table 3. The result of gene ontology (GO) analysis about diagnostic biomarkers by STRING database. 

Category ID Term Genes p value 

BP GO:0045185 maintenance of protein location FLNA, FLNB, SUN1, SUN2, SYNE1 0.000013 

BP GO:0090292 nuclear matrix anchoring at nuclear membrane SUN1, SUN2, SYNE1 0.000013 

BP GO:0090286 cytoskeletal anchoring at nuclear membrane SUN1, SUN2, SYNE1 0.0000268 

BP GO:0032507 maintenance of protein location in cell FLNB, SUN1, SUN2, SYNE1 0.0000695 

BP GO:0021987 cerebral cortex development FLNA, PTPRS, SUN1, SUN2 0.00036 

BP GO:0021817 
nucleokinesis involved in cell motility in 

cerebral cortex radial glia guided migration 
SUN1, SUN2 0.00066 

BP GO:0034329 cell junction assembly FBLIM1, FERMT2, FLNA, FLNC 0.00066 

BP GO:0048861 leukemia inhibitory factor signaling pathway LIF, LIFR 0.0008 

BP GO:0022603 
regulation of anatomical structure 

morphogenesis 

CNTF, FBLIM1, FERMT2, FLNA, 

LIF, PTPRS, SCGB3A1 
0.001 

BP GO:0070120 
ciliary neurotrophic factor-mediated signaling 

pathway 
CNTF, LIFR 0.001 
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Supplementary Table 4. The result of correlation analysis between the methylation level of prognostic biomarkers 
and the expression of corresponding genes (N=6). 

Probe Gene name Cor-Value FDR 

cg00177496 BDH1 -0.246 2.541e-05 

cg01963906 SYTL1 0.153 2.996e-02 

cg05165940 SATB2 -0.448 1.76e-16 

cg12921795 WDR20 -0.116 7.72e-04 

cg19414598 DMC1 -0.465 9.708e-17 

cg25783173 ZNF35 -0.258 4.496e-06 

 

 

Supplementary Table 5. The OS of patients in the low-risk versus high-risk groups for the training cohort of TCGA 
COAD dataset (N = 143). 

Supplementary Table 6. The OS of patients in the low-risk versus high-risk groups for the validation cohort of TCGA 
COAD dataset (N = 144). 
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Supplementary Table 7. The result of the KEGG pathway analysis about prognostic biomarkers by GSEA analysis. 

GS<br> follow link to MSigDB SIZE ES NES 
NOM p-

val 

FDR q-

val 

FWER p-

val 

RANK AT 

MAX 
LEADING EDGE 

KEGG_ALLOGRAFT_REJECTION 35 0.67 1.78 0 0.0083 0.011 5550 
tags=66%, list=27%, 

signal=90% 

KEGG_NEUROACTIVE_LIGAND_RECEPTO

R_INTERACTION 
271 0.54 1.71 0 0.0200 0.053 5386 

tags=61%, list=26%, 

signal=81% 

KEGG_ASTHMA 28 0.66 1.70 0.0048 0.0196 0.078 6188 
tags=82%, list=30%, 

signal=117% 

KEGG_GRAFT_VERSUS_HOST_DISEASE 37 0.62 1.66 0 0.0287 0.145 4787 
tags=59%, list=23%, 

signal=77% 

KEGG_AUTOIMMUNE_THYROID_DISEASE 50 0.60 1.65 0 0.0264 0.164 5550 
tags=54%, list=27%, 

signal=74% 

KEGG_COMPLEMENT_AND_COAGULATIO

N_CASCADES 
68 0.56 1.61 0 0.0420 0.284 5143 

tags=59%, list=25%, 

signal=78% 

KEGG_ECM_RECEPTOR_INTERACTION 83 0.54 1.59 0 0.0452 0.338 6223 
tags=60%, list=30%, 

signal=86% 

KEGG_CELL_ADHESION_MOLECULES_CA

MS 
131 0.52 1.58 0 0.0462 0.384 5014 

tags=45%, list=24%, 

signal=59% 

KEGG_VIRAL_MYOCARDITIS 68 0.55 1.56 0.0055 0.0518 0.455 5673 
tags=51%, list=28%, 

signal=71% 

KEGG_CALCIUM_SIGNALING_PATHWAY 177 0.50 1.54 0 0.0639 0.577 5290 
tags=48%, list=26%, 

signal=64% 

KEGG_INTESTINAL_IMMUNE_NETWOR

K_FOR_IGA_PRODUCTION 
46 0.56 1.52 0.0090 0.0779 0.679 6188 

tags=70%, list=30%, 

signal=99% 

KEGG_TYPE_I_DIABETES_MELLITUS 41 0.55 1.47 0.0228 0.1358 0.897 5550 
tags=56%, list=27%, 

signal=77% 

KEGG_HEMATOPOIETIC_CELL_LINEAGE 84 0.50 1.45 0.0053 0.1564 0.944 6019 
tags=62%, list=29%, 

signal=87% 

KEGG_FOCAL_ADHESION 198 0.47 1.44 0.0010 0.1744 0.968 6302 
tags=43%, list=31%, 

signal=62% 

KEGG_ANTIGEN_PROCESSING_AND_PRES

ENTATION 
81 0.48 1.40 0.0322 0.2397 0.993 4958 

tags=33%, list=24%, 

signal=44% 

 

Supplementary Table 8. The core enrichment genes of the intestinal immune network for IGA production by GSEA 
analysis. 

NAME PROBE RANK IN GENE LIST RANK METRIC SCORE RUNNING ES CORE ENRICHMENT 

row_0 HLA-DRB5 758 0.123399086 0.018374009 Yes 

row_1 HLA-DQB1 1158 0.109066784 0.047841907 Yes 

row_2 IL6 1225 0.106780887 0.09254054 Yes 

row_3 HLA-DRB1 1493 0.099003181 0.12393619 Yes 

row_4 CCR9 1650 0.094628379 0.1587874 Yes 

row_5 HLA-DOB 1681 0.093834162 0.19943333 Yes 

row_6 CD40LG 1723 0.092663467 0.23901686 Yes 

row_7 CD40 2092 0.084532633 0.2589878 Yes 

row_8 HLA-DMA 2802 0.070332468 0.25593892 Yes 

row_9 HLA-DQA1 2849 0.06942334 0.28484878 Yes 

row_10 IL10 2862 0.069310784 0.31536794 Yes 

row_11 IL15 3011 0.06663157 0.33804542 Yes 

row_12 TNFSF13B 3177 0.06373629 0.35859364 Yes 

row_13 HLA-DMB 3213 0.063404351 0.38533932 Yes 

row_14 CXCL12 3547 0.05772195 0.39498693 Yes 

row_15 CCR10 3651 0.05583854 0.41501758 Yes 

row_16 CXCR4 3708 0.054980859 0.4369578 Yes 

row_17 HLA-DRA 4037 0.049792189 0.44329083 Yes 
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row_18 HLA-DPA1 4090 0.049007826 0.4627458 Yes 

row_19 HLA-DPB1 4236 0.046960581 0.47674185 Yes 

row_20 MADCAM1 4634 0.041817173 0.47612742 Yes 

row_21 CD28 4787 0.039844017 0.486588 Yes 

row_22 TNFRSF13B 4805 0.039523255 0.50349516 Yes 

row_23 TNFRSF13C 4824 0.039233908 0.5202236 Yes 

row_24 IL5 5096 0.035951488 0.523128 Yes 

row_25 CD86 5550 0.031060619 0.51495236 Yes 

row_26 ICOS 5788 0.028889718 0.51634735 Yes 

row_27 IL15RA 5898 0.02780547 0.52350456 Yes 

row_28 ITGA4 6019 0.026598617 0.52958316 Yes 

row_29 ITGB7 6124 0.025798159 0.5360836 Yes 

row_30 TGFB1 6148 0.025601827 0.54645026 Yes 

row_31 HLA-DOA 6188 0.025266264 0.5558852 Yes 

 


