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The death fold domain-containing protein PIDD1 has recently attracted renewed attention
as a regulator of the orphan cell death-related protease, Caspase-2. Caspase-2 can acti-
vate p53 to promote cell cycle arrest in response to centrosome aberrations, and its acti-
vation requires formation of the PIDDosome multi-protein complex containing multimers
of PIDD1 and the adapter RAIDD/CRADD at its core. However, PIDD1 appears to be able
to engage with multiple client proteins to promote an even broader range of biological
responses, such as NF-κB activation, translesion DNA synthesis or cell death. PIDD1
shows features of inteins, a class of self-cleaving proteins, to create different polypep-
tides from a common precursor protein that allow it to serve these diverse functions. This
review summarizes structural information and molecular features as well as recent experi-
mental advances that highlight the potential pathophysiological roles of this unique death
fold protein to highlight its drug-target potential.

Death fold-containing proteins in cell death and
inflammation
Cell death is an essential part of life in multi-cellular organisms and is critical for development, tissue
homeostasis and host defence. Caspases are a class of cysteine-dependent and aspartate-specific endo-
peptidases that constitute major regulators of cell death and inflammation [1,2]. The activation of cas-
pases can be induced by their dimerization in large signaling complexes such as the apoptosome
(Caspase-9), the PIDDosome (Caspase-2) or different types of inflammasomes (CASP1/4/5) [3,4].
Once fully active, these apical caspases are primed to cleave key-substrates that also include but are
not limited to distal effector proteins of the same family, such as Caspase-3 or Caspase-7 [5]. The
assembly of these platforms is marked by homotypic interactions between conserved structural motifs
containing so-called death folds (DF). DFs are six alpha-helical bundle-containing globular domains
that form the structural core of death domains (DD), death effector domains (DED), caspase activa-
tion and recruitment domains (CARD), and pyrin domains (PYD) [3].
Structural and genomic analysis suggests that many of the networks involved in the innate immune

system have evolved from early cell death inducers that contained such DFs [3,6]. During
host-pathogen interaction, a plethora of pathways can trigger either cell death, cytokine release or the
activation of inflammatory target gene expression [3]. Examples of those are pathogen-associated
molecular patterns (PAMPs) converging on inflammasome-driven Caspase-1 activation, which pro-
motes local inflammation through activation of the interleukins IL-1β and IL-18, as well as
Gasdermin D (GSDMD)-mediated pore-formation and pyroptotic cell death [7,8]. Cytochrome c
release into the cytoplasm is needed to activate Caspase-9 in the apoptosome, which is still mainly
considered anti-inflammatory [9]. Another prominent example that underlines the close relationship
between inflammatory signaling and cell death is the signaling cascade downstream of tumor necrosis
factor receptor 1 (TNFR1) [10]. Ligand-binding first promotes the formation of the membrane-bound
complex I to activate NF-κB signaling through TRADD, TRAF2 and RIPK1. Sustained signaling leads
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to endocytosis of the multimeric receptor complex and formation of the cytoplasmic complex II which recruits
Caspase-8 through FADD to induce apoptosis. Simultaneously, complex II suppresses the inflammatory cell
death modality known as necroptosis [3,10]. Finally, the death domain-containing protein PIDD1 [11,12], was
long believed to either induce apoptosis by activation of Caspase-2 or cell survival via NEMO-dependent acti-
vation of NF-κB. Yet, selective triggers of PIDDosome activation remained elusive until recently [13].

The p53-induced death domain protein 1 (PIDD1)
Two groups described PIDD1 (aka, Leucin-Rich Repeat and Death Domain-Containing Protein, LRDD) as a
pro-apoptotic protein in the year 2000 [11,12]. Lin et al. [12] reported that PIDD1 is involved in p53-mediated
growth suppression in response to ionizing radiation. Similarly, Telliez et al. [11] identified PIDD1 in a bio-
informatics screen for DD interactors of RIPK1. Its pro-apoptotic function in response to disturbances of cellu-
lar fitness was assigned to the death domain found at its C-terminal end [11]. Early studies suggested that
upon genotoxic stress, PIDD1 kick-starts pro-inflammatory signaling via activation of the NF-κB pathway,
before initiating mitochondrial cell death by activating Caspase-2 [14,15]. However, the fact that PIDD1 knock-
out mice failed to show a clear phenotype in response to DNA damage suggested that the pathophysiological
context in which PIDD1 becomes relevant was not fully understood [16–18]. Indeed, recent evidence defines
PIDD1 as a sensor of centrosome number and regulator of cellular ploidy [19–21].

Transcriptional control of PIDD1 expression
The human PIDD1 gene is located on chromosome 11p15.5. There are five potential transcript variants of
which three have been confirmed to be expressed experimentally [22]. The PIDD1 gene promoter contains a
p53 consensus sequence. In fact, PIDD1 expression is directly regulated by p53 and is strongly induced in
response to γ-irradiation [12]. Furthermore, the E2F transcription factor family controls PIDD1 expression in
mouse hepatocytes, and E2F1 overexpression induces PIDD1 mRNA levels in HeLa cells [23]. In neonatal
mouse hepatocytes, the onset of weaning coincides with reduced E2F1/2 activity and increased expression of
atypical and repressive E2F7/8, which promote hepatocyte polyploidization by interfering with cytokinesis
[24,25]. The switch in transcription factor activity results in decreased PIDD1 and CASP2 expression [23].
Whether this regulatory mechanism is also linked to cell cycle progression, during which E2F levels oscillate
significantly or if this regulation is specific to hepatocytes is not yet known. Generally, PIDD1 seems to be
expressed weakly in most adult tissues in the mouse, with the highest expression levels in the kidneys, lung and
spleen [12]. What controls base line expression of PIDD1 is currently unknown but protein is also detectable in
the absence of p53 [22]. Interestingly, more recent GTEx datasets suggest that PIDD1, together with CASP2, is
most strongly expressed in the brain, skin, small intestine, thyroid and testis, in addition to the aforementioned
tissues (Figure 1A). Expression of RAIDD, the adapter protein linking PIDD1 and Caspase-2 via its DD and
CARD, respectively, appears to be regulated differently, as its expression levels do not correlate well with the
two other genes across tissues [23] (Figure 1B). So far, the PIDD1- and Caspase-2-independent functions of
RAIDD have been rarely reported in the literature. Although initially suggested to be involved in TNF signaling
[26], a critical role in this inflammatory pathway was not firmly established. However, others have suggested
inhibitory roles in NF-kB signaling downstream of antigen receptors in T cells by interference with the
CARMA1 signalosome [27].

PIDD1 structure, protein domain organization and auto-processing
Structurally, PIDD1 is defined by a C-terminal DD that exhibits a typical six alpha-helix bundle comparable to
that found in other DD proteins [3,28]. In the years following its discovery, several additional structural features
of PIDD1 were defined. On its N-terminus, the protein possesses seven leucine-rich repeats (LRRs). LRRs are
often associated with pattern recognition of PAMPs or DAMPs, however, no ligand for PIDD1 has been identi-
fied to date. Following the LRRs, PIDD1 contains two ZU-5 domains and a poorly characterized UPA domain
(domain found in UNC5, PIDD1 and ANKYRIN) [11,29].
To become activated, the full-length precursor of PIDD1, FL-PIDD1, is post-translationally processed at two

serine residues, generating an N-terminal fragment (48 kDa PIDD1-N) and two C-terminal fragments (51 kDa
PIDD1-C and the 37 kDa PIDD1-CC) [11,30] (Figure 2A). This process depends on a tripeptide motif,
His-Phe-Ser, and occurs in an autocatalytic manner, similar to what has been reported for the nuclear pore
protein, NUP98 [30,31]. The respective serine — where cleavage occurs — initiates a nucleophilic attack on the
preceding scissile amide bond. This process is initiated by the proximity of the side chains in His and Ser.
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Subsequently, the hydroxyl group induces a reversible N→O acyl shift, forming an intermediate with an ester,
replacing the Phe-Ser peptide bond [32]. The ester intermediate is then attacked by a water molecule, and
hydrolyzed (Figure 2B). Such autocatalytic processing has also been found in several other proteins with
diverse functions such as inteins, Hedgehog, EMR2, N-terminal nucleophile family enzymes (NTNs) or, more
recently, two proteins of the NLR-family, NLRP1 and CARD8 [30,33]. In all of these, the side chains of a Ser,
Cys or Thr residue act as the nucleophile to initiate self-processing. Interestingly, while the histidine in position
-2 in respect to the cleavage site is essential to initiate the second nucleophilic attack in PIDD1 and NUP98, it
is exchanged for another serine in NLRP1 and CARD8 without impacting auto-processing [34]. Studies on
NUP98 have shown that the conserved tripeptide motif lies within a hydrophobic pocket which is created by
the amino acids upstream of the sequence motif. Thus, a longer N-terminal stretch is necessary to allow for
cleavage, which may also apply for PIDD1 [35]. Notably, the N-terminus of PIDD1 is required for proper pro-
cessing, as a Δ1–379 deletion mutant is unable to do so efficiently [30].

Lessons from other death fold protein-containing complexes
Structurally, the PIDD1 C-terminus is closely related to two proteins of the NOD-like receptors (NLR), NLRP1
and CARD8, which both contain a C-terminal FIIND (function to find) domain that resembles the ZU-5 —

Figure 1. Expression analysis of PIDDosome components, PIDD1, RAIDD, CASP2.

(A) Tissue-specific expression of H. sapiens PIDD1, RAIDD and CASP2 obtained from the Genotype-Tissue Expression (GTEx

v8) project (https://www.gtexportal.org/). mRNA expression profiles are shown as log-transformed transcript per million (log

(TPM)). (B) Correlation of PIDD1, RAIDD, and CASP2 gene expression (logTPM) in human tissues based on data from GTEx v8.

Pearson’s correlation coefficient shown as r-value.
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UPA motif in PIDD1 [36,37]. NLRP1-mediated Caspase-1 activation depends on homotypic CARD — CARD
interaction between the NLRP1 C-terminus and the adapter protein ASC which recruits Caspase-1 into the
assembling inflammasome [8,33]. Interestingly, NLRP1, similar to PIDD1, is constitutively auto-processed in
its FIIND domain to release the biologically active C-terminus [37], raising the question how sustained caspase
activation is prevented. It seems that the N- and the C-terminal fragments of NLRP1 remain associated after
cleavage, thereby sequestering the CARD domain in an inhibitory complex that prevents the initiation of
inflammasome assembly [38,39]. Elegant studies have established that triggers of the NLRP1-inflammasome,
including the B. subtilis toxin Anthrax Lethal Factor and the DPP8/9 inhibitor Val-boro-pro, act by the disrup-
tion of this inhibitory complex and subsequent release of the active NLRP1 C-terminus [40,41].
In addition, the domain organization of the PIDD1 C-terminus is closely related to the UNC5 family of

netrin-receptors and to ankyrins such as ANK2. UNC5 proteins are a family of transmembrane receptors
which can bind netrin- and netrin-related proteins. Their intracellular domain is composed of a ZU-5 — UPA
— DD (ZUD) module, similar to the one found on the PIDD1 C-terminus. UNC5 receptors are widely
expressed during neural development where they are involved in axonal guidance and cell migration [42] and
function as dependence receptors with additional roles in apoptosis and tumorigenesis [43]. Interestingly,
Wang et al. [29] established that within this ZUD module, the UPA and DD fold back onto the ZU-5 domain,
thereby sequestering the DD in an inhibitory state and preventing the induction of apoptosis. ANK2, which
contains a similar ZU-5 — ZU-5 — UPA — DD (ZZUD) structure, forms the same supra-module that seques-
ters its DD [44]. In ANK2, the UPA — DD interact with the first of the two ZU-5 domains, which corresponds
to the ZU-5 domain present in PIDD1-N.
The high similarity of the PIDD1 C-terminus suggests, that such a mechanism might be relevant for

PIDDosome activation, especially, since a dominant negative effect of the LRR in PIDD1-N on NF-κB activa-
tion has been reported [30]. This is further substantiated by co-immunoprecipitation experiments showing a
direct interaction between PIDD1-N and PIDD1-C [20,30], which coincidentally impairs binding to other
interaction partner. Although the mechanism through which the LRR in PIDD1 exerts its inhibitory effect is

Figure 2. PIDD1 auto-processing.

(A) Full length PIDD1 (FL-PIDD1) is processed into three different fragments. Auto-proteolytic cleavage between F445 and

S446 produces PIDD1-N (48 kDa) and PIDD1-C (51 kDa). Further cleavage at S588 forms the PIDD1-CC (37 kDa) fragment. (B)

Outline of the chemical transitions needed for PIDD1 auto-proteolysis. The same mechanism is supposed to occur to generate

PIDD1-C and PIDD1-CC, in a sequential manner (please see main text for further details).
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unknown, the features mentioned here are clearly reminiscent of the inhibitory complexes described earlier for
NLRP1/CARD8, UNC5 or ANK2.
It therefore appears plausible that a PIDD1-C or -CC molecule is held in an inactive state by binding to the

LRR of PIDD1-N until a specific trigger disrupts this interaction. One such trigger might be the phosphoryl-
ation of PIDD1 in its DD, which is required for RAIDD binding upon DNA damage [45,46]. However, a spe-
cific trigger for PIDDosome formation, e.g. in response to supernumerary centrosomes is still elusive.

PIDD1-containing protein complexes
The most prominent functions of PIDD1 are associated with its ability to nucleate protein complexes through
its DD. Initial studies speculated about a host of different DD-containing interaction partners of PIDD1, of
which only RAIDD/CRADD and the kinase RIPK1, both carrying a DD, were ultimately confirmed [11,15]. In
support of their integration into multi-protein signaling complexes, they co-elute with PIDD1 in high-
molecular weight fractions which have been dubbed to correspond to two distinct PIDDosome complexes,
namely a complex consisting of PIDD1-CC, RAIDD and Caspase-2 (the ‘Caspase-2-PIDDosome’) and a
complex consisting of PIDD1-C, RIPK1 and NEMO/IKKγ (the ‘NEMO-PIDDosome’) [11,13–15]. In addition
to these two complexes several PIDD1 interactors have been identified in mass spectrometry analyses, including
PCNA [47] and FANCI [46], which engage with PIDD1 in different settings based on other structural features,
namely the distal ZU-5 and the distal ZU-5 and UPA domain, respectively (Figure 3). Furthermore, PIDD1
has also been detected in the nucleolus, where it interacts with nucleophosmin 1 (NPM1) via its N-terminal
LRRs [48].

The Caspase-2-PIDDosome
In the Caspase-2-PIDDosome five PIDD1-CC molecules interact with seven RAIDD molecules, which in turn
recruit the same number of Caspase-2 molecules [28]. Complex formation leads to the proximity-induced

Figure 3. Biological functions of PIDD1-containing protein complexes.

DNA damage is reported to lead to activation of the Caspase-2 — and NEMO — PIDDosome, resulting in either mitochondrial

cell death or pro-inflammatory NF-kB activation and cytokine expression. In response to supernumerary centrosomes,

PIDDosome formation leads to p53 stabilization and p21-dependent cell cycle arrest. Under specific circumstances, e.g. after

UV irradiation, PIDD1 associates with PCNA to promote Polη-mediated translesion DNA synthesis. Finally, interstrand DNA

crosslinks (ICLs) that cannot be resolved in time trigger the formation of the Caspase-2 — PIDDosome via recruitment of

PIDD1-CC to FANCI.
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activation of Caspase-2. Careful evaluations of the crystal structure of the DDs of PIDD1 and RAIDD in
complex imply an asymmetric assembly mechanism where all of the components have their distinct positions
and interaction spectrum. This data also provides a hint to the necessity for PIDD1-CC in the PIDDosome
complex since any of the other fragments is likely too bulky to allow complex formation [49–51].
In recent years, our understanding of the mechanisms that trigger PIDDosome assembly has broadened.

First, Burigotto et al. [19] have shown that PIDD1 shuttles between the cytoplasm and the mother centriole at
the centrosome. It is therefore optimally positioned to respond to alterations in centrosome numbers. Indeed,
upon centrosome amplification, e.g. induced by cytokinesis failure or centriole overduplication, the
PIDDosome assembles and promotes Caspase-2 activation [21]. The jury is still out as to how and where
exactly PIDDosome formation is triggered by supernumerary centrosomes. Two recent studies have shown that
knockout of the key factors responsible for the recruitment of PIDD1 to the centrosome, namely the latent sub-
distal appendage protein ANKRD26 or the more proximal protein SCLT1, prevent PIDDosome activation in
response to cytokinesis failure. This suggests that a priming event needed for PIDDosome assembly happens at
the centrosome [19,20]. Notably, processing of PIDD1 into its active fragments is not affected by disrupted cen-
trosomal localization. Furthermore, we were so far unable to find RAIDD or Caspase-2 localizing at the centro-
some, indicating that while PIDD1 has to shuttle through the centrosome at some point in order to nucleate
the PIDDosome, the centrosome is neither required for PIDD1 processing, nor does it seem to be the location
of PIDDosome formation. Of note, PIDDosome activation can promote cell cycle arrest in G1-cells with extra
centrosomes but this does not necessarily trigger cell death [21].
Ando et al. [45] observed that forced mitotic entry via CHK1 inhibition in the presence of unresolved DNA

damage induces phosphorylation of PIDD1 on T788 in the DD by ATM kinase. This phosphorylation facili-
tates PIDD1-RAIDD binding and BCL2-independent cell death while simultaneously preventing binding to
RIPK1 for cell survival [45,46]. In a follow-up study, Shah et al. described the recruitment of PIDD1 to
FANCI, which induces Caspase-2 activation and cell death when interstrand DNA crosslinks (ICLs) cannot be
resolved in time by the Fanconi repair pathway [46].
Additional evidence has implicated BUBR1 and other components of the mitotic checkpoint complex

(MCC) as negative regulators of Caspase-2-PIDDosome formation [52]. The authors of this study speculate
that the mitotic checkpoint complex suppresses a DNA-damage dependent pro-apoptotic program which is in
part mediated by the PIDDosome. However, PIDDosome activation is most often evaluated on a bulk of
treated cells, as indicated by studies of Ho et al. [53] or Thompson et al. [52], due to technical constraints that
prevent the analysis of PIDDosome formation at the single cell level. Therefore, we currently cannot rule out
that the PIDDosome-mediated effects on cell death observed in these studies can be traced back to indirect
effects of the treatments used, or activation of the PIDDosome at later stages of the cell cycle, e.g. in the next
G1 phase. As such, CHK1 inhibition and MCC disruption have both been implicated in mitotic slippage or
cytokinesis failure, which might create conditions in which the PIDDosome is activated by the presence of
supernumerary centrosomes [54,55]. The current experimental evidence is insufficient to give a final answer
whether DNA damage, mitotic arrest and centrosome amplification represent completely separate triggers for
PIDDosome activation or whether they are linked. Hence, to shed new light, it would be interesting to see
whether ATM- or ATR-dependent PIDD1 phosphorylation is also required for centrosome-mediated
PIDDosome activation or likewise whether centrosome localization of PIDD1 presents a requirement for activa-
tion downstream of CHK1 inhibition, MCC inactivation or response to DNA interstrand crosslinks.

The NEMO-PIDDosome
It is now established that DNA damage can induce NF-κB activation and sterile inflammation. In this context,
an alternative high-molecular weight complex, consisting of PIDD1, RIPK1 and NEMO, seems to be involved.
Upon DNA-damage, exogenous PIDD1-C was shown to translocate to the nucleus and to interact with RIPK1
and NEMO. It is assumed that PIDD1-C and RIPK1 interact via their DDs, based on co-immunoprecipitation
experiments performed by Janssens et al. [15]. Surprisingly enough, definite proof that this binding is direct
and depends on DD interaction is actually lacking. Complex formation initiates a chain of posttranslational
modifications of NEMO, most notably SUMOylation, which lead to the activation of NF-κB signaling [15,56].
While this NF-κB activation was initially described as an early pro-survival stimulus to prevent apoptosis
immediately after DNA-damage, follow-up studies could not find that the NEMO-PIDDosome mediated a
clear survival benefit [57]. Instead, DNA damage-induced NF-κB activation was shown to trigger
pro-inflammatory gene expression in irradiated MEFs that relied in part on RIPK1 and PIDD1 [57].
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The recent advances in our understanding of PIDDosome assembly in response to centrosome amplification
pose another interesting question: Can extra centrosomes induce the formation of the NEMO-PIDDosome and
therefore trigger NF-κB mediated target gene expression? Such an activation might be relevant primarily in
certain myeloid cells that become physiologically polyploid during differentiation and where NF-κB activation
might speed up differentiation or enhance effector function [58–60]. Additionally, we also speculate that
NF-κB activation in cells with aberrantly increased centrosome numbers could trigger an inflammatory
response that stimulates their removal by the innate immune system or contribute to the senescence-associated
secretory phenotype (SASP), seen in cells with complex karyotypes [61].
Aside from its incorporation into multi-protein complexes mentioned above, a study by Logette et al. [47]

showed that PIDD1 interacts with several DNA synthesis and DNA repair factors such as PCNA, RFC4, RFC5
and POLσ in response to UV irradiation. The interaction between PIDD1-C and PCNA is required for dissoci-
ation of p21 from PCNA and subsequent PCNA-mono-ubiquitination which leads to recruitment of the trans-
lesion DNA synthesis polymerase, POLη, to sites of DNA damage to allow error prone DNA replication,
facilitating cell survival [47].

Emerging pathologicial and physiolocial roles of PIDD1
PIDD1 as an initiator and effector of p53 function
Early findings about the role of PIDD1 in the p53-response to DNA-damage have been documented in certain
human cell lines and zebrafish experiments, they were, however, difficult to reconstruct in primary cell lines
derived from PIDDosome mutant mice or universally reproducible across human cell lines. Pidd1−/− mouse
hematopoietic cells or embryonic fibroblasts do not show decreased apoptosis or increased clonogenic potential
upon induction of DNA damage with etoposide or ionizing radiation, even though in vitro assays in some
human cell lines suggest a direct pro-apoptotic role of the PIDDosome [57,62]. Moreover, in vivo evidence of
an anti-apoptotic phenotype of Pidd1−/− mice comes from skin keratinocytes, which display higher levels of
DNA damage after UV irradiation [47].
This prompts the question whether early findings could in fact be partly explained by accidental cellular per-

turbations that might accompany treatment with DNA damage inducing agents. In line with this, Caspase-2
has been implicated in apoptosis upon treatment with drugs that impair actin filaments or microtubules or
promote mitotic errors [53,63,64]. Since the microtubule targeting agents used for the study mentioned above
[53] are known to induce mitotic slippage in certain cell types, such as U2OS or A549, we speculate that
PIDDosome activation after cytoskeleton disruption may be a result of tetraploidization and the resulting
centrosome amplification in a subset of cells. However, the mechanisms that govern whether PIDDosome acti-
vation triggers cell death (as observed in the studies of Ho et al. and others [53,63]) or an arrest in G1 phase
(as observed by Fava et al. [21]) are currently unknown. Oliver et al. [65] have identified MDM2 as a second
bona fide Caspase-2 target, whose cleavage leads to p53 stabilization in the context of Doxorubicin treatment.
Yet, p53-induced transcriptional activation of PIDD1 after DNA-damage appears to suffice to allow
PIDDosome activation, independent of centrosome amplification and promote secondary Caspase-2-mediated
cell death in some settings [66,67].
P53 stabilization does not inevitably induce cell death, but can also contribute to cell cycle arrest and senes-

cence through the transcriptional up-regulation of p21 in certain cell types [68] and subsequently to the secre-
tion of senescence-associated cytokines [69,70]. Accordingly, loss of p53 facilitates survival and cell growth in
cells that carry extra centrosomes, leading to CIN and eventually aneuploidy [71,72]. As such, it was tempting
to postulate that loss of the PIDDosome should — similarly to loss of p53 — increase CIN and foster aneu-
ploidy. While loss of PIDD1 could indeed facilitate proliferation and growth of cells overexpressing PLK4 to
induce centrosome amplification [19,20], our analysis of PIDDosome-defective hepatocytes did not provide evi-
dence for increased levels of aneuploidy in primary hepatocytes or DEN-driven liver cancers [23,73]. This sug-
gests that secondary events that are associated with CIN or aneuploidy, such as DNA damage or proteotoxic
stress will eventually activate p53 in a PIDDosome-independent manner to stop the outgrowth of
PIDD1-deficient cells.

PIDD1 as a regulator of organogenesis and tissue regeneration
The physiological role of the centrosome-PIDDosome-p53 axis has been explored in vivo in naturally polyploid
tissues, which have acquired supernumerary centrosomes through different mechanisms [74]. For example,
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liver cells become polyploid through a process of incomplete cytokinesis, which is triggered around the time of
weaning by changes in insulin signaling [75,76]. Hepatocytes of Pidd1, Raidd or Casp2 knockout mice exhibit a
substantially higher ploidy compared with wild-type animals [23] (reviewed in Sladky et al. [74,77]). Increased
ploidy does not significantly affect liver function in steady state, but is associated with a higher capacity to
regenerate liver tissue after partial hepatectomy [73]. Surprisingly, increased ploidy protects hepatocytes from
transformation, and deletion of all three PIDDosome components reduced tumor burden [74].
One interesting aspect of PIDDosome function, which has received some attention in recent years, is asso-

ciated with the marked expression of Caspase-2-PIDDosome components in the brain. Genetic evidence clearly
links perturbations of each of the PIDDosome components to neurodevelopmental or neurodegenerative phe-
notypes. Loss-of-function mutations in RAIDD and PIDD1 which prevent PIDDosome activation are asso-
ciated with lissencephaly [78–82], a form of impaired cortical development, and intellectual disability [83,84].
Even though the circumstances which lead to the activation of the PIDDosome in the brain or the cell type
where this becomes relevant are not known, the authors speculate that apoptosis induced by the PIDDosome
might be critical for proper cortical development [85,86]. Strikingly, however, a number of patients with intel-
lectual disability have been identified that carry mutations in the DD of PIDD1 which abrogate its ability to
activate Caspase-2 [84]. Moreover, the activation of Caspase-2 is implicated in the pathology of Alzheimer’s
disease (AD) [87,88]. There is evidence that Aβ-mediated apoptosis is dependent on Caspase-2 and partially
also on RAIDD and PIDD1. However, there are also cases where Caspase-2 activation occurs independently of
PIDD1, which implies that there might be alternative ways to activate Caspase-2 [48,89].

Open questions
On the one hand, PIDDosome-mediated Caspase-2 activation appears potentially relevant when the DNA
repair response is impaired, where it can promote cell death, e.g. upon defective ICL-resolution or prolonged
p53 activation [45,46,62,67]. The molecular pathway governing the PIDDosome’s response to ICLs has been
nicely delineated recently, however, the molecular details concerning execution of Caspase 2--
PIDDosome-mediated cell death are still undefined. On the other hand, PIDDosome activation in response to
supernumerary centrosomes has put it on the map of cell cycle control, CIN and cancer biology but the rele-
vance of the PIDDosome in tumorigenesis, cancer evolution or response to therapy is far from clear. Moreover,
several tissues become polyploid during development and thereby acquire extra centrosomes, which activates
the PIDDosome. Whether this is indeed the case in polyploid tissues other than the liver will hopefully be
answered in the coming years. Finally, polyploidization is also a feature often observed under inflammatory
conditions, most prominently viral infections or bacteria-driven granulomas [90]. There, the
NEMO-PIDDosome might be required to coordinate inflammation and immunity in a manner similar to other
inflammasomes, and studies addressing these possibilities are eagerly awaited.

Perspectives
• Death fold (DF)-containing proteins are key regulators of cell death and inflammation.

• The DF protein PIDD1 exerts additional effector functions by regulating p53 and cell cycle
arrest in response to extra centrosomes.

• Understanding PIDD1 auto-processing will allow selective targeting of its versatile actions to
treat diseases associated with deregulated cellular or nuclear ploidy.
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