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Abstract

Ex vivo culture has been proposed as a means to augment and repair autologous cells in patients with chronic diseases, but the mechanisms
governing improvement in cell function are not well understood. Although microRNAs (miRs) are increasingly appreciated as key regulators of
cellular function, a role for these factors in CD34+ cell-mediated angiogenesis has not been elucidated. Vascular endothelial growth factor
(VEGF) was previously shown to induce expression of certain miRs associated with angiogenesis in endothelial cells and promote survival and
number of vascular colony forming units of haematopoietic stem cells (HSCs). We sought to evaluate the role of VEGF in expansion and angio-
genic function of CD34+ cells and to identify specific miRs associated with angiogenic properties of expanded cells. Umbilical cord blood CD34
+ cells were effectively expanded (18- to 22-fold) in culture medium containing stem cell factor (SCF), Flt-3 ligand (Flt-3), thrombopoietin (TPO)
and interleukin-6 (IL-6) with (postEX/+VEGF) and without VEGF (postEX/noVEGF). Tube formation in matrigel assay and tissue perfusion/capil-
lary density in mice ischaemic hindlimb were significantly improved by postEX/+VEGF cells compared with fresh CD34+ and postEX/noVEGF
cells. MiR-210 expression was significantly up-regulated in postEX/+VEGF cells. MiR-210 inhibitor abrogated and 210 mimic recapitulated the
pro-angiogenic effects by treatment of postEX/+VEGF and postEX/noVEGF cells respectively. Collectively, these observations highlight a critical
role for VEGF in enhancing the angiogenic property of expanded cells, and identify miR-210 as a potential therapeutic target to enhance CD34+
stem cell function for the treatment of ischaemic vascular disease.
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Introduction

The CD34+ cell population is an important target for therapeutic
angiogenesis [1], but limited cell number and impaired function
hinder its clinical application in patients with chronic diseases [2].
Ex vivo culture has been proposed as a means to augment and

repair autologous cells, but the mechanisms governing improve-
ment in cell function are not well understood. Although microR-
NAs (miRs), ~21 nucleotide non-coding RNAs, are increasingly
appreciated as key regulators of cellular function [3], a role for
these factors in CD34+ cell-mediated angiogenesis remains largely
unexplored. Certain miRs are promoted by VEGF in a Dicer-depen-
dent fashion and have been implicated in endothelial cell-mediated
post-natal angiogenesis [4–6]. The addition of VEGF to conven-
tional haematopoietic stem cell expansion media [7] is appealing
because of its positive role in cell survival and angiogenesis [8,9],
but the effects of such an approach to augment CD34+ cells are
unknown. Therefore, we conducted a study to: (i) evaluate the
impact of VEGF in ex vivo expansion of CD34+ cells, and (ii) iden-
tify specific miRs associated with angiogenic properties of ex vivo
expanded CD34+ cells.
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Materials and methods

Collection of CD34+ cells

Human cord blood (CB) was obtained from the University Hospitals
Case Medical Center after IRB approval and written consent from
donors. Total cord blood mononuclear cells were isolated by Hist-
opaque 1077 (Sigma-Aldrich, Oakville, Ontario, Canada) density-gra-
dient centrifugation. CD34+ cells were separated from mononuclear
cells using CD34-bound microbeads and a magnetically activated cell
sorter (autoMACSTM; Miltenyi Biotec, Bergisch-Gladback, Germany)
following the manufacturer’s protocol. After separation, purity was
determined by flow cytometry as described below.

Ex vivo expansion of CD34+ cells

5 9 104 CB-CD34+ cells in 2 ml of media were plated into each well
of the six-well tissue culture dish (PrimariaTM; BD Falcon, Bedford,
MA, USA) and cultured in a suspension manner using a serum-free
expansion culture medium (CellGro® SCGM medium; CellGenix USA,
Portsmouth, NH, USA) for 7 days. Expansion medium contained the
four growth factors/cytokines: SCF (100 ng/ml), Flt-3 (100 ng/ml),
TPO (20 ng/ml) and IL-6 (20 ng/ml), with or without VEGF (50 ng/
ml). All growth factors and cytokines were purchased from Peprotech
Inc. (Rocky Hill, NJ, USA).

Characterization of fresh and post-expansion
CD34+ cells

To confirm the purity and to characterize pre- and post- expansion
cells, fluorescence-activated cell sorting (FACS) analysis was per-
formed with BDTM LSR Cell Analyser (BD Biosciences, San Jose, CA,
USA) and Cell QuestTM software (BD Biosciences) after staining with
mouse anti-human monoclonal antibodies against surface markers:
CD133-APC (clone 293C3; Miltenyi Biotec), CD34-PE (clone 581;
Pharmingen, San Diego, CA, USA), CD45-FITC (Biolegend, San Diego,
CA, USA), CXCR4-PE (Pharmingen), CD11b-PE (Biolegend), CD3-PE
(Biolegend), CD19-PE (Biolegend). Dead cells were excluded from the
plots on the basis of 7-AAD staining (Pharmingen). Cells were stained
with monoclonal antibodies for 20 min. at 4°C following FcR block-
ing, washed twice using Hank’s buffer containing 2% FBS, and analy-
sed. Relevant isotype controls (IgG1-PE isotype control (Biolegend),
IgG1-FITC (Biolegend), IgG2b-APC (Biolegend), and IgG1-APC (Bio-
legend)) were also included. In all samples, 10,000 events were
acquired.

MiRs expression analysis

Expression of miRs that have been previously associated with endo-
thelial-mediated angiogenesis was determined in fresh and post-
expansion cells (n = 3 in each group) using quantitative RT PCR. A

quantity of 10 ng of total RNA was used for RT reactions from each
sample following manufacturer’s protocol (ABI kit). Reaction mixtures
(15 ll) were incubated in a thermal cycler (Veriti® 96-Well Thermal
Cycler; Applied Biosystems, Foster City, CA, USA) for 30 min. at
16°C, 30 min. at 42°C and 5 min. at 85°C and then maintained at 4°
C. Quantitative PCR assays were performed using a TaqMan microR-
NA assay kit (Applied Biosystems). Real-time PCR was performed
with a StepOnePlusTM Real-Time PCR System (Applied Biosystems).
All reactions were incubated at 95°C for 10 min., followed by 40
cycles of 95°C for 15 sec., and 60°C for 1 min.; all were performed in
triplicate. The RNU48 was used as a control to normalize differences
in total RNA levels in each sample. A threshold cycle (Ct) was
observed in the exponential phase of amplification, and quantification
of relative expression levels was performed using standard curves for
target genes and the endogenous control. Geometric means were
used to calculate the DDCt values and were expressed as 2�DDCt. The
value of each control sample was set at 1 and was used to calculate
the fold of difference in the target gene.

Transfection of expanded cells with miR-210
inhibitor and mimic

To silence or up-regulate miR-210, cells were transfected with spe-
cific Anti-miRTM miRNA Inhibitor or Pre-miRTM miRNA mimic, hsa-
miR-210 (Applied Biosystems). On day 5 of expansion, cells were
seeded in antibiotic-free expansion media and transfected with miRs
at a final concentration of 160 nM using Lipofectamine 2000 (Invitro-
gen, Carlsbad, CA, USA). After 48 hrs incubation, cells were collected
and washed twice with sterile phosphate-buffered saline (PBS). As a
negative control of transfection, we used non-targeting scrambled oli-
gonucleotide following same transfection method. To evaluate miR
transfection efficiency, cells were transfected with FITC-conjugated
miR-210 inhibitor (mercury LNATM micro RNA Power inhibitor, hsa-
miR-210, EXIQON, Woburn, MA, USA) and analysed using flow
cytometry to count transfected cells. After transfection, obtained cells
proceeded for gene expression analysis, flow cytometric analysis,
tube formation assay and animal experiments as described.

In vitro HUVEC tube formation assay

Pre- and post- expansion cells were applied to the tube formation
assay by co-culturing with human umbilical vein endothelial cells
(HUVECs) on MatrigelTM (BD Biosciences) to investigate their func-
tional angiogenic contribution. 1 9 103 cells from each group (preEX,
postEX/+VEGF, and postEX/noVEGF) were co-cultured with 1.5 9 104

HUVECs in 50 ll of EBM-2 complete medium with 2% FBS. A quan-
tity of 50 ll of the cell suspension incubated at 37°C for 5 min. was
applied onto MatrigelTM (50 ll/well) in 96-well plate. To evaluate
miR-210 effect on angiogenic function of expanded cells, miR-210
inhibitor or mimic transfected cells were incubated with HUVEC fol-
lowing the same cell density. As a control, only HUVEC was cultured.
After incubation for 18 hrs, a photomicrograph per well was taken
under light microscopy (Leica DM IL LED with EC3 camera system,
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Buffalo Grove, IL, USA), then the number of tube formation was
counted using Photoshop software.

Mouse model of unilateral hind limb ischaemia
and cell transplantation

The protocol was approved by the Case Western Reserve University
School of Medicine Institutional Animal Care and Use Committee. Uni-
lateral hind limb ischaemia was surgically induced as previously
described [10]. Under anaesthesia with intraperitoneal xylazine
(40 mg/kg) and ketamine (100 mg/kg), male 8- to 10-week-old NOD/
SCID mice underwent left femoral artery ligation and transection at
two points: proximally at inguinal ligament level and distally before
bifurcation of popliteal and saphenous arteries. Two to six hours after
surgery, 2.5 9 104 cells of preEX, postEX/noVEGF, postEX/+VEGF,
and cells transfected with miR-210 inhibitor, mimic or scrambled
miRs suspended in 30 ll of PBS, were injected into adductor mus-
cles. As a vehicle control, only PBS (30 ll) was injected into adductor
muscles in the same manner (n = 5–6 per group).

Perfusion imaging

Hind limb perfusion was measured with a laser Doppler perfusion
imager system (Moor Instruments Ltd., Axminster, England) immedi-
ately and on day 14 after surgery. To account for variables, such as
ambient light and temperature, the results were expressed as the
mean flux ratio of perfusion in the left (ischaemic) versus the right
(non-ischaemic) hind limb.

Tissue preparation for histological
immunofluorescent analysis

After completing blood flow measurements at 14 days, left calf mus-
cles (ischaemic side) were harvested and immediately embedded in
freezing compound (Triangle Biomedical Sciences, Inc., Durham, NC,
USA). Transverse sections of 5-lm thick were made using the middle
portion of calf muscle for subsequent staining procedures. For capil-
lary density evaluation, samples were stained with anti-CD31 antibody,
PECAM-1 (Santa Cruz Biotechnology, Santa Cruz, CA, USA) and
labelled with fluorescent conjugated 2nd antibody (Alexafluora; Invi-
trogen). Capillaries, stained by CD31 with green fluorescent, were
counted under a 2009magnification to determine the capillary density
(number of capillaries per muscle bundle). Serial sections were cut at
three different levels, and representative fields were analysed by
counting the number of capillaries in each field. All samples were
observed under a fluorescent microscope and images were taken
using a digital camera system (Leica).

Statistical analysis

Values were presented as mean ± S.E.M. One-way ANOVA with New-
man–Keuls post-hoc test were used to compare the experimental

groups. Unpaired t-test was used for comparing two groups. A
P < 0.05 was considered statistically significant.

Results

Ex vivo expansion and characterization of human
CD34+ cells

We first determined the expansion yield of CD34+ cells in medium con-
taining four cytokines TPO, Flt3 ligand, SCF, and IL6 with (postEX/
+VEGF) and without VEGF (postEX/noVEGF). CD34+ cell expansion was
similar in both groups (Fold increase: 18.26 ± 2.24 versus
21.87 ± 5.85, respectively, P = 0.655) (Fig. 1). To characterize cells
after expansion, we performed FACS analysis for CD34 positivity and
other HSC/progenitor, monocytic and lymphocytic lineage markers
(Fig. 2). CD34 positivity was 46% and 49% (P = n.s.) for postEX/+VEGF
and postEX/no VEGF groups respectively (91% for freshly isolated cells)
(Fig. 2). Ex vivo culture also resulted in significantly decreased CD133
and c-Kit positivity. There was modestly higher expression of c-Kit in the
postEX/+VEGF group. FACS analysis suggested no differentiation into
monocytic or lymphocytic lineages as indicated by the extremely low or
absent expression of CD11b, CD3 and CD19.

Ex vivo expansion in VEGF-enriched medium
enhances neovascularization

We first preformed the in vitro HUVEC tube formation assay to evalu-
ate the effect of VEGF on the pro-angiogenic response by expanded
cells. PostEX/+VEGF cells significantly improved in vitro tube forma-
tion in matrigel compared to both preEX and postEX/noVEGF groups
(Fig. 3). We next compared the three cell groups in the mouse hind
limb ischaemia model to further determine their in vivo neovascular-
ization. Transplantation of postEX/+VEGF cells in the ischaemic hind-

Fig. 1 Fold increase in cell number after expansion with and without

VEGF. Data presented as fold increase in cell number compared to

preEX cells (adjusted to 1); P = 0.001.
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limb significantly improved tissue perfusion and increased capillary
density compared to preEX and postEX/noVEGF cells (Fig. 4).

VEGF augments miR-210 expression in expanded
CD34+ cells

MiRs are increasingly appreciated as essential regulators of numer-
ous cellular processes; however, their role in CD34+ cell-induced
angiogenesis is not completely understood. VEGF was previously
reported to induce expression of certain miRs associated with endo-
thelial angiogenesis [6]. We therefore sought to identify specific
miRs associated with angiogenic properties of ex vivo expanded
CD34+ cells. Cells expanded in VEGF-containing medium altered the
expression levels of various miRs (Fig. 5). VEGF treatment enhanced
the expression of miRs, such as 17-92 cluster and -296 in expanded
cells, similarly to previously reported effects in endothelial cells [6].
We found no change in miR-126 and -130a expression; miRs that
were shown to be pro- angiogenic [11–13]. However, we found sig-

nificant and robust increase in miR-210 level in postEX/+VEGF cells
(Fig. 5). We focused our attention on miR-210 given its known anti-
apoptotic and pro-angiogenic effects [14], but heretofore-unrecog-
nized role in CD34+ cells.

miR-210 silencing reduced postEX/+VEGF
cell-mediated angiogenesis

To test whether up-regulation of miR-210 is required for the
enhanced angiogenic properties of postEX/+VEGF cells, we transfect-
ed cells with miR-210 silencing inhibitor on day 5 of ex vivo culture.
Transfection efficiency was ~60% (Fig. S1A), with specific ~70%
reduction in miR-210 level (Fig. S1B and C). Minimal effects of
transfection with miRs on cell viability were confirmed by trypan
blue dye exclusion test (~87% versus ~93% with no transfection).
Additional control experiments were performed to exclude a deleteri-
ous effect of transfection procedure on cell function and expression
of surface markers (Figs. S2 and S3). Inhibition of miR-210 in

Fig. 2 Representative flow cytometry data of preEX (fresh CD34+), postEX/+ VEGF, and postEX/noVEGF cells. Comparison of flow cytometry data

showed decrease in CD34, CD133, and c-Kit in post-expansion cells, but no indication of differentiation into monocytic or lymphocytic lineages
(CD11b, CD3 or CD19). There was low expression of CXCR4 and VEGFR2 in preEX cells and further decrease in both expansion groups. P <0.01
for CD34, CD133, c-Kit, CD11b, CD14 and CD45, P < 0.05 for CD3, CD19, and VEGFR2, and P > 0.05 for CXCR4. * and ** represents post-hoc P

values of <0.05 and <0.01, respectively.
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Fig. 3 Enhanced HUVEC in vitro tube for-
mation by CD34+ cells expanded in VEGF-

enriched medium. Pre-or post- expanded

CD34+ cells were washed and incubated
with HUVEC in 96-well plate coated with

matrigel. Upper panel shows representa-

tive images of different groups (940;

scale bar = 100 lm). Lower panel repre-
sents percentage increase in number of

branch points compared to HUVEC alone.

Data show significant increase in tube

formation in postEX/+VEGF group
(P < 0.0001). *, *** represents post-hoc

P values of <0.05, and <0.001 respec-

tively.

Fig. 4 CD34+ cells expanded in VEGF-enriched medium promote tissue perfusion and capillary density in mice ischaemic hindlimb. PBS or

2.5 9 104 cells were injected into ischaemic limb. Graphs show significant increase in tissue perfusion (A; P < 0.0001) and capillary density (B;
P < 0.0001) in postEX/+VEGF group. Representative images of tissue perfusion and capillary density in calf muscle assessed by CD31staining

(9200; scale bar = 200 lm) are shown in the right upper and lower panels, respectively. *** represents post-hoc P value of <0.001.
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postEX/+VEGF cells was associated with reduced tube formation
in vitro (Fig. 6A) and decreased tissue perfusion and capillary
density in vivo (Fig. 7A).

miR-210 mimic enhanced postEX/noVEGF
cell-mediated angiogenesis

To further determine whether miR-210 is specifically involved in
CD34+ cell-mediated angiogenesis independent of VEGF treatment,

we transfected miR-210 mimic to CD34+ cells expanded in medium
containing no VEGF. Similarly, 210-mimic was associated with
enhanced in vitro tube formation (Fig. 6B) and increased tissue perfu-
sion and capillary density in vivo (Fig. 7B).

Discussion

Our study demonstrates an important role of VEGF in ex vivo aug-
mentation of CD34+ cells that is miR-210-dependent. The addition of

Fig. 5 Expression profile of various miRs

associated with angiogenesis. Representa-

tive graph of quantitative PCR data for

selected miRs in PreEX (fresh CD34+),
PostEX/+VEGF, and PostEX/noVEGF cell

groups (n = 3 donors). P <0.01 for miR-

17, 18a, 19b-1, 20a, 92a-1 and 210,
P < 0.05 for miR-19a, 126 and 296 and

P > 0.05 for miR-130. * and ** repre-

sents post-hoc P values of <0.05 and

<0.01 respectively. RNU48 used as refer-
ence gene.

Fig. 6MiR-210 is essential for the pro-angiogenic effects of expanded CD34+ cells on HUVEC in vitro tube formation assay. Post-expansion cells

were transfected with miR-210 inhibitor or mimic, washed and incubated with HUVEC in matrigel coated 96-well plate. MiR-210 inhibitor resulted in

significant decrease in number of branch points by cells expanded with or without VEGF (A: P < 0.0001 and B: P < 0.0001), whereas 210-mimic
enhanced tube formation by postEX/noVEGF cells. Upper panel shows representative images of different groups (940; scale bar = 100 lm). Lower

panel represents percentage increase in number of branch points compared to HUVEC alone. **, *** represents post-hoc P values of <0.01, and
<0.001 respectively.
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VEGF to a medium containing four cytokines commonly used for
HSCs culture resulted in improved in vitro and in vivo angiogenesis,
while preserving cell expansion yield. Importantly, cells expanded in
VEGF-containing medium had a significant up-regulation in miR-210
expression (Fig. 5). Inhibition of miR-210 abrogated the pro-angio-
genic effects of these cells (Figs 6A and 7A), and miR-210 mimic pro-
moted cell-induced angiogenesis by cells expanded in VEGF-deficient
medium (Figs 6B and 7B).

The importance of miRs in regulating the differentiation and fate
of haematopoietic progenitor CD34+ cells has been previously
described [15–18]. However, their role in angiogenic properties of ex
vivo expanded CD34+ cells remains largely unexplored. VEGF is a
central regulator of angiogenesis during development and ischaemia
[19] and was shown to stimulate postnatal angiogenesis through

enhancing expression of certain miRs in endothelial cells (EC) [6].
MiR17-92 cluster (17, 18a, 19a, 19b-1, 20a, 92a-1) was induced by
VEGF, and it rescued EC proliferation and angiogenesis under VEGF
stimulation after the loss of Dicer, an endoribonuclease required for
generation and maturation of miRs [6]. In our study, we found signifi-
cantly increased expression of this cluster after CD34+ cell expansion
and VEGF treatment. Although this cluster has an important role in
angiogenesis, cell survival and proliferation [20], its function is still
incompletely understood. Individually, miR-17 has anti-proliferative
properties [21, 22], whereas miR-92 is demonstrated to have anti-
angiogenic effects [23], and miRs 18 and 19 are considered pro-
angiogenic [24]. Additional studies are needed to explore the orches-
trated mechanisms of this cluster in CD34+ cells and cell-induced
angiogenesis.

Fig. 7MiR-210 promotes tissue perfusion and capillary density by expanded CD34+ cells in mice ischaemic hindlimb. Expanded cells were transfect-

ed for 48 hrs with either miR-210 inhibitor or mimic on day 5. After washing, 2.5 9 104 cells were injected into ischaemic limb. MiR-210 inhibition

abrogated tissue re-perfusion (A, upper panel) and capillary density (A, lower panel) in postEX/+VEGF group, whereas mimic significantly improved

tissue re-perfusion (B, upper panel) and capillary density (B, lower panel) in postEX/noVEGF. Representative images of tissue perfusion and capillary
density in calf muscle assessed by CD31staining (9200; scale bar = 200 lm) are shown in the right upper and lower panels, respectively.
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We focused our attention on miR-210 given its established
anti-apoptotic and pro-angiogenic effects [14], but heretofore-unrec-
ognized role in CD34+ cells. MiR-210 regulates mitochondrial metab-
olism, cellular apoptosis and stem cell survival, as well as EC-
mediated angiogenesis in vitro by regulating numerous targets, such
as caspase-8-associated protein 2, protein-tyrosine phosphatase 1B,
iron-sulphur cluster assembly proteins and ephrin-A3 mRNAs [14,
25]. MiR-210 also promotes migration of ECs in response to VEGF
[5]. The expression of miR-210 in ECs was increased by hypoxia [5],
but was not altered after VEGF exposure for 9 hrs [6]. Our study pro-
vides the first observation of increased levels of miR-210 induced by
VEGF in CD34+ cells, and a new role for miR-210 in promoting CD34
+ cell-mediated therapeutic angiogenesis in vivo.

Although CD34+ cells were cultured under normoxic conditions, it
is possible that a state of relative hypoxia after 7-day culture led to
the observed small increase in expression of miR-210 in postEX/no-
VEGF cells. These cells showed similar angiogenic capacity compared
to pre-expanded CD34+ cells, suggesting the importance of VEGF
exposure in augmenting pro-angiogenic properties of expanded
CD34+ cells and raising the possibility that induction of miR-210 tar-
gets by VEGF may be required. It is possible that this increase in miR-
210 expression may insufficiently compensate for the lack of other
positive effects of VEGF stimulation, or for the phenotypic changes
after ex vivo culture of CD34+ cells as demonstrated by FACS data
(decreased expression of CD34, CD133 and c-Kit) (Fig. 2). Nonethe-
less, miR-210 silencing virtually eliminated whereas miR-210 mimic
recapitulated the pro-angiogenic effects of VEGF stimulation on
expanded cells (Figs 6 and 7). Collectively, these observations iden-
tify miR-210 as an important regulator of CD34+ cell-induced angio-
genesis.

The number of cells transplanted into mice ischaemic hindlimbs
in the present study was similar to weight-adjusted cell doses used in
humans [26]. The 20–40 times lower number (2.5 9 104 cells) com-
pared to effective cell doses reported in previous pre-clinical studies
[1, 27, 28] may explain the observed relative lower efficacy of pre-
expanded (fresh) CD34+ cell transplantation. Importantly, postEX/
+VEGF cell-induced in vitro and in vivo neovascularization was
enhanced in spite of relatively low expression of CD34 and other
known HSC and endothelial progenitor cell markers (Fig. 2).

Future investigation is warranted to dissect these pathways and
explore whether the observed pro-angiogenic effects of miR-210 are
cell-intrinsic [29] or operate through a paracrine exosome-mediated
transfer of miR-210 from transplanted cells to the ischaemic tissue
[30, 31]. Given the meaningful and sustained clinical benefit of CD34
cells in recent clinical trials [26], efforts to augment CD34+ cell func-
tion by targeting miR-210 are likely to be clinically impactful.
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