Heliyon 10 (2024) e35270

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Review article

5²CelPress

Eudesmane-type sesquiterpenoids: Structural diversity and biological activity

Guang-Xu Wu^{a,c,1}, Hao-Yu Zhao^{a,c,1}, Cheng Peng^a, Fei Liu^{a,c,*}, Liang Xiong^{a,b,c,**}

^a State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China

^b School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China

^c Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine,

Chengdu, 611137, China

ARTICLE INFO

Keywords: Eudesmane-type Sesquiterpenoids Distribution Phytochemistry Biological activity

ABSTRACT

Sesquiterpenoids are integral constituents of terpenoid-bearing plants, comprising a diverse and abundant class of natural compounds, among which eudesmane-type sesquiterpenoids have bicyclic structures that feature the fusion of two six-membered carbon rings, thereby attracting considerable attention. They are widespread in nature, with multifaceted biological activities such as anti-inflammatory, anticancer, antimicrobial, antimalarial, and insecticidal activities, thus gaining focus in life science research. The discovery and identification of these active compounds have laid a foundation for unraveling their potential medicinal value. In this review, we comprehensively explore the natural eudesmane-type sequiterpenoids isolated (totaling 391 compounds) between 2016 and 2022, elucidating their chemical structures, plant distribution patterns, and pertinent biological properties. Accordingly, the study serves not only as a framework for researchers to thoroughly comprehend these compounds but also as a robust reference for future endeavors aimed at exploring the pharmaceutical potential and prospective applications of these molecules.

EC ₅₀	Concentration for 50 % of maximal effective
IC ₅₀	Half-maximal inhibitory concentration
CC ₅₀	50 % Cytotoxic Concentration
NO	Nitric oxide
iNOS	Inducible nitric oxide synthase
LPS	Lipopolysaccharide
RAW 264.7	Mouse monocyte macrophages
TNF- α	Tumor necrosis factor- α
IL-6	Interleukin-6

(continued on next page)

** Corresponding author. State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.

E-mail addresses: feifeifly555@126.com (F. Liu), xiling@cdutcm.edu.cn (L. Xiong).

¹ Both authors contributed equally to this work.

https://doi.org/10.1016/j.heliyon.2024.e35270

Received 8 March 2024; Received in revised form 3 June 2024; Accepted 25 July 2024

Available online 27 July 2024

^{*} Corresponding author. State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.

^{2405-8440/© 2024} The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

G.-X. Wu et al.

(continued)

IL-12	Interleukin-12
IFN-γ	Interferon-γ
NF-ĸB	Nuclear factor kappa B
L-NMMA	N ^G -Monomethyl-L-arginine
Dex	Dexamethasone
LNCaP	Lymph Node Carcinoma of the Prostate
AD	Alzheimer's disease
Αβ	amyloid β -protein
HIV	Human Immunodeficiency Virus
HBV	Hepatitis B Virus
STAT3	Signal Transducer and Activator of Transcription 3
SAR	Structure-activity relationships

1. Introduction

Sesquiterpenoids, which are a class of natural compounds composed of three isoprene-derived units, exhibit an extensive distribution across plants, marine organisms, and microbes, being most diverse among terpenoids in terms of structural variations. The fundamental framework of sesquiterpenoids encompasses acyclic, monocyclic, bicyclic, tricyclic, and multicyclic forms, often manifested as derivatives containing oxygen, alcohols, ketones, and lactones [1]. Imparting a wide range of biological activities, sesquiterpenoids manifest anti-inflammatory, cytotoxic, antibacterial, insecticidal, and vasorelaxant properties [2], and in particular, the discovery of artemisinin has revolutionized the development of antimalarial drugs, making it and its derivatives one of the most important treatments for malaria. Owing to their diverse chemical structures and noteworthy biological properties, sesquiterpenoids have piqued substantial interest among pharmacologists and chemists, continually yielding novel and potent discoveries [3–9].

Notably, eudesmane-type sesquiterpenoids form a distinctive subset of natural products with broad pharmaceutical utility, characterized by a fundamental structure comprised of two six-membered carbon rings. While most exist in monomeric form, a subset transforms into sesquiterpenoid dimers through Diels–Alder cycloaddition reactions or Michael addition reactions. The proposed biosynthetic pathway of eudesmane-type sesquiterpenoids involves the sesquiterpenoid precursor, farnesyl pyrophosphate (FPP), undergoing pyrophosphate group loss catalyzed by sesquiterpene synthase (STS) to form a farnesyl⁺ carbocation. Then, cyclization occurs at C-10, yielding the gremacrene-11-yl⁺ carbocation. Subsequent protonation of the double bond at C-6 followed by cyclization at C-7 generates the generalized eudesmane-type sesquiterpenoid structure (Fig. 1). Many of these compounds exhibit diverse biological or therapeutic activities, such as anti-inflammatory [9], cytotoxic [10], anti-bacterial [11], anti-malaria [7], insecticidal [12], hypoglycemic [13], and hypolipidemic [14] activities.

While numerous novel eudesmane-type sesquiterpenoids with significant structural variations and activities have been discovered over time, a comprehensive review and discourse concerning the structures and effects of these compounds remain absent. Only a few scholars have addressed eudesmane-type sesquiterpenoids and their derivatives from Asteraceae until 2014 [15and16]. Thus, this review summarized studies on eudesmane-type sesquiterpenoids in the last 7 years (2016–2022), with the primary objective of providing an indispensable reference to potentially stimulate and guide subsequent investigations and developments in this specialized field.

2. Methodology

To comprehensively review the research progress on the structural diversity and biological activity of natural eudesmane-type sesquiterpenoids, a total of 137 published articles from 2016 to December 2022 were referenced. These articles were sourced from reputable scientific databases, including the Web of Science, Science Direct, Google Scholar, PubMed, SciFinder, CNKI, ACS, and RSC. Search terms such as "Eudesmane", "Asteraceae", and "Eudesmane and biological activity" were employed to collect pertinent data. Additionally, the botanical Latin names of all plant species mentioned in the review were retrieved from the World Flora Online database (http://www.worldfloraonline.org/).

3. Distribution and chemical structures of eudesmane-type sesquiterpenoids

From 2016 to 2022, more than 391 eudesmane-type sesquiterpenoids have been identified and isolated, with the majority originating from species within the family Asteraceae. Subsequently, significant contributions have also been observed from the families Lamiaceae, Chloranthaceae, Solanaceae, Anacardiaceae, and Thymelaeaceae. Additionally, a limited number of eudesmane-type compounds can be sourced from bryophytes, microorganisms, and marine organisms (Fig. 2).

3.1. Eudesmane-type sesquiterpenoids from species in the family Asteraceae

We compiled the distribution of 182 natural eudesmane-type sesquiterpenoids from species in the family Asteraceae (Fig. 3). A statistical study found that sesquiterpenoids in the family Asteraceae are mainly distributed in species of genera Artemisia, Atractylodes, Inula, Laggera, Asterothamnus, Dittrichia, Parasenecio, Centaurea, Pluchea, Sphagneticola, Anthemis, Saussurea, Kalimeris, Ainsliaea, Sonchus, Seriphidium, Echinops, Crepis, Pulicaria, Miyamayomena, Ambrosia, Dolomiaea, and Verbesina.

3.1.1. Eudesmane-type sesquiterpenoids from species in the genus Artemisia

Previous studies have identified 75 eudesmane-type sesquiterpenoids from plants in the genus *Artemisia* (Fig. 4, Table 1), primarily from *A. hedinii*, *A. argyi*, *A. freyniana*, *A. leucophylla*, and *A. rupestris*. These compounds exhibit consistent characteristics. For instance, H-5 and H-7 consistently adopt α -orientations, whereas the methyl group at C-10 is predominantly positioned in the β -direction. Moreover, around 40 % of the sesquiterpenoids exhibit substitution at C-9, often involving acetoxyl and hydroxyl groups. Additionally, roughly one-third of the compounds feature a hydroxy group at C-1. Intriguingly, more than one-third of the compounds (**33–60**) manifest as sesquiterpene lactones, wherein the isopropyl branch forms an α,β -unsaturated- γ -lactone between C-6 and C-7.

The C-11 is prone to dehydrogenate and cause double bond formation. Further, C-13 is usually oxidized to a carboxyl group (1-18), or with a methyl/ethyl formate (19-27). Compounds **28–32**, however, have multiple hydroxyl substitutions. In particular, compounds **61–68** sourced from *A. hedinii* are classified as 12,13-bisnorsesquiterpenoids, with the C-11 oxidized to a carboxyl group. Additionally, compounds **69–70** can be categorized as 11,12,13-trinorsesquiterpenoids; compounds **22–27** originating from *A. argyi* exhibit an isopentenyl ester at C-8; compounds **71–73** are dimers formed by one eudesmane-type and one guaiane-type sesquiterpenoid through Diels–Alder [2 + 2] cycloaddition, while compounds **74–75** consist of one eudesmane-type and one guaiane-type sesquiterpenoid connected by ester bonds.

3.1.2. Eudesmane-type sesquiterpenoids from species in the genus Atractylodes

In total, 30 eudesmane-type sesquiterpenoids have been reported from the genera *Atractylodes* in the family Asteraceae (Fig. 5, Table 1), derived from *A. lancea, A. chinensis*, and *A. macrocephala*. Compounds **77** and **78** are a pair of enantiomers from *A. macrocephala*, and compounds **79–84** and **91** possess a hydroxy group at C-7. In addition, a substantial proportion of compounds from *A. macrocephala* (**80–90**) are characterized by one $\Delta^{4(14)}$ double bond. As exceptions, compounds **94–96** are eudesmanolactam hybrids consisting of an atractylenolactam moiety and a phenol unit, an ethyl unit, or an *n*-butyric acid unit linked via a C–N bond. Finally, compounds **98–105** from *A. lancea* and *A. macrocephala* are categorized as sesquiterpenoid glycosides, notable for having an α,β -unsaturated ketone located in either ring A or B.

3.1.3. Eudesmane-type sesquiterpenoids from species in the genus Inula

In the genus *Inula*, 14 compounds were isolated (Fig. 6, Table 1), primarily derived from *I. japonica* and *I. helenium*, among which compounds **106–110** are bicyclic sesquiterpenoids that feature two terminal double bonds. The remaining compounds (**111–119**) are

Fig. 2. Distribution of 391 eudesmane-type sesquiterpenoids.

Fig. 3. Distribution of 182 eudesmane-type sesquiterpenoids from the family Asteraceae.

all sesquiterpene lactones generated by linking C-8 and C-12 via an ester bond.

3.1.4. Eudesmane-type sesquiterpenoids from species in other genera

In addition to the eudesmane-type sesquiterpenoids isolated from plants in the three genera above, 63 additional compounds have been reported from species in several other genera in the family Asteraceae (Fig. 7, Table 1). Notably, the C-11 of compounds **120–124** is readily dehydrogenated to double bonds and the C-13 is oxidized to carboxyl groups. A distinct trait of compounds **137–145** lies in the presence of a carbonyl group, either at the C-3 or C-8. Interestingly, compounds **141–144** are characterized by a 4,6-dien-3-one or a 1,4,6-trien-3-one conjugated system; meanwhile, compounds **137–139** exhibit the same basic eudesmane structure with a 2,3-epoxy-2-methylbutanoyloxy residue at C-3. These observations reveal that compounds **130**, **134–135**, and **145** all possess oxygen bridges between C-7 and C-8/11/6. Distinctively, each compound ranging from **146** to **153** incorporates a cinnamoyloxy group at C-6, all of which are in the β -orientation. In addition, a subset of compounds, specifically **154–160**, are categorized as sesquiterpene lactones, among which compound **154** stands out as an instance of a peroxide-substituted eudesmane-type sesquiterpenoid.

Of these compounds, over 25 % are sesquiterpenoide glycosides (166-182). Impressively, three sesquiterpene dimers (163-165) were isolated from *Dolomiaea souliei* and *Echinops grijsii*. Compounds 163 and 164 are a pair of isomers, presumably produced by the Diels–Alder [4 + 2] cycloaddition reaction of one eudesmane-type sesquiterpenoid and one germacrane-type sesquiterpene lactone. Compound 164, with an exceptional 6/6/5/6/6 ring system and an oxygenated spiro ring structure, is speculated to form from two eudesmane-type sesquiterpenoids through a Michael addition reaction.

3.2. Eudesmane-type sesquiterpenoids from species in the family Lamiaceae

Previous studies have reported 32 eudesmane-type sesquiterpenoids in the family Lamiaceae (Fig. 8, Table 2), all derived from *Salvia plebeia*. Most compounds have an α,β -unsaturated- γ -lactone structure and are prone to carbonyl groups at C-2. Compound **209** is a sesquiterpene alkaloid with an 8,12-lactam structure and **214** is an eudesmane-type sesquiterpene dimer, formed via two copies of compound **135** through C-8. Intriguingly, nearly 50 % of the compounds in the family Lamiaceae had the α -orientation for the methyl group at C-10, which differs from Asteraceae.

3.3. Eudesmane-type sesquiterpenoids from species in the family Chloranthaceae

Currently, 33 eudesmane-type sesquiterpenoids with an α , β -unsaturated- γ -lactone ring or a furan ring have been reported from the family Chloranthaceae (Fig. 9, Table 3). Compounds **215–216**, **217–218**, and **219–220** from *Chloranthus serratus* are three pairs of enantiomers, and according to the compiled literature, all the eudesmane-type sesquiterpenoids extracted from this plant are enantiomers. It is worth noting that sesquiterpene dimers are predominant in this family. Researchers have isolated 12 sesquiterpene dimers from *C. fortune, Hedyosmum orientale,* and *C. henryi* var. *hupehensis*. Compounds **236–237** from *C. fortune* are produced by Diels–Alder cycloaddition of one eudesmane-type and one lindenane-type sesquiterpenoid. Compound **238** is an eudesmane-guaiane hetero-dimeric sesquiterpenoid possessing a unique bridged 2,10-dioxabicyclo[6.2.1] undecane moiety with a strained anti-Bredt bridgehead double bond. Four unique enantiomeric pairs of eudesmane-type sesquiterpenoid dimers with two new carbon skeletons were isolated from *C. henryi* var. *hupehensis* (**240–247**). Compounds **240–243** possess a 6/6/5/6/6 pentacyclic carbon skeleton with a new dimerization pattern of two eudesmane-type sesquiterpenoids. Compounds **244–247**, which are fused with two eudesmane-type sesquiterpenoids via an unprecedented five-membered *O*-heterocyclic ring—represent a new 6/6/5/6/6/5 heptacyclic ring system.

3.4. Eudesmane-type sesquiterpenoids from species in the family Solanaceae

Presently, 10 eudesmane-type sesquiterpenoids (Fig. 10, Table 4) have been reported from species in the family Solanaceae. Compounds **248–252**, derived from *Datura metel*, have a propane-1,2-diol fragment on the isopropyl branched chain.

G.-X. Wu et al.

Fig. 4. Structures of eudesmane-type sesquiterpenoids from species in the genus Artemisia.

3.5. Eudesmane-type sesquiterpenoids from species in the family Anacardiaceae

Twelve eudesmane-type sesquiterpenoids (Fig. 11, Table 5) have been isolated from plants in the family Anacardiaceae, all of which were derived from *Dobinea delavayi*. Except for compound **258**, most eudesmane-type sesquiterpenoids have a cyclic structure in their isopropyl chain. In addition, five eudesmane-type sesquiterpene dimers were isolated from this plant.

Eudesmane-type sesquiterpenoids (compounds 1–182) from plants in the family Asteraceae.

No.	Name	Sources	Reference
Artemi	sia		
1	Artefreynic acid H	Artemisia freyniana (Pamp.) Krasch.	[17]
2	Artemihedinic acid A	Artemisia hedinii Ostenf.	[18]
3	(3R,7S,9S,10S)-3-Hydroxy-9-acetoxyeudesm-4,11(13)-dien-12-oic acid	A. hedinii	[18]
4	Artemihedinic acid B	A. hedinii	[18]
5	Artemihedinic acid C	A. hedinii	[18]
6	Artemihedinic acid K	A. hedinii	[18]
7	Artemihedinic acid L	A. hedinii	[18]
8	Artemihedinic acid M	A. hedinii	[18]
9	Artemihedinic acid G	A. hedinu	[18]
10	Artemihedinic acid H	A. hedinii	[18]
11	Arteminedinic acid I	A. hedinii	[10]
12	Artefreynic acid J	A. freemiana	[10]
14	Artanoic acid	Artemisia vulgaris L	[19]
15	Artemihedinic acid D	A. hedinii	[18]
16	9β -Acetoxy- 5β -hydroxy-eudesma-4(15),11(13)-dien- $7\alpha H$ -12-oic acid	A. hedinii	[18]
17	Artefreynic acid J	A. freyniana	[17]
18	Artetourneforin acid	Artemisia tournefortiana Rchb.	[20]
19	Austroyunnane H	Artemisia austro-yunnanensis Ling et Y. R. Ling	[21]
20	(7R,8S,10R)-8-Hydroxyeudesma-4,11(13)-dien-12-oate	A. freyniana	[17]
21	Artetourneforin D	A. tournefortiana	[20]
22	Artemargyinin A	Artemisia argyi H.Lév. & Vaniot	[22]
23	Artemargyinin B	A. argyi	[22]
24	Artemargyinin C	A. argyi	[22]
25	Artemargyinin D	A. argyi	[22]
26	Artemargyinin E	A. argyi	[22]
2/	Artemilargyllilli F	A. badinii	[22]
20	Artemihedinic acid F	A hedinii	[10]
30	Artemihedinic acid F	A. hedinii	[18]
31	Vulgaroside A	A. vulgaris	[23]
32	Vulgaroside B	A. vulgaris	[23]
33	Artemleucolide F	Artemisia leucophylla C.B.Clarke	[24]
34	Artemleucolide G	A.leucophylla	[24]
35	Artemleucolide H	A.leucophylla	[24]
36	Artemleucolide I	A.leucophylla	[24]
37	Artemleucolide J	A.leucophylla	[24]
38	Artemleucolide K	A.leucophylla	[24]
39	Artemieucolide L	A.leucophylla	[24]
40	Ariidiiii 36 Hudrowarhalin	A. halophila Krasch	[25]
42		Artemisia konetdaahensis Krasch Dopov &	[25]
74		Lincz ex Poliakov	[20]
43	4-epi-Persianolide A	A. kopetdaghensis	[26]
44	3α ,4-Epoxypersianolide A	A. kopetdaghensis	[26]
45	8a-Hydroxyartemin	Artemisia ferganensis Krasch. ex Poljakov	[27]
46	<i>a</i> -Santonin	A. ferganensis	[27]
47	8α -Hydroxy- 4α , 5α -epoxytaurin	A. ferganensis	[27]
48	1α ,13-Dihydroeudesma-12,6 α -olide-1,8-dione	A. Kopetdaghensis	[26]
49	β -Hy-droxy-11 α ,13-dihydroeudesma-12,6 α -olide-1-one	A. kopetdaghensis	[26]
50	1,8-O-Diacetyl-11 α ,13- dihydroeudesma-12,6 α -olide	A. kopetdaghensis	[26]
51	Artetourneforin A	A. tournefortiana	[20]
52	Artetourneiorin B	A. tournefortiana	[20]
53	Artetourneforin E	A. tournefortiana	[20]
55	Artemisaroin A	A arovi	[20]
56	Artemleucolide A	A leucophylla	[24]
57	Artemleucolide B	A.leucophylla	[24]
58	Artemleucolide C	A.leucophylla	[24]
59	Artemleucolide D	A.leucophylla	[24]
60	Artemleucolide E	A.leucophylla	[24]
61	(3R,7S,9S,10S)-3-Hydroxy-9-acetoxy-dinor-eudesm-4-en-11-oic	A. hedinii	[29]
62	(3S,7S,9S,10S)-3-Hydroxy-9-acetoxy-dinor-eudesm-4-en-11-oic	A. hedinii	[29]
63	(7S,9S,10S)-3-Oxo-9-acetoxy-dinor-eudesm-4-en-11-oic	A. hedinii	[29]
64	(6R,7R,9S,10S)-3-Oxo-6-hydroxy-9-acetoxy-dinor-eudesm-4-en-11-oic	A. hedinii	[29]
65	(4 <i>S</i> , <i>SS</i> , <i>9S</i> ,10 <i>R</i>)-4,5-Dihydroxy-9-acetoxy-dinor-eudesm-6-en-11-oic	A. hedinii	[29]
66	(95,105)-9-Acetoxy-dinor-eudesm-4,6-dien-11-oic	A. hedinii	[29]

(continued on next page)

Table 1 (continued)

No.	Name	Sources	Reference
67	(5R,7R,9S,10R)-5-Hydroxy-9-acetoxy-dinor-eudesm-4(13)-en-11-oic	A. hedinii	[29]
68	(4R.5R.7R.10R)-4-Hydroxy-dinor-eudesm-11-oic	A. hedinii	[29]
69	(4S,10R)-4-Hydroxy-11,12,13-trinor-eudesm-5,8-dien-7-one	A. hedinii	[29]
70	(4R,10R)-4-Hydroxy-11,12,13-trinor-eudesm-5,8-dien-7-one	A. hedinii	[29]
71	Artepestrin A	Artemisia rupestris L.	[30]
72	Artepestrin B	A. rupestris	[30]
73	Ardeparin C	A. rupestris	[30]
74	Rupestrinate A	A. rupestris	[30]
75	Rupestrinate B	A. rupestris	[30]
Atract	vlodes		[]
76	Eudesmane- 4α .11.15-triol	Atractylodes chinensis (DC.) Koidz.	[31]
77	(+)-Atramacronoids F	Atractylodes macrocephala Koidz.	[32]
78	(–)-Atramacronoids F	A. macrocephala	[32]
79	Atramacronoid L	A. macrocephala	[32]
80	Atramacronoid G	A. macrocephala	[32]
81	Atramacronoid H	A. macrocephala	[32]
82	Atramacronoid O	A. macrocephala	[32]
83	Atramacronoid P	A. macrocephala	[32]
84	Atractylmacrol A	A.macrocephala	[33]
85	Atramacronoid M	A. macrocephala	[32]
86	Atramacronoid N	A. macrocephala	[32]
87	Atractylmacrol C	A. macrocephala	[33]
88	Atramacronoid J	A. macrocephala	[32]
89	Atractylmacrol B	A. macrocephala	[33]
90	Atractylmacrol D	A. macrocephala	[33]
91	Atramacronoid B	A. macrocephala	[32]
92	Atramacronoid K	A. macrocephala	[32]
93	Atrohitemene B	A. chinensis	[31]
94	Atrohiterpene A	A. chinensis	[31]
95	Atramacronoid E	A. macrocephala	[32]
96	Atramacronoid D	A macrocephala	[32]
97	Atrohiterpene C	A. chinensis	[31]
98	(2S.7B.10S)-3-Hydroxylcarissone-11- <i>O-β-D-g</i> lucopyranoside	Atractylodes lancea (Thunb.) DC.	[34]
99	$(2R.7R.10S)$ -3-Hydroxylcarissone-11-O- β -D-glucopyranoside	A. lancea	[34]
100	$(5R.7R.10S)$ -Isopterocarpolone-11-O- β -D-apiofuranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranoside	A. lancea	[34]
101	(5R.7R.10S)-6''-O-Acetylatractyloside I	A. lancea	[34]
102	(5R.7R.10S)-6'-O-Acetylatractyloside I	A. lancea	[34]
103	(5R.7R.10S)-3-Hydroxylisopterocarpolone-3- <i>O</i> - <i>β</i> - <i>D</i> -glucopyranoside	A. lancea	[34]
104	(5R.7R.10S)-14-Hvdroxvisopterocarpolone-11-O-β-D-glucopyranoside	A. lancea	[35]
105	Atramacronoid I	A. macrocephala	[32]
Inula		I I I I I I I I I I I I I I I I I I I	
106	Inujaponin A	Inula japonica Thunb.	[36]
107	Inujaponin B	I. japonica	[36]
108	Inujaponin C	I. japonica	[36]
109	86-Hydroxycostic acid methyl ester	Inula helenium L.	[37]
110	12-Acetoxy-1 β ,2 α -dihydroxyeudesma-4(15),11(13)-diene	I. japonica	[38]
111	Inujaponin D	I. japonica	[36]
112	Inujaponin E	I. japonica	[36]
113	Inujaponin F	I. japonica	[36]
114	Inujaponin G	I. japonica	[36]
115	11β -Hydroxy-13-chloro-eudesm-5-en-12,8-olide	I. helenium	[39]
116	2α , 7α -Dihydroxy-11, 13-dihydroalantolactone	I. helenium	[37]
117	2a-Formyloxy-11,13-dihydroalantolactone	I. helenium	[37]
118	2a-Formyloxy-11,13-dihydroisoalantolactone	I. helenium	[37]
119	$11(13)\beta$ -Epoxyalantolactone	I. helenium	[37]
Other	genera		
120	$(6S,7S,10R)$ -3-Oxo- 6α -hydroxy- γ -costic acid	Crepis sancta (L.) Bornm.	[40]
121	Costic acid	Dittrichia viscosa (L.) Greuter	[12]
122	1β-Angeloyl-5β-hydroxycostic acid	Anthemis orientalis (L.) Degen	[41]
123	1β -O-Angeloyl- β -isocostic acid	Anthemis orientalis	[41]
124	Lappaterpene E	Saussurea lappa (Decne.) C.B Clarke	[42]
125	1β,6α,8α-Trihydroxy-15-oxo-eudesm-11(13)-en-12-oate	Centaurea polyclada DC.	[43]
126	Lappaterpene C	Saussurea lappa	[42]
127	Lappaterpene D	Saussurea lappa	[42]
128	Kalshinoid H	Kalimeris shimadae (Kitam.) Kitam	[44]
129	Lappaterpene B	Saussurea lappa	[42]
130	Echingriol B	Echinops grijsii Hance	[45]
131	Ainslide B	Ainsliaea pertyoides Franch.	[46]
132	Echingriol A	Echinops grijsii	[45]

(continued on next page)

1386.11-Diacetasy-1,4-dihydroxy-edesmane.Aniskano banafi Reaverded[51]70,11-F proxy-edesman-4-o-aLaggron perondoma (DC.) Sch. Bip. os Oliv.[63]13870,11-F proxy-edesman-4-o-aLaggron perondoma (DC.) Sch. Bip. os Oliv.[64]139(25' 44', 55', 105', 24', 3' 8', 3-2(2', 3' Epoxy-2' methylbutyryloxy)-4,7-dihydroxy-Pluchea odorran (L.) Cass.[50]138(25' 44', 55', 105', 24', 3' 8', 3-2(2', 3' Epoxy-2' methylbutyryloxy)-4-actyloxy-6-Pluchea odorran[50]140(25' 44', 55', 105', 24', 3' 8', 3-2(2', 3' Epoxy-2' methylbutyryloxy)-4-actyloxy-6-Pluchea odorran[50]141Asterothannone A-Asterothannone aAsterothannone aStatistical[51]142Asterothannone BAsterothannone aAsterothannone aAsterothannone aStatistical[51]143Asterothannone CAsterothannone aAsterothannone aAsterothannone a[51]144Asterothannone CAsterothannone CParametica borrane[51]145ParaseninParametica borrane[51]1466-C Cinnamylosy-1/,3-dihydroxyeudesm-4-(15)-eneParametica borrane[51]1476-C Cinnamylosy-1/,3-dihydroxyeudesm-4-eneParametica borrane[51]1486-C Cinnamylosy-1/,1-2-dihydroxyeudesm-4-eneVerbeina lanta[51]1496-C Cinnamylosy-1/,1-2-dihydroxyeudesm-4-eneVerbeina lanta[51]1506-C Cinnamylosy-1/,1-2-dihydroxyeudesm-4-eneVerbeina lanta[51]1516-C Cinnamylosy-1/,1-2-dihydroxyeudesm-4	No.	Name	Sources	Reference
134 7/111/Epoxy-endeeman-4ro ol Laggera perodona (C.) Sch. Bip. ex Oliv. [43] 136 Plerodona (G.) Sch. Bip. ex Oliv. [43] 137 (711-K Foxy-endeeman-4ro ol Laggera perodona (G.) [43] 138 Plerodona (G.) Sch. Bip. ex Oliv. [43] 139 (837-447, 857, 1057, 277, 378, 73-62, 37. Epoxy-2*-methylbutyryloxy)-4-acetyloxy-6- Pluchea odorata [50] 140 (837-447, 857, 1057, 277, 279, 73-62, 37. Epoxy-2*-methylbutyryloxy)-4-acetyloxy-6- Pluchea odorata [50] 141 Asterothamnone A-sone Asterothamnus central-saiaticas [51] 143 Asterothamnone B Asterothamnus central-saiaticas [51] 144 Asterothamnone D Asterothamnus central-saiaticas [51] 145 Parasenin Parasenin Parasenic nobrowskii (Maxim) Y.L.Chen [52] 146 6/-Cinnamoyloxy-1/a/a-dihydroxyeudesm-4-ene Verbeina lonata [51] 147 6/-Cinnamoyloxy-1/a/a-dihydroxyeudesm-4-ene Verbeina lonata [51] 148 6/-Cinnamoyloxy-1/a/a-dihydroxyeudesm-4-ene Verbeina lonata [51] 159 6/-Cinnamoyloxy-1/a/a-dihydroxyeudesm-4-ene Verbeina lonata [51] 164 6/-Cinnamoyloxy-1/a/a-dihydroxyeudesm-4-ene Verbeina lonata [51] 150 </th <th>133</th> <td>6,11-Diacetoxy-1,4-dihydroxyeudesmane</td> <td>Ainsliaea bonatii Beauverd</td> <td>[47]</td>	133	6,11-Diacetoxy-1,4-dihydroxyeudesmane	Ainsliaea bonatii Beauverd	[47]
138 7x,11a-Époxy-endeman-4-ol Laggera pierodonta [49] 139 Picrobandol Laggera pierodonta [49] 137 (SS [*] ,4K ⁺ ,5S [*] ,10 [*] ,2R [*] ,3R [*] ,3-3(2),3 [*] Epoxy-2 [*] -methylhutyyloxy)-4,7-dihydroxy- Plachea adorata [50] 138 (SS [*] ,4K ⁺ ,5S [*] ,10 [*] ,2R [*] ,3R [*] ,3R [*] ,3-2(2),3 [*] Epoxy-2 [*] -methylhutyyloxy)-4 acetyloxy-6- Plachea adorata [50] 139 (SS [*] ,4K ⁺ ,5S [*] ,10 [*] ,2R [*] ,3R [*] ,3	134	7β ,11 β -Epoxy-eudesman-4 α -ol	Laggera pterodonta (DC.) Sch. Bip. ex Oliv.	[48]
136 Percodondial Laggen peradona [49] 137 (35*47, 55; 105*, 27*, 37*)-3(-2; 3*Epoxy-2*methylbutyryloxy)-4,7-dihydroxy Plachea odorata [50] 138 (35*47, 55; 105*, 27*, 37*)-3(-2; 3*Epoxy-2*methylbutyryloxy)-4-acetyloxy-7- Plachea odorata [50] 138 (35*47, 55; 105*, 27*, 37*)-3(-2; 3*Epoxy-2*methylbutyryloxy)-4-acetyloxy-6- Plachea odorata [50] 139 (35*47, 55; 105*, 27*, 27*, 37*)-3(-2; 3*Epoxy-2*methylbutyryloxy)-4-acetyloxy-1-hydroperoxy- Plachea odorata [51] 134 Asterothamnone A Azerothamnus centrali-asiatica: [51] 134 Asterothamnone B Azerothamnus centrali-asiatica: [51] 134 Asterothamnone D Azerothamnus centrali-asiatica: [51] 134 Asterothamnone D Azerothamnus centrali-asiatica: [51] 134 Asterothamnone D Azerothamnus centrali-asiatica: [51] 135 Forasenin Plasma odoravi, 1/(Azi-athylora) [51] 136 6/-Cinnamoyloxy-1/(Azi-athylora) [51] 137 6/-Cinnamoyloxy-1/(Azi-athylora) [51] 138 6/-Cinnamoyloxy-1/(Azi-athylora) [51] 139 6/-Cinnamoyloxy-1/(Azi-athylora) [51] 149 6/-Cinnamoyloxy-1/(Azi-athyloxy-eudesm-4-enc Verbeina lanata <t< th=""><th>135</th><th>7α,11α-Epoxy-eudesman-4α-ol</th><th>Laggera pterodonta</th><th>[48]</th></t<>	135	7α ,11 α -Epoxy-eudesman- 4α -ol	Laggera pterodonta	[48]
137(S3*, 44*, 55*, 105*, 24*, 34*, 105*, 27*, 34*, 105*, 27*, 34*, 105*, 24*, 34*, 105*, 24*, 34*, 105*, 24*, 34*, 105*, 24*, 34*, 105*, 24*, 34*, 105*, 24*, 34*, 105*, 24*, 34*, 105*, 24*, 34*, 105*, 24*, 34*, 105*, 24*, 34*, 105*, 24*, 34*, 105*, 24*, 34*, 105*, 24*, 34*, 105*, 24*, 34*, 105*, 24*, 34*, 105*, 24*, 34*, 105*, 24*, 34*, 105*, 24*, 34*, 105*, 105*, 24*, 34*, 105*, 105*, 24*, 34*, 105*, 105*, 24*, 34*, 105*, 105*, 24*, 34*, 105*, 105*, 24*, 34*, 105*, 105*, 24*, 34*, 105*, 105*, 24*, 34*, 105*, 105*, 24*, 34*, 105*, 105*, 24*, 34*, 105	136	Pterodondiol	Laggera pterodonta	[49]
endedsm: 11-en-8-oneFluchea odorata[50](35', 47', 55', 105', 27', 37', 37', 32', 3'', 25', 03y, 2'', methylbutyryloxy)-4-acetyloxy-6-Pluchea odorata[50](35', 47', 55', 105', 27', 37', 37', 32'', 3'', 25', 03y, 2'', methylbutyryloxy)-4-acetyloxy-11-hydroperoxy-Pluchea odorata[51](35', 47', 55', 105', 27', 37', 37', 32'', 3'', 3'', 37'', 34'', 3'', 3'', 34'', 3'', 3'', 3'',	137	(3 <i>S</i> *,4 <i>R</i> *,5 <i>S</i> *,10 <i>S</i> *,2' <i>R</i> *,3' <i>R</i> *)-3-(2',3'-Epoxy-2'-methylbutyryloxy)-4,7-dihydroxy-	Pluchea odorata (L.) Cass.	[50]
138 (38' 4.4'', 55') (38'', 24'', 34'', 34'', 23'', 25'', 23'', Epoxy 2'', methylbutyryloxy)-4-acetyloxy-6- Pluchea odorata [50] 139 (38'', 44'', 55'', 16'') -3(2', 23'', Epoxy 2'', methylbutyryloxy)-4-acetyloxy-6- Pluchea odorata [50] 140 (38'', 44'', 55'', 16'') -3(2', 3'', Diydroxy-2'', methylbutyryloxy)-4-acetyloxy-11-hydroperoxy- Pluchea odorata [50] 141 Asterothamnone A Asterothamnone control isstaticus [51] 142 Asterothamnone C Asterothamnone control isstaticus [51] 144 Asterothamnone C Asterothamnone control isstaticus [51] 145 Parasenin Parasencin obsorowski (Maxim, YL, Chen [53] 146 6/-Cinnamoyloxy-1/j.2a-dihydroxycudesm-4(15)-ene Verbesina lanata [3] 147 6/-Cinnamoyloxy-1/j.2a-dihydroxycudesm-4-ene Verbesina lanata [3] 156 6/-Cinnamoyloxy-1/j.2d-dihydroxycudesm-4-ene Verbesina lanata [3] 157 6/-Cinnamoyloxy-1/j.4d-fihydroxycudesma-4.ene Verbesina lanata [3] 157 6/-Cinnamoyloxy-1/j.4d-fihydroxycudesma-4.ene Verbesina lanata [3] 158 Sonarvenolide A Sonchuca arvensis L. [53]		eudesm-11-en-8-one		
11) <th>138</th> <th>(35*,4R*,5S*,105*,2'R*,3'R*)-3-(2',3'-Epoxy-2'-methylbutyryloxy)-4-acetyloxy-7-</th> <th>Pluchea odorata</th> <th>[50]</th>	138	(35*,4R*,5S*,105*,2'R*,3'R*)-3-(2',3'-Epoxy-2'-methylbutyryloxy)-4-acetyloxy-7-	Pluchea odorata	[50]
inethory-11-hydroxy-endesm-6-en-8-oneinterhory-11-hydroxy-oxy-Pluchea odorata[50]140(35', 44', 55', 16')-3(2', 3'-Dhydroxy-2'-methylbutyryloxy)4-acetyloxy-11-hydroperoxy- endesm-6-en-8-onePluchea odorata[51]141Asterothannone AAsterothannone CSaterothannone centril-isolaticus[51]142Asterothannone CAsterothannone centril-isolaticus[51]143Asterothannone CAsterothannone centril-isolaticus[51]144Asterothannone CAsterothannos centril-isolaticus[51]145ParaseninParasenin[52]146(6/Cinnamoyloxy-1/j,3x-dihydroxyeudesm-4(15)-enePlasmopara vitical (Berk. & M. A. Curtis)[53]146(6/Cinnamoyloxy-1/j,3x-dihydroxyeudesm-4-eneVerbesina lanata[3]156(6/Cinnamoyloxy-1/j,15-dihydroxyeudesm-4-eneVerbesina lanata[3]157(6/Cinnamoyloxy-1/j,15-dihydroxyeudesm-3-eneVerbesina lanata[3]158Sonarvenolide BSonchus arvensis L[3]159[153, 48, 7-Tihydroxy-1/j,16, 14)Sonchus arvensis L[3]150[163, 48, 7-Tihydroxy-1/j,16, 14)Sonchus arvensis L[3]151[163, 48, 7-Tihydroxy-1/j,13-dihydroeudesma-1,2,6o-olideSorchus arvensis L[3]151[164, 48, 46, 7-Tihydroxy-1/j,16, 9-Tihydroxy-1,16, 0-Tihydroxy-1,16, 0-Tihydroxy-1,16, 0-Tihydroxy-1,16, 0-Tihydroxy-1,16, 0-Tihydroxy-1,16, 0-Tihydroxy-1,16, 0-Tihydroxy-1,16, 0-Tihydroxy-1,16, 0-Tihydroxy-eudesm-3-ene-6-O/p-D- pulcayranoside[42]151[164, 48, 46, 7-Tihydroxy-1,16, 0-Tihydr	139	(35*,4R*,5S*,10S*,2'R*,3'R*)-3-(2',3'-Epoxy-2'-methylbutyryloxy)-4-acetyloxy-6-	Pluchea odorata	[50]
140 (38)*,44°,55°,108)*,3-(2°,3°,Dhydroxy-2*-methylbutyryloxy)-4-acetyloxy-11-hydroperoxy- rudesm-6-en-8-one Pluchea adorata [51] 141 Asterothammone A Asterothammus centrali-solitations [51] 142 Asterothammone A Asterothammus centrali-solitations [51] 143 Asterothammone C Asterothammus centrali-solitations [51] 144 Asterothammone D Asterothammus centrali-solitations [51] 147 6µCInnamolyoxy-1µ/,30-dihydroxyeudesm-4(15)-ene Plansenecio roborowski (Maxim) Y.L.Chen [52] 148 6µCInnamolyoxy-1µ/,30-dihydroxyeudesm-4(15)-ene Verbesina lanata [3] 149 6µCInnamolyoxy-1µ/,30-dihydroxyeudesm-4-ene Verbesina lanata [3] 150 6µCInnamolyoxy-1µ/,51-dihydroxyeudesm-4-ene Verbesina lanata [3] 151 6µCInnamolyoxy-1µ/,51-dihydroxyeudesm-4-ene Verbesina lanata [3] 153 15-Ginamolyoxy-1µ/,51-dihydroxyeudesma-4-ene Verbesina lanata [3] 154 6µCInnamolyoxy-1µ/,51-dihydroxyeudesma-4-ene Verbesina lanata [3] 155 1µ,3a,&a-Trihydroxy-1µ/,31-dihydroxyeudesma-4-ene Verbesina lanata [3] 156 1µ,3a,&a-Trihydroxy-1µ/,31-dihydroxyeudesma-4-ene Verbesina lanata [3] 157 1µ,4a,&b-Trihydroxy-uu/a		methoxy-11-hydroxy-eudesm-6-en-8-one		
eudesm-6-en-8-oneAsterothamnos AAsterothamnos entrali-asiatics Novopkr.[51]142Asterothamnone BAsterothamnos entrali-asiatics[51]143Asterothamnone CAsterothamnus centrali-asiatics[51]144Asterothamnone DAsterothamnus centrali-asiatics[51]145Asterothamnone DPraseniaPrasenio roborowskii (Maxim,) Y.I.Chen[52]1466 β -Cinnamoyloxy-1 β ,3 α -dihydroxyeudesm-4(15)-eneBel, & de Toni[3]1476 β -Cinnamoyloxy-1 β ,3 α -dihydroxyeudesm-4-eneVerbesina lanata[3]1486 β -Cinnamoyloxy-1 β ,3 α -dihydroxyeudesm-4-eneVerbesina lanata[3]1506 β -Cinnamoyloxy-1 β ,4 β ,6 β -trihydroxyeudesm-4-eneVerbesina lanata[3]1516 β -Cinnamoyloxy-1 β ,4 β ,6 β -trihydroxyeudesm-4-eneVerbesina lanata[3]1526 β -Cinnamoyloxy-1 β ,4 β ,6 β -trihydroxyeudesm-4-eneVerbesina lanata[3]15315-Cinnamoyloxy-1 β ,4 β ,6 β -trihydroxyeudesm-4-eneVerbesina lanata[3]154Sonarvenolide ASonchus arvensis L[5]1551 β ,3 β ,88-Trihydroxy-1 β ,13-dihydroxyeudesmaneVerbesina lanata[5]156Norasonicum[5][5]1571 β ,4 β ,88-Trihydroxy-1 β ,13-dihydroxyeudesma-4(15)-en-12,6 σ -olideSonchus arvensis L[5]158Sonarvenolide BSonchus arvensis L[5]159Verbesina lanata[5]160Wedelia ribobata (L) Hitchc.[5]1751 β ,4 β ,88-Trihydroxy-	140	(3S*,4R*,5S*,10S*)-3-(2',3'-Dhydroxy-2'-methylbutyryloxy)4-acetyloxy-11-hydroperoxy-	Pluchea odorata	[50]
141Asterothamnone AAsterothamnone MAsterothamnone M511142Asterothamnone BAsterothamnone curruli -sidiaticus[51]143Asterothamnone DAsterothamnone curruli -sidiaticus[51]144Asterothamnone DAsterothamnone curruli -sidiaticus[51]145ParaseninParasenici[52]1466 β -Cinnamoyloxy-1 β ,3 σ -dihydroxyeudesm-4(15)-eneParaseneio roboroskii (Maxim), Y1.Chen[52]1476 β -Cinnamoyloxy-1 β ,3 σ -dihydroxyeudesm-4(15)-eneVerbeina lanata[3]1486 β -Cinnamoyloxy-1 β ,3 σ -dihydroxyeudesm-4-eneVerbeina lanata[3]1496 β -Cinnamoyloxy-1 β ,3 σ -dihydroxyeudesm-4-eneVerbeina lanata[3]1506 β -Cinnamoyloxy-1 β ,3 β -dihydroxyeudesm-4-eneVerbeina lanata[3]1516 β -Cinnamoyloxy-1 β ,15-dihydroxyeudesm-4-eneVerbeina lanata[3]1526 β -Cinnamoyloxy-1 β ,15-dihydroxyeudesmaneVerbeina lanata[3]15315Sonarvenolide ASonchus arvensis L[3]154Sonarvenolide ASonchus arvensis L[3]155Sonarvenolide ASonchus arvensis L[53]166Verbeina lanata[3]175Nagerothydroxy-1 β ,13-dihydroxyeudesmaneVerbeina lanata[3]176Sonchus arvensis L[53]178Arbuschin ASonchus arvensis L[53]179I β -de Cinnamoyloxy-1 β ,13-dihydroxyeudesmaneVerbeina lanata[54]171I β -de Cinnamoylo		eudesm-6-en-8-one		
142Asterothamnone BAsterothamnone currali-asiatizia[51]143Asterothamnone DAsterothamnos currali-asiatizia[51]144Asterothamnone DParaseninParasenin1456 β -Cinnamoyloxy-1 β ,3 α -dihydroxyeudesm-4(15)-enePlasmopara vitical (Berk, & M. A. Curits)[3]1466 β -Cinnamoyloxy-1 β ,3 α -dihydroxyeudesm-4-eneVerbesina lanata[3]1476 β -Cinnamoyloxy-1 β ,3 α -dihydroxyeudesm-4-eneVerbesina lanata[3]1486 β -Cinnamoyloxy-1 β ,15-dihydroxyeudesm-4-eneVerbesina lanata[3]1506 β -Cinnamoyloxy-1 β ,15-dihydroxyeudesm-4-eneVerbesina lanata[3]1516 β -Cinnamoyloxy-1 β ,15-dihydroxyeudesm-8-eneVerbesina lanata[3]1526 β -Cinnamoyloxy-1 β ,15-dihydroxyeudesmaneVerbesina lanata[3]153155Sonarvenolide BSonchus arvensis L[53]154Sonarvenolide BSonchus arvensis L[53]155Sonarvenolide BSonchus arvensis L[54]156Norpterosonol ASassarrea lapa[42]1571 β ,4 α ,8 α -Trihydroxy-1 β ,1 β -dihydroxy-eudesma-12,6 α -olideSeriphidium khorasanicum (yn.[42]158Arbusculin ASassarrea lapa[42]159Wederitike BWedeila rilobata (L.) Hitch.[55]160Wederitike BWedeila rilobata[51]1711 β ,4 α ,8 α -Trihydroxy-1 β ,1 β -Trihydroxy-11-0ic acidCrep is sarrea (L.) Bornm.[40]175Nopterodonol AL	141	Asterothamnone A	Asterothamnus centrali-asiaticus Novopokr.	[51]
143Asterothamnone CAsterothammus centralia siziaticus[51]144Asterothammone DAsterothammus centralia siziaticus[51]145ParaseniaParasenico robornoskii (Maxim, YL,Chen[52]146 6β -Cinnamoyloxy-1 β , β , a -dihydroxyeudesm-4(15)-eneParasenico robornoskii (Maxim, YL,Chen[51]147 6β -Cinnamoyloxy-1 β , β , a -dihydroxyeudesm-4(15)-eneVerbesina lanata[31]148 6β -Cinnamoyloxy-1 β , β , a -dihydroxyeudesm-4-eneVerbesina lanata[31]150 6β -Cinnamoyloxy-1 β , β , β -dihydroxyeudesm-4-eneVerbesina lanata[31]151 6β -Cinnamoyloxy-1 β , β , β -dihydroxyeudesm-4-eneVerbesina lanata[31]152 6β -Cinnamoyloxy-1 β , β , β -dihydroxyeudesm-4-eneVerbesina lanata[31]154 6β -Cinnamoyloxy-1 β , β , β , β -trihydroxyeudesmaneVerbesina lanata[31]155Sonarvenolide ASonchus arvensis L[33]156Sonarvenolide ASonchus arvensis L[33]157I β , β , β , β -trihydroxy-1 β , β , β , β -trihydroxy-1 β , β , β , β -trihydroxy-1 β ,	142	Asterothamnone B	Asterothamnus centrali-asiaticus	[51]
144 Asterothammore D Asterothammus centrali-asiaticus [51] 145 Parasenin Parasenin [52] 146 6β-Cinnamoyloxy-1β/3α-dihydroxyeudesm-4(15)-ene Paraseneio horowski (Maximi, YLLChen [31] 147 6β-Cinnamoyloxy-1β/3α-dihydroxyeudesm-4-ene Verbesina lamata [31] 148 6β-Cinnamoyloxy-1β/3α-dihydroxyeudesm-4-ene Verbesina lamata [31] 150 6β-Cinnamoyloxy-1β/3d-dihydroxyeudesm-4-ene Verbesina lamata [31] 151 6β-Cinnamoyloxy-1β/3d-dihydroxyeudesm-4-ene Verbesina lamata [31] 152 6β-Cinnamoyloxy-1β/3d-dihydroxyeudesm-3-ene Verbesina lamata [31] 153 15-Cinnamoyloxy-1β/3f-trihydroxyeudesmane Verbesina lamata [31] 154 Sonarvenolide B Sonthus arvensis L [53] 155 Sonarvenolide B Sonthus arvensis [54] 158 Arbusculin A Sausarvensica [54] 159 1β/3a,&ar-Thihydroxy-1β/13-dihydroeudesma-12,6ar-olide Seriphidium khorasanica [54] 154 Arbusculin A Sausarven lappa [42] 155 Norpterodonol A Laggera perodonta (DC.) Benth [56] 166 Wedeturtlide B Wedeturtlidobata (L.) Bitch. [55]	143	Asterothamnone C	Asterothamnus centrali-asiaticus	[51]
145ParasenciaParasencia roborowski (Maxim.) Y1.Lchen[52]146 6β -Cinnamoyloxy-1 β ,3 α -dihydroxyeudesm.4(15)-eneParasencia roborowski (Maxim.) Y1.Lchen[3]147 6β -Cinnamoyloxy-1 β ,2 α -dihydroxyeudesm.4(15)-eneVerbesina lanata[3]148 6β -Cinnamoyloxy-1 β ,3 α -dihydroxyeudesm.4-eneVerbesina lanata[3]150 6β -Cinnamoyloxy-1 β ,3 α -dihydroxyeudesm.4-eneVerbesina lanata[3]151 6β -Cinnamoyloxy-1 β ,15-dihydroxyeudesm.4-eneVerbesina lanata[3]152 6β -Cinnamoyloxy-1 β ,15-dihydroxyeudesm.a-eneVerbesina lanata[3]15315-Cinnamoyloxy-1 β ,4 β ,6 β -trihydroxyeudesmaneVerbesina lanata[3]154Sonarvenolide ASonchus arvensis[53]155Sonarvenolide ASonchus arvensis[53]156 1β ,3a,8 α -Trihydroxy-11 β ,13-dihydroxeudesmaneSeriphidium khorasanicum (syn.[54]155Sonarvenolide ASonchus arvensis[54]156 1β ,3a,8 α -Trihydroxy-11 β ,13-dihydroxeudesma-12,6 α -olideSeriphidium khorasanicum[54]157 1β ,4a,8 α -Trihydroxy-11 β ,13-dihydroxy-11-oic acidCrepis sancta (L) Born.[61]168Wedelti trilobata (L) Hitch.[55]169Wedelti trilobata (L) Born.[61]161Norpterodonal ALaggera pierodonata (C) Benth[55]162(65,75,10R)-3-Ox-di-ne-eudesm-4-en-6 α -hydroxy-11-oic acidCrepis sancta (L) Born.[61]170(1R,55,67,55,93,10R)-9-O(Z-p-Coumareyl)-1,6,9-Trihydroxy-	144	Asterothamnone D	Asterothamnus centrali-asiaticus	[51]
146 6β -Cinnamoyloxy-1 β , 3α -dihydroxyeudesm-4(15)-eneDistmet, 4α fori[3]147 6β -Cinnamoyloxy-1 β , 2α -dihydroxyeudesm-4-eneVerbesina lanata B.L.Rob. & Greenm.[3]148 6β -Cinnamoyloxy-1 β , 2α -dihydroxyeudesm-4-eneVerbesina lanata Catta[3]149 6β -Cinnamoyloxy-1 β , 2α -dihydroxyeudesm-4-eneVerbesina lanata[3]150 6β -Cinnamoyloxy-1 β , 3α -dihydroxyeudesm-4-ene-3-oneVerbesina lanata[3]151 6β -Cinnamoyloxy-1 β , 4β , 6β -trihydroxyeudesm-3-eneVerbesina lanata[3]152 6β -Cinnamoyloxy-1 β , 4β , 6β -trihydroxyeudesmaneVerbesina lanata[3]15315-Cinnamoyloxy-1 β , 4β , 6β -trihydroxyeudesmaneVerbesina lanata[3]154Sonarvenolide BSonchus arvensis L.[53]155Ja, 3α , $6a$ -Trihydroxy-1 β , 1β -dihydroxyeudesma-4(15)-en-12, 6α -olideSeriphidium khorasanicum[54]151Ja, 3α , $6a$ -Trihydroxy-1 β , 1β -dihydroeudesma-4(15)-en-12, 6α -olideSeriphidium khorasanicum[54]151Ja, 3α , $6a$ -Trihydroxy-1 β , 1β -dihydroeudesma-4(15)-en-12, 6α -olideSeriphidium khorasanicum[54]153Nasouclin AYalitaSonchus arvensis[55]154Ja, 3α , $8a$ -Trihydroxy-1 β , 1β -dihydroxy-1 β -di-dirdoxy-1 β -dip-dirdoxy-1 β -dip-d	145	Parasenin	Parasenecio roborowskii (Maxim.) Y.L.Chen	[52]
Berl. & de Toni1476/-Cinnamoyloxy-1/p.2a-dihydroxyeudesm-4-neVerbesina lanata B.LRob. & Greenm.[3]1486/-Cinnamoyloxy-1/p.3a-dihydroxyeudesm-4-neVerbesina lanata[3]1506/-Cinnamoyloxy-1/p.15-dihydroxyeudesm-4-eneVerbesina lanata[3]1516/-Cinnamoyloxy-1/p.15-dihydroxyeudesm-4-eneVerbesina lanata[3]1526/-Cinnamoyloxy-1/p.15-dihydroxyeudesm-3-eneVerbesina lanata[3]1526/-Cinnamoyloxy-1/p.4/p.6/p-trihydroxyeudesm-3-eneVerbesina lanata[3]15315-Cinnamoyloxy-1/p.4/p.6/p-trihydroxyeudesmaneVerbesina lanata[3]154Sonarvenolide ASonchus arvensis L.[53]155Sonarvenolide ASonchus arvensis L.[54]1561/p.3a,&a-Trihydroxy-1/p.13-dihydroeudesma-4(15)-en-12,6a-olideSeriphidium khorassanicum (syn.[54]1571/p.4a,&a-Trihydroxy-1/p.13-dihydroeudesma-12,6a-olideSeriphidium khorassanicum (syn.[54]158Arbusculin AKaasure lappa[42]159Wedetrilide CWedetlia trilobata[55]160Wedetrilide CLagger perdonta (DC,) Benth[56]161Norpterodonol ALagger perdonta (DC,) Benth[56]162(6S,75,10R)-3-Oxo-di-nor-eudesm-4-en-6a-hydroxy-11-oic acidCrepis sancta (L) Bornm.[40]163Vlasoulone AVladimiria souliei (Franch.) Ling[57]164Vlasoulone AVlasoulone BSolide (Franch.) Ling[57]165Echingrigfiner AAuter soulia<	146	6β -Cinnamoyloxy- 1β , 3α -dihydroxyeudesm-4(15)-ene	Plasmopara viticola (Berk. & M. A. Curtis)	[3]
1476/-Cinnamoyloxy-1/ β /2 <i>n</i> -dihydroxyeudesm-4-eneVerbesina lanata B.LRob. & Greenm.[3]1486/-Cinnamoyloxy-1/ β /2 <i>n</i> -dihydroxyeudesm-4-eneVerbesina lanata[3]1506/-Cinnamoyloxy-1/ β /3 <i>n</i> -dihydroxyeudesm-4-eneVerbesina lanata[3]1516/-Cinnamoyloxy-1/ β /3 <i>n</i> -dihydroxyeudesm-4-eneVerbesina lanata[3]1516/-Cinnamoyloxy-1/ β /3 <i>n</i> -dihydroxyeudesm-4-eneVerbesina lanata[3]1526/-Cinnamoyloxy-1/ β /4/ β / β /1-trihydroxyeudesm-3-eneVerbesina lanata[3]15315-Cinnamoyloxy-1/ β /4/ β / β /trihydroxyeudesmaneVerbesina lanata[3]154Sonarvenolide ASonchus arvensis L[53]155Sonarvenolide BSonchus arvensis L[54]14/, 3a, 8a-Trihydroxy-11/ β /13-dihydroeudesma-4(15)-en-12, 6a-olideSeriphidum khorasanicum (syn.[54]1571/ β /as, 8a-Trihydroxy-11/ β /13-dihydroeudesma-12, 6a-olideSeriphidum khorasanicum[54]158Arbusculin ASaussurea lappa[42]159Wedetrilide BWedetrilide B[55]160Wedetrilide BWedetrilide B[56]161Norpterodonol ALaggera pterodonta (DC.) Benth[56]162(65,75,10R)-3-Oxo-di-nor-eudesm-4-en-6a-hydroxy-11-oic acidCrepis sancta (L.) Borm.[46]163Vlasoulone BPulicaria insignis[58]164Vlasoulone BPulicaria insignis[58]165Pulisignoside DPulicaria insignis[58]166Pulisignoside A <td< th=""><th></th><th></th><th>Berl. & de Toni</th><th></th></td<>			Berl. & de Toni	
148 6β-Cinnamoyloxy-1β-hydroxyeudesm-4-ene Verbesina lanata [3] 149 6β-Cinnamoyloxy-1β,13-dihydroxyeudesm-4-ene Verbesina lanata [3] 150 6β-Cinnamoyloxy-1β,13-dihydroxyeudesm-4-ene-3-one Verbesina lanata [3] 151 6β-Cinnamoyloxy-1β,15-dihydroxyeudesm-3-ene Verbesina lanata [3] 152 6β-Cinnamoyloxy-1β,45,6β-trihydroxyeudesmane Verbesina lanata [3] 153 Is-Cinnamoyloxy-1β,46,6β-trihydroxyeudesmane Verbesina lanata [3] 154 Sonarvenolide A Sonchus arvensis L [53] 155 Sonarvenolide B Sonchus arvensis [54] 175 1β,4a,8a-Trihydroxy-11β,13-dihydroeudesma-12,6a-olide Seriphidium khorassanican [54] 176 Vedetrilide B Wedetrilide C Wedeila rilobata [55] 176 Wedetrilide C Wedeila rilobata [57] 176 Vasoulone A Vadimiria souliei [57] 176 Vasoulone A Vladimiria souliei [57] 176 Vasoulone B Pulicaria insignis [58] 177 1/4,58,68,75,98,10R)-9-O-(Z-p-Coumaroyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O-β-D- Aster koratensis [59] 176 Pulisignoside A Pulicaria insignis [58] <	147	6β -Cinnamoyloxy- 1β , 2α -dihydroxyeudesm-4(15)-ene	Verbesina lanata B.L.Rob. & Greenm.	[3]
1496/i-Cinnamoyloxy-1/i,3-cilihydroxycudesm-4-en-3-oneVerbesina lanata[3]1506/i-Cinnamoyloxy-1/i,15-cilihydroxycudesm-3-eneVerbesina lanata[3]1516/i-Cinnamoyloxy-1/i,15-cilihydroxycudesm-3-eneVerbesina lanata[3]1526/i-Cinnamoyloxy-1/i,15-cilihydroxycudesmaneVerbesina lanata[3]15315-Cinnamoyloxy-1/i,4/i,6/i+trihydroxycudesmaneVerbesina lanata[3]154Sonarvenolide ASonchus arvensis L[53]1551/i,8/a,8/o-Trihydroxy-1/i,1/i-3-dihydrocudesma-4(15)-en-12,6a-olideSonchus arvensis[54]1561/i,8/a,8/o-Trihydroxy-1/i,1/i-3-dihydrocudesma-12,6a-olideSonchus arvensis[54]158Arbusculin ASaussurea lappa[42]159Wedetrilide BWedetir niboata (L.) Hitchc.[55]160Wedetrilide CWedetir niboata (L.) Hitchc.[55]161Norpterodonol ALaggera piterodonta (DC.) Benth[56]162(65,75,10R)-3-Oxo-di-nor-eudesm-4-en-6a-hydroxy-11-oic acidCrepis sancta (L.) Bornm.[40]173Vlasoulone BPulicaria insignis[58]164Vlasoulone BPulicaria insignis[58]165Pulisignoside APulicaria insignis[58]166Pulisignoside APulicaria insignis[58]167Pulisignoside APulicaria insignis[58]168Pulisignoside APulicaria insignis[58]169(18,55,6R,75,95,51,0R)-9-O.(Z-p-Coumaroyl)-1,6,9-Trihydroxy-3"-methylglutaryl]-6-Aster	148	6β-Cinnamoyloxy-1β-hydroxyeudesm-4-ene	Verbesina lanata	[3]
1506/f-Cinnamoyloxy-1/h,15-dihydroxycudesm-3-eneVerbestina lanata[3]1516/f-Cinnamoyloxy-1/h,15-dihydroxycudesm-3-eneVerbestina lanata[3]1526/f-Cinnamoyloxy-1/h,46/f-trihydroxycudesmaneVerbestina lanata[3]15315-Cinnamoyloxy-1/h,4/h,6f-trihydroxycudesmaneVerbestina lanata[3]154Sonarvenolide ASonchus arvensis L[53]155Sonarvenolide BSonchus arvensis L[53]156J/h,3a,8a-Trihydroxy-11/h,13-dihydroeudesma-4(15)-en-12,6a-olideSeriphidium khorassanicam (syn.[54]1571/h,4a,8a-Trihydroxy-11/h,13-dihydroeudesma-12,6a-olideSeriphidium khorassanicum (syn.[54]158Arbusculin ASaussurea lappa[42]159Wedetrilide BWedetrilide CSaussurea lappa[42]160Wedetrilide CWedetrilide C[55]161Norpterodonol ALaggera pterodonta (DC.) Benth[56]162(65,75,10R)-3-0xo-di-nor-eudesm-4-en-6a-hydroxy-11-oic acidCrepts sancta (L.) Bornm.[40]163Vlasoulone AVladimiria souliei (Franch.) Ling[57]164Vlasoulone APulicaria insignis J.B.Drumm. ex Dunn[58]165Echingridimer APulicaria insignis[58]166Pulisignoside APulicaria insignis[58]167Pulisignoside APulicaria insignis[58]168Pulisignoside BSate koraiensis[59]1711a,66,99,-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutar	149	6β -Cinnamoyloxy- 1β , 3α -dihydroxyeudesm-4-ene	Verbesina lanata	[3]
1516β-Cinnamoyloxy-1β,15-dihydroxyeudesma-eVerbesina lanata[3]1526β-Cinnamoyloxy-4β,9β,15-trihydroxyeudesmaneVerbesina lanata[3]15315-Cinnamoyloxy-1β,4β,6β-trihydroxyeudesmaneVerbesina lanata[3]154Sonarvenolide ASonchus arvensis L[53]155Sonarvenolide BSonchus arvensis[53]1561β,3α,8α-Trihydroxy-11β,13-dihydroeudesma-4(15)-en-12,6α-olideSeriphidium khorassanicum (syn.[54]1571β,4α,8α-Trihydroxy-11β,13-dihydroeudesma-12,6α-olideSeriphidium khorassanicum[54]158Arbusculin ASaussurea lapa[42]159Wedetrilide BWedetrilide CSaussurea lapa[42]160Wedetrilide CWedetrilide C[55]161Norpterodonol ALaggera ptrodonta (DC.) Benth[56]162(65,75,10R)-3-0xo-di-nor-eudesm-4-en-6a-hydroxy-11-oic acidCrepis sancta (L.) Bornm.[40]163Vlasoulone AVladimiria souliei (Franch.) Ling[57]164Vlasoulone BPulicaria insignis J.R.Drumm, ex Dunn[58]167Pulisignoside DPulicaria insignis J.R.Drumm, ex Dunn[58]168Pulisignoside APulicaria insignis J.R.Drumm, ex Dunn[58]169(IR,55,6R,75,95,10R)-9-O-(Z-p-Coumaroyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O-β-D- glucopyranosideAster koraiensis Nakai[59]170(IR,55,6R,75,95,10R)-9-O-(Z-p-Coumaroyl)-1,6,9-Trihydroxy-3'-methylglutaryl]-6- O-β-D-glucopyranosideAmbrosia artemisifolia L.[60]171 <th>150</th> <th>6β-Cinnamoyloxy-1β,15-dihydroxyeudesm-4-en-3-one</th> <th>Verbesina lanata</th> <th>[3]</th>	150	6β-Cinnamoyloxy-1β,15-dihydroxyeudesm-4-en-3-one	Verbesina lanata	[3]
1526β-Cinnamoyloxy-4β.9β.15-trihydroxyeudesmaneVerbesina lanata[3]15315-Cinnamoyloxy-1β,4β.6β-trihydroxyeudesmaneVerbesina lanata[3]154Sonarvenolide ASonchus arvensis L[53]155Sonarvenolide BSonchus arvensis L[53]1561β,3a,8a-Trihydroxy-11β,13-dihydroeudesma-4(15)-en-12,6a-olideSeriphidium khorassanicum (syn.[54]1571β,4a,8a-Trihydroxy-11β,13-dihydroeudesma-12,6a-olideSeriphidium khorassanicum[54]158Arbusculin ASaussurea lappa[42]159Wedetrilide BWedetrilide CWedetia rilobata[55]160Wedetrilide CWedetia rilobata[55]161Norperodonol ALaggera ptrodonta (DC.) Benth[56]162(65,75,10R)-3-Oxo-di-nor-eudesm-4-en-6a-hydroxy-11-oic acidCrepis sancta (L.) Bornm.[40]163Vlasoulone AVladimiria souliei [57][57]164Vlasoulone BPulicarci nisgnis J.R.Drumm. ex Dunn[58]166Pulisignoside APulicarci nisgnis J.R.Drumm. ex Dunn[58]167Pulisignoside APulicarci nisgnis [58][58]168Pulisignoside APulicarci nisgnis[58]170(IR,55,6R,75,95,10R)-9-O-(Z-p-Coumaroyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O/p-D- glucopyranosideArter koraiensis Nakai[59]1711a,66,9/P-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-(fS)-3"-hydroxy-3"-methylglutaryl]-6- O-f-D-glucopyranosideAmbrosia artemisifolia L.[60]1721a,66,9/P-Trihydroxy-5,10-bis	151	6β-Cinnamoyloxy-1β,15-dihydroxyeudesm-3-ene	Verbesina lanata	[3]
15315-Cinnamoyloxy-1 β_i / β_i / β_i /frihydroxyeudesmaneVerbesina lanata[3]154Sonarvenolide ASonchus arvensis[53]155Sonarvenolide BSonchus arvensis[53]1561 β_i / a_i , Ba -Trihydroxy-11 β_i 13-dihydroeudesma-4(15)-en-12,6 a -olideSeriphidium khorassanicum (syn.[54]Artemisia khorassanicum (syn.[54]Artemisia khorassanicum[54]To β_i / a_i , Ba -Trihydroxy-11 β_i 13-dihydroeudesma-12,6 a -olideSeriphidium khorassanicum[54]Seriphidium khorassanicum[54]To β_i / a_i , Ba -Trihydroxy-11 β_i 13-dihydroeudesma-12,6 a -olideSeriphidium khorassanicum[54]Seriphidium khorassanicum[54]To β_i , Aa_i , Ba -Trihydroxy-11 β_i 13-dihydroeudesma-12,6 a -olideSeriphidium khorassanicum[54]Mederinide CSeriphidium khorassanicum[55]160Wedetirilide CWedelia trilobata[51]161Norpterodonol ALaggera pterodonta (DC.) Benth[56]163Vlasoulone AVladimiria souliei (Franch.) Ling[57]164Vlasoulone BVladimiria souliei[57]165Echinops grijsi[58]Pulisignoside DPulicaria insignis J.R.Drumm. ex Dunn[58]167Vladimiria souliei[59]glucopyranosideSeri phidium[59]170(IR,5S,6R,7S,9S,10R).9-0	152	6β -Cinnamoyloxy- 4β , 9β , 15-trihydroxyeudesmane	Verbesina lanata	[3]
154Sonarvenolide ASonchus arvensis L.[53]155Sonarvenolide BSonchus arvensis L.[53]156 $l_{\beta}.3a, 8a$ -Trihydroxy-11 $\beta, 13$ -dihydroeudesma-4(15)-en-12, 6a-olideSeriphidium khorassanicum (syn.[54]157 $l_{\beta}.4a, 8a$ -Trihydroxy-11 $\beta, 13$ -dihydroeudesma-12, 6a-olideSeriphidium khorassanicum[54]158Arbusculin ASaussurea lappa[42]159Wedetrilide BWedetrilide CWedelia trilobata (L.) Hitchc.[55]160Wedetrilide CWedelia trilobata (D.) Benth[56]161Norpterodonol AKagera pterodonta (DC.) Benth[56]162(65,75,10R)-3-Oxo-di-nor-eudesm-4-en-6a-hydroxy-11-oic acidCrepis sancta (L.) Bornm.[40]163Vlasoulone AVladimiria souliei (Franch.) Ling[57]164Vlasoulone BUlaimiria souliei (Franch.) Ling[57]165Echingridimer AEchinogs grijsii[45]166Pulisignoside DPulicaria insignis[58]167Pulisignoside BPulicaria insignis[58]168Pulisignoside BPulicaria insignis[58]170(1R,5S,6R,7S,9S,10R)-9-O-(E-Percoumaroyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O-fr-D- glucopyranosideAster koraiensis[60]0-fr-D-glucopyranoside	153	15-Cinnamoyloxy-1β,4β,6β-trihydroxyeudesmane	Verbesina lanata	[3]
155Sonarvenolide BSonchus arvensis[53]1661/j.3a, 8a Trihydroxy-11/j,13-dihydroeudesma-4(15)-en-12,6a-olideSeriphidium khorassanican (syn.[54]1771/j,4a, 8a Trihydroxy-11/j,13-dihydroeudesma-12,6a-olideSeriphidium khorassanican[54]188Arbusculin ASaussurea (appa[42]199Wedetrilide BWedetrilide CSeriphidium khorassanicum[55]160Wedetrilide CWedetrilide C[55]161Norpterodond ALaggera pterodonta (Dc.) Benth[56]162(65, 75, 10, 8)-3-Oxo-di-nor-eudesm-4-en-6a-hydroxy-11-oic acidCrepis soncta (L.) Bornm.[40]163Vlasoulone AVladimiria souliei (Franch.) Ling[57]164Vlasoulone BVladimiria souliei (Franch.) Ling[57]165Echingradimer AEchingra grijsi[45]166Pulisignoside DPulicaria insignis J.R.Drumm. ex Dunn[58]167Pulisignoside BPulicaria insignis[58]168Pulisignoside BPulicaria insignis[59]glucopyranosideJucopyranosideSeriphidruxy-oudesm-3-ene-6-Orβ-D-Aster koraiensis Nakai[59]170(IR,55,6R,7S,9S,10R)-9-O-(E-Feruloy1)-1,6,9-Trihydroxy-a''-methylglutary1]-6- O-fb-P.glucopyranosideAmbrosia artemisiifolia L.[60]1711a,6f,9f-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-(fS)-3''-hydroxy-3''-methylglutary1]-6- O-fb-P.glucopyranosideAmbrosia artemisiifolia[60]1721a,6f,9f-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-(fS)-3''-hydroxy-3''-methylgluta	154	Sonarvenolide A	Sonchus arvensis L.	[53]
1561β,3a,8a-Trihydroxy-11β,13-dihydroeudesma-4(15)-en-12,6a-olideSeriphidium khorassanicum (syn.[54] Artemisia khorassanicum (syn.1571β,4a,8a-Trihydroxy-11β,13-dihydroeudesma-12,6a-olideSeriphidium khorassanicum[54]158Arbusculin ASaussurea lappa[42]159Wedetrilide BSuussurea lappa[42]159Wedetrilide CWedelia trilobata (L.) Hitchc.[55]160Wedetrilide CWedelia trilobata[55]161Norpterodonol ALaggera pterodonta (DC.) Benth[56]162(65,75,10R)-3-Oxo-di-nor-eudesm-4-en-6a-hydroxy-11-oic acidCrepis sancta (L.) Bornm.[40]163Vlasoulone AVladimiria souliei (Franch.) Ling[57]164Vlasoulone BVladimiria souliei[57]165Echingridimer AEchinops grijsii[58]166Pulisignoside APulicaria insignis J.R.Drumm. ex Dunn[58]167Pulisignoside APulicaria insignis[58]168Pulisignoside BPulicaria insignis[58]169(1R,55,6R,75,9S,10R)-9-O-(Z-p-Coumaroyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O-β-D-Aster koraiensis Nakai[59]glucopyranoside[59]1711a,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[G)-3"-methylglutaryl]-6-Ambrosia artemisiifolia L.[60]0-β-D-glucopyranoside[60]1721a,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[G)-3"-methylglutaryl]-6-Ambrosia artemisiifolia[60]0-β-D-glucopyranoside[60]173<	155	Sonarvenolide B	Sonchus arvensis	[53]
Artemisia khorassanica)157 $l/4.a, 8a$ -Trihydroxy-11/,13-dihydroeudesma-12,6a-olideSeriphidium khorassanicum[54]158Arbusculin ASausurea lappa[42]159Wedetrilide BWedetil trilobata (L.) Hitchc.[55]160Wedetrilide CWedetil trilobata (L.) Hitchc.[55]161Norpterodonol ALaggera pterodonta (DC.) Benth[56]162(65,75,10R)-3-Oxo-di-nor-eudesm-4-en-6a-hydroxy-11-oic acidCrep's sancta (L.) Bornm.[40]163Vlasoulone AVladimiria souliei (Franch.) Ling[57]164Vlasoulone BVladimiria souliei (Franch.) Ling[57]165Echingridimer AEchinops grijsi[58]166Pulisignoside DPulicaria insignis J.R.Drumm. ex Dunn[58]167Pulisignoside APulicaria insignis[58]168Pulisignoside APulicaria insignis[58]169(IR,55,6R,75,9S,10R)-9-O-(Z-p-Coumaroyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O-β-D- glucopyranosideAster koraiensis Nakai[59]171(18,55,6R,75,9S,10R)-9-O-(E-Feruloyl)-1,6,9-Trihydroxy-3'-methylglutaryl]-6- $O_{P}-D$ -glucopyranosideAmbrosia artemisiifolia L.[60]1721a,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-[(S)-3''-hydroxy-3''-methylglutaryl]-6- $O_{P}-D-glucopyranosideAmbrosia artemisiifolia[60]1731J,6a-Øhydroxy-7-epi-eudesm-3-ene-1-O-[(S)-3''-hydroxy-3''-methylglutaryl]-6-O_{P}-D-glucopyranosideAmbrosia artemisiifolia[60]1741a,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3''-hy$	156	1β , 3α , 8α -Trihydroxy- 11β , 13 -dihydroeudesma-4(15)-en- 12 , 6α -olide	Seriphidium khorassanicum (syn.	[54]
157 $l\beta,4a,8a$ -Trihydroxy-11 $\beta,13$ -dihydroeudesma-12,6a-olideSeriphidium khorassanicum[54]158Arbusculin ASaussurea lappa[42]159Wedetrilide BWedelar irilobata (L.) Hitchc.[55]160Wedetrilide CWedelia rilobata (D.C.) Benth[56]161Norpterodonol ALaggera pterodonta (D.C.) Benth[56]162(65,75,10R)-3-Oxo-di-nor-eudesm-4-en-6 α -hydroxy-11-oic acidCrepis sancta (L.) Bornm.[40]163Vlasoulone AVladimiria souliei (Franch.) Ling[57]164Vlasoulone BVladimiria souliei (Pranch.) Ling[57]165Echingridimer AEchinops grijsi[45]166Pulisignoside DPulicaria insignis J.R.Drumm. ex Dunn[58]167Pulisignoside APulicaria insignis[58]168Pulisignoside BPulicaria insignis[58]169(1R,55,6R,75,9S,10R)-9-O-(Z-p-Coumaroyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O- β -D-Aster koraiensis Nakai[59]glucopyranoside[59]glucopyranoside[50]170(1R,55,6R,75,9S,10R)-9-O-(E-Feruloyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O- β -D-Aster koraiensis[60]0- β -D-glucopyranoside[60] O_{β} -D-glucopyranoside[60]1711a,6 β ,9 β /P.Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-Ambrosia artemisiifolia L.[60]1731/,6 α ,Dihydroxy-7-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-Ambrosia artemisiifolia[60]1731a,6 β ,9 β /P.Trihy			Artemisia khorassanica)	
158Arbusculin ASaussurea lappa[42]159Wedetrilide BWedelia trilobata (L.) Hitchc.[55]160Wedetrilide CWedetia trilobata[55]161Norpterodonol ALaggera pterodonta (DC.) Benth[56]162(65,75,10R)-3-Oxo-di-nor-eudesm-4-en-6α-hydroxy-11-oic acidCrepis sancta (L.) Bornm.[40]163Vlasoulone AVladimiria souliei (Franch.) Ling[57]164Vlasoulone BVladimiria souliei (Franch.) Ling[57]165Echingridimer AEchinops grijsii[45]166Pulisignoside DPulicaria insignis J.R.Drumm. ex Dunn[58]167Pulisignoside APulicaria insignis[58]168Pulisignoside BPulicaria insignis[58]169(1R,55,6R,75,9S,10R)-9-O-(Z-p-Coumaroyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O-β-D- glucopyranosideAster koraiensis Nakai[59]170(1R,55,6R,75,9S,10R)-9-O-(E-Feruloyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O-β-D- glucopyranosideAster koraiensis[60]1711α,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- O-β-D-glucopyranosideAmbrosia artemisiifolia L.[60]1731β,6α-Dihydroxy-7-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- O-β-D-glucopyranosideAmbrosia artemisiifolia[60]1741α,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- O-β-D-glucopyranosideAmbrosia artemisiifolia[60]1741α,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]	157	1β , 4α , 8α -Trihydroxy- 11β , 13 -dihydroeudesma- 12 , 6α -olide	Seriphidium khorassanicum	[54]
159Wedetrilide BWedetrilide CSignalSignal160Wedetrilide CWedetla trilobata (L.) Hitchc.[55]161Norpterodonol ALaggera pterodonta (DC.) Benth[56]162(6S,7S,10R)-3-Oxo-di-nor-eudesm-4-en-6a-hydroxy-11-oic acidCrepis sancta (L.) Bornm.[40]163Vlasoulone AVladimiria souliei (Franch.) Ling[57]164Vlasoulone BVladimiria souliei (Franch.) Ling[57]165Echingrighimer AEchinops grijsi[45]166Pulisignoside DPulicaria insignis J.R.Drumm. ex Dunn[58]167Pulisignoside APulicaria insignis[58]168Pulisignoside BPulicaria insignis[58]169(1R,5S,6R,7S,9S,10R)-9-O-(Z-p-Coumaroyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O-β-D- glucopyranosideAster koraiensis[59]170(1R,5S,6R,7S,9S,10R)-9-O-(E-Feruloyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O-β-D- glucopyranosideAmbrosia artemisiifolia L.[60]1711a,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- O-β-D-glucopyranosideAmbrosia artemisiifolia[60]1731β,6a-Dihydroxy-7-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- o-(6-O-acetyl)-β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- O-β-D-glucopyranosideAmbrosia artemisiifolia[60]1731β,6a-Dihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- O-β-D-glucopyranosideAmbrosia artemisiifolia[60]1741a,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S	158	Arbusculin A	Saussurea lappa	[42]
160Wedetrilide CWedetrilibata[55]161Norpterodonol ALaggera pterodonta (DC.) Benth[56]162(65,75,10R)-3-Oxo-di-nor-eudesm-4-en-6α-hydroxy-11-oic acidCrepis sancta (L.) Bornm.[40]163Vlasoulone AVladimiria souliei (Franch.) Ling[57]164Vlasoulone BVladimiria souliei[57]165Echingys grijsi[45]166Pulisignoside DPulicaria insignis J.R.Drumm. ex Dunn[58]167Pulisignoside APulicaria insignis[58]168Pulisignoside BPulicaria insignis[58]169(1R,5S,6R,7S,9S,10R)-9-O-(Z-p-Coumaroyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O-β-D- glucopyranosideAster koraiensis[59]170(1R,5S,6R,7S,9S,10R)-9-O-(E-Feruloyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O-β-D- glucopyranosideAster koraiensis[60]1711α,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- O-β-D-glucopyranosideAmbrosia artemisifolia L.[60]1731β,6a-Dihydroxy-7-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- O_β-D-glucopyranosideAmbrosia artemisifolia[60]1731α,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- O_β-D-glucopyranosideAmbrosia artemisifolia[60]1741α,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- O-β-D-glucopyranosideAmbrosia artemisifolia[60]1751α,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- O-(6-O-acetyl)-β-D-glucopyranosi	159	Wedetrilide B	Wedelia trilobata (L.) Hitchc.	[55]
161Norpterodonol ALaggera pterodonta (DC.) Benth[56]162(65,75,10R)-3-Oxo-di-nor-eudesm-4-en-6a-hydroxy-11-oic acidCrepis sancta (L.) Bornm.[40]163Vlasoulone AVladimiria souliei (Franch.) Ling[57]164Vlasoulone BVladimiria souliei (Granch.) Ling[57]165Echingridimer AEchinops grijsi[45]166Pulisignoside DPulicaria insignis J.R.Drumm. ex Dunn[58]167Pulisignoside APulicaria insignis[58]168Pulisignoside BPulicaria insignis[59]169(1R,5S,6R,7S,9S,10R)-9-O-(Z-p-Coumaroyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O-β-D- glucopyranosideAster koraiensis Nakai[59]170(1R,5S,6R,7S,9S,10R)-9-O-(E-Feruloyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O-β-D- glucopyranosideAster koraiensis[59]1711a,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- O-β-D-glucopyranosideAmbrosia artemisiifolia L.[60]1731β,6a-Dihydroxy-7-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- glucopyranosideAmbrosia artemisiifolia[60]1741a,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- glucopyranosideAmbrosia artemisiifolia[60]1731β,6a-Dihydroxy-7-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- glucopyranosideAmbrosia artemisiifolia[60]1741a,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- glucopyranosideAmbrosia artemisiifolia[60]175	160	Wedetrilide C	Wedelia trilobata	[55]
162(68,75,10R)-3-Oxo-di-nor-eudesm-4-en-6a-hydroxy-11-oic acidCrepis sancta (L.) Bornm.[40]163Vlasoulone AVladimiria souliei (Franch.) Ling[57]164Vlasoulone BVladimiria souliei (Franch.) Ling[57]165Echingridimer AEchinops grijsii[45]166Pulisignoside DPulicaria insignis J.R.Drumm. ex Dunn[58]167Pulisignoside APulicaria insignis[58]168Pulisignoside BPulicaria insignis[58]169(1R,55,6R,75,9S,10R)-9-O-(Z-p-Coumaroyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O-β-D- glucopyranosideAster koraiensis Nakai[59]170(1R,55,6R,75,9S,10R)-9-O-(E-Feruloyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O-β-D- glucopyranosideAster koraiensis[59]1711 $\alpha_5\beta_9\beta^{J-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-O-β-D-glucopyranosideAmbrosia artemisiifolia L.[60]1721\alpha_6\beta_9\beta^J-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-O-β-D-glucopyranosideAmbrosia artemisiifolia[60]1731\beta_6\alpha-Dihydroxy-7,-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-O-(6'-O-acetyl)-\beta-D-glucopyranoside[60][60]1741\alpha_6\beta_9\beta^J-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-O-(6'-O-acetyl)-\beta-D-glucopyranoside[60]1751\alpha_6\beta_9\beta^J-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-O-(6'-O-acetyl)-\beta-D-glucopyranoside[60]1751\alpha_6\beta_9\beta^J-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-meth$	161	Norpterodonol A	Laggera pterodonta (DC.) Benth	[56]
163Vlasoulone AVladimiria souliei (Franch.) Ling[57]164Vlasoulone BVladimiria souliei[57]165Echingridimer AEchinops grijsii[45]166Pulisignoside DPulicaria insignis J.R.Drumm. ex Dunn[58]167Pulisignoside APulicaria insignis J.R.Drumm. ex Dunn[58]168Pulisignoside BPulicaria insignis[58]169(1R,5S,6R,7S,9S,10R)-9-O-(Z-p-Coumaroyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O-β-D-Aster koraiensis Nakai[59]glucopyranosidester koraiensis[59]170(1R,5S,6R,7S,9S,10R)-9-O-(E-Feruloyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O-β-D-Aster koraiensis[59]glucopyranosidester koraiensis[59]17114,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-Ambrosia artemisiifolia L.[60]O-β-D-glucopyranosidester koraiensiifolia[60]17314,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-Ambrosia artemisiifolia[60]glucopyranosidester koraiensiifolia[60]17414,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-Ambrosia artemisiifolia[60]17414,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-Ambrosia artemisiifolia[60]17514,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-Ambrosia artemisiifolia[60]17514,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-α-L-ar	162	(6S,7S,10R)-3-Oxo-di-nor-eudesm-4-en-6α-hydroxy-11-oic acid	Crepis sancta (L.) Bornm.	[40]
 164 Vlasoulone B Ichingridimer A Echingridimer A Echinops grijsti [45] 166 Pulisignoside D Pulicaria insignis J.R.Drumm. ex Dunn [58] 167 Pulisignoside A Pulicaria insignis 168 Pulisignoside B Pulicaria insignis [59] glucopyranoside 170 (1<i>R</i>,5<i>S</i>,6<i>R</i>,7<i>S</i>,9<i>S</i>,10<i>R</i>)-9-<i>O</i>-(<i>E</i>-Feruloyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-<i>O</i>-β-<i>D</i>- <i>Aster koraiensis</i> Nakai [59] glucopyranoside 171 1<i>a</i>,6<i>β</i>,9<i>β</i>-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-<i>O</i>-[(<i>S</i>)-3"-hydroxy-3"-methylglutaryl]-6- <i>Ambrosia artemisiifolia</i> [60] <i>O</i>-β-<i>D</i>-glucopyranoside 173 1<i>β</i>,6<i>α</i>-Dihydroxy-5,10-bis-epi-eudesm-3-ene-9-<i>O</i>-[(<i>S</i>)-3"-hydroxy-3"-methylglutaryl]-6- <i>Ambrosia artemisiifolia</i> [60] <i>a</i>,6<i>β</i>,9<i>β</i>-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-<i>O</i>-[(<i>S</i>)-3"-hydroxy-3"-methylglutaryl]-6- <i>Ambrosia artemisiifolia</i> [60] <i>a</i>,<i>b</i>,<i>β</i>,<i>β</i>-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-<i>O</i>-[(<i>S</i>)-3"-hydroxy-3"-methylglutaryl]-6- <i>Ambrosia artemisiifolia</i> [60] <i>a</i>,<i>b</i>,<i>β</i>,<i>β</i>-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-<i>O</i>-[(<i>S</i>)-3"-hydroxy-3"-methylglutaryl]-6- <i>Ambrosia artemisiifolia</i> [60] <i>a</i>,<i>b</i>,<i>β</i>,<i>β</i>-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-<i>O</i>-[(<i>S</i>)-3"-hydroxy-3"-methylglutaryl]-6- <i>Ambrosia artemisiifolia</i> [61] 1<i>a</i>,<i>b</i>,<i>β</i>,<i>β</i>-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-<i>O</i>-[(<i>S</i>)-3"-hydroxy-3"-methylglutaryl]-6- <i>Ambrosia artemisiifolia</i> [62] 175 1<i>a</i>,<i>b</i>,<i>β</i>,<i>β</i>-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-<i>O</i>-[(<i>S</i>)-3"-hydroxy-3"-methylglutaryl]-6- <i>Ambrosia artemisiifolia</i> [63] 165 166 166<	163	Vlasoulone A	Vladimiria souliei (Franch.) Ling	[57]
 165 Echingridimer A Echingridimer A Ichinops grijsii Ichinops grijsii Pulisignoside D Pulisignoside A Pulisignoside A Pulisignoside B Pulisignoside B Pulisignoside B Inf8 Pulisignoside B In	164	Vlasoulone B	Vladimiria souliei	[57]
166Pulisignoside DPulicaria insignis J.R.Drumm. ex Dunn[58]167Pulisignoside APulicaria insignis[58]168Pulisignoside BPulicaria insignis[58]169(1R,5S,6R,7S,9S,10R)-9-O-(Z-p-Coumaroyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O- β -D-Aster koraiensis Nakai[59]glucopyranosideglucopyranoside[59]170(1R,5S,6R,7S,9S,10R)-9-O-(E-Feruloyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O- β -D-Aster koraiensis[59]glucopyranoside	165	Echingridimer A	Echinops grijsii	[45]
167Pulisignoside APulicaria insignis[58]168Pulisignoside BPulicaria insignis[58]169(1R,5S,6R,7S,9S,10R)-9-O-(Z-p-Coumaroyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O- β -D-Aster koraiensis Nakai[59]glucopyranosideglucopyranoside[59]170(1R,5S,6R,7S,9S,10R)-9-O-(E-Feruloyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O- β -D-Aster koraiensis[59]glucopyranoside[59]1711a,6 β ,9 β -Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-Ambrosia artemisiifolia L.[60]O- β -D-glucopyranoside[60]1721a,6 β ,9 β -Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-Ambrosia artemisiifolia[60]0- β -D-glucopyranoside[60]1731 β ,6a-Dihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-Ambrosia artemisiifolia[60]1731 α ,6 β ,9 β -Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-Ambrosia artemisiifolia[60]1741 α ,6 β ,9 β -Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-Ambrosia artemisiifolia[60]1751 α ,6 β ,9 β -Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-Ambrosia artemisiifolia[60]	166	Pulisignoside D	Pulicaria insignis J.R.Drumm. ex Dunn	[58]
 Pulisignoside B Pulicaria insignis [58] (1R,5S,6R,7S,9S,10R)-9-O-(Z-p-Coumaroyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O-β-D- glucopyranoside (1R,5S,6R,7S,9S,10R)-9-O-(Z-p-Coumaroyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O-β-D- glucopyranoside (1R,5S,6R,7S,9S,10R)-9-O-(E-Feruloyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O-β-D- glucopyranoside (1R,5S,6R,7S,9S,10R)-9-O-(E-Feruloyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O-β-D- glucopyranoside (1R,5S,6R,7S,9S,10R)-9-O-(E-Feruloyl)-1,6,9-Trihydroxy-a"-methylglutaryl]-6- Ambrosia artemisiifolia L. (60) O-β-D-glucopyranoside (60) O-β-D-glucopyranoside (60) glucopyranoside (60) glucopyranoside (60) (61) (62) (62) (63) (64) (64) (65) (64) (66) (65) (64) (66) (66)<	167	Pulisignoside A	Pulicaria insignis	[58]
 169 (1<i>R</i>,5<i>S</i>,6<i>R</i>,7<i>S</i>,9<i>S</i>,10<i>R</i>)-9-<i>O</i>-(<i>Z</i>-<i>p</i>-Coumaroyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-<i>O</i>-β-<i>D</i>- Aster koraiensis Nakai [59] glucopyranoside 170 (1<i>R</i>,5<i>S</i>,6<i>R</i>,7<i>S</i>,9<i>S</i>,10<i>R</i>)-9-<i>O</i>-(<i>E</i>-Feruloyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-<i>O</i>-β-<i>D</i>- Aster koraiensis (59] glucopyranoside 171 (1<i>c</i>,6<i>β</i>,9<i>β</i>-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-<i>O</i>-[(<i>S</i>)-3"-hydroxy-3"-methylglutaryl]-6- Ambrosia artemisiifolia L. [60] <i>O</i>-β-<i>D</i>-glucopyranoside 172 (1<i>a</i>,6<i>β</i>,9<i>β</i>-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-<i>O</i>-[(<i>S</i>)-3"-hydroxy-3"-methylglutaryl]-6- Ambrosia artemisiifolia [60] <i>O</i>-β-<i>D</i>-glucopyranoside 173 (1<i>β</i>,6<i>α</i>-Dihydroxy-7-epi-eudesm-3-ene-1-<i>O</i>-[(<i>S</i>)-3"-hydroxy-3"-methylglutaryl]-6- <i>Ambrosia artemisiifolia</i> [60] glucopyranoside 174 (1<i>a</i>,6<i>β</i>,9<i>β</i>-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-<i>O</i>-[(<i>S</i>)-3"-hydroxy-3"-methylglutaryl]-6- <i>Ambrosia artemisiifolia</i> [60] <i>O</i>-(6'-<i>O</i>-acetyl)-β-<i>D</i>-glucopyranoside 175 (1<i>a</i>,6<i>β</i>,9<i>β</i>-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-<i>O</i>-<i>a</i>-<i>L</i>-arabinopyranosyl-6-<i>O</i>-β-<i>D</i>- <i>Ambrosia artemisiifolia</i> [60] 175 (1<i>a</i>,6<i>β</i>,9<i>β</i>-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-<i>O</i>-<i>a</i>-<i>L</i>-arabinopyranosyl-6-<i>O</i>-β-<i>D</i>- <i>Ambrosia artemisiifolia</i> [60] 	168	Pulisignoside B	Pulicaria insignis	[58]
glucopyranoside170 $(1R,5S,6R,7S,9S,10R)-9-O-(E-Feruloyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O-$\beta-D$Aster koraiensis[59]glucopyranoside[59]1711\alpha_6\beta,9\beta-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-Ambrosia artemisiifolia L.[60]0-$\beta-D$-glucopyranosideCCCC1721\alpha_6\beta,9\beta-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-Ambrosia artemisiifolia[60]1731\beta,6a-Dihydroxy-7-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-O-$\beta-D$-Ambrosia artemisiifolia[60]1731\alpha_6\beta,9\beta-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-Ambrosia artemisiifolia[60]1741\alpha_6\beta,9\beta-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-Ambrosia artemisiifolia[60]1741\alpha_6\beta,9\beta-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-Ambrosia artemisiifolia[60]1751\alpha_6\beta,9\beta-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-$\alpha-L$-arabinopyranosyl-6-O-$\beta-D$-Ambrosia artemisiifolia[60]$	169	(1R,5S,6R,7S,9S,10R)-9-O-(Z-p-Coumaroyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O-β-D-	Aster koraiensis Nakai	[59]
 170 (1<i>R</i>,5<i>S</i>,6<i>R</i>,7<i>S</i>,9<i>S</i>,10<i>R</i>)-9-<i>O</i>-(<i>E</i>-Feruloy])-1,6,9-Trihydroxy-eudesm-3-ene-6-<i>O</i>-β-<i>D</i>- glucopyranoside 171 1<i>a</i>,6<i>β</i>,9<i>β</i>-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(<i>S</i>)-3"-hydroxy-3"-methylglutaryl]-6- <i>O</i>-β-<i>D</i>-glucopyranoside 172 1<i>a</i>,6<i>β</i>,9<i>β</i>-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-<i>O</i>-[(<i>S</i>)-3"-hydroxy-3"-methylglutaryl]-6- <i>O</i>-β-<i>D</i>-glucopyranoside 173 1<i>β</i>,6<i>α</i>-Dihydroxy-7-epi-eudesm-3-ene-1-<i>O</i>-[(<i>S</i>)-3"-hydroxy-3"-methylglutaryl]-6- glucopyranoside 174 1<i>a</i>,6<i>β</i>,9<i>β</i>-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-<i>O</i>-[(<i>S</i>)-3"-hydroxy-3"-methylglutaryl]-6- <i>O</i>-(<i>G</i>-<i>O</i>-acetyl)-β-<i>D</i>-glucopyranoside 175 1<i>a</i>,6<i>β</i>,9<i>β</i>-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-<i>O</i>-<i>a</i>-<i>L</i>-arabinopyranosyl-6-<i>O</i>-β-<i>D</i>- <i>Ambrosia artemisiifolia</i> 160] 160] 60] 		glucopyranoside		
glucopyranoside [60] 171 1α,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- Ambrosia artemisiifolia L. [60] 0-β-D-glucopyranoside [60] 172 1a,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- Ambrosia artemisiifolia [60] 0-β-D-glucopyranoside [60] 173 1β,6α-Dihydroxy-7-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-O-β-D- Ambrosia artemisiifolia [60] glucopyranoside [60] [60] [60] 174 1a,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- Ambrosia artemisiifolia [60] [75 1a,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-a-L-arabinopyranosyl-6-O-β-D- Ambrosia artemisiifolia [60]	170	(1R,5S,6R,7S,9S,10R)-9-O-(E-Feruloyl)-1,6,9-Trihydroxy-eudesm-3-ene-6-O-β-D-	Aster koraiensis	[59]
 171 1<i>a</i>,6<i>β</i>,9<i>β</i>-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- O-β-D-glucopyranoside 172 1<i>a</i>,6<i>β</i>,9<i>β</i>-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- O-β-D-glucopyranoside 173 1<i>β</i>,6<i>α</i>-Dihydroxy-7-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- glucopyranoside 174 1<i>a</i>,6<i>β</i>,9<i>β</i>-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- O-(6'-O-acetyl)-β-D-glucopyranoside 175 1<i>a</i>,6<i>β</i>,9<i>β</i>-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-<i>a</i>-<i>L</i>-arabinopyranosyl-6-O-β-D- Ambrosia artemisiifolia [60] <l< th=""><th></th><td>glucopyranoside</td><td></td><td></td></l<>		glucopyranoside		
 O-β-D-glucopyranoside 172 1α,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- O-β-D-glucopyranoside 173 1β,6α-Dihydroxy-7-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-O-β-D- glucopyranoside 174 1α,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- O-(6'-O-acetyl)-β-D-glucopyranoside 175 1α,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-α-L-arabinopyranosyl-6-O-β-D- Ambrosia artemisiifolia [60] 	171	1 <i>α</i> ,6 <i>β</i> ,9 <i>β</i> -Trihydroxy-5,10-bis- <i>epi</i> -eudesm-3-ene-9- <i>O</i> -[(<i>S</i>)-3"-hydroxy-3"-methylglutaryl]-6-	Ambrosia artemisiifolia L.	[60]
 172 1α,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- Ambrosia artemisiifolia 173 1β,6α-Dihydroxy-7-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-O-β-D- Ambrosia artemisiifolia 174 1α,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- Ambrosia artemisiifolia 175 1α,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-α-L-arabinopyranosyl-6-O-β-D- Ambrosia artemisiifolia 160] 		<i>O-β-D-</i> glucopyranoside		
 O-β-D-glucopyranoside 176 a-Dihydroxy-7-epi-eudesm-3-ene-1-O-[(\$)-3"-hydroxy-3"-methylglutaryl]-6-O-β-D- Ambrosia artemisiifolia 176 1α,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(\$)-3"-hydroxy-3"-methylglutaryl]-6- Ambrosia artemisiifolia 176 1α,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-α-L-arabinopyranosyl-6-O-β-D- Ambrosia artemisiifolia 175 1α,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-α-L-arabinopyranosyl-6-O-β-D- Ambrosia artemisiifolia 160] 	172	$1\alpha, 6\beta, 9\beta$ -Trihydroxy-5, 10-bis- <i>epi</i> -eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-	Ambrosia artemisiifolia	[60]
 173 1β,6α-Dihydroxy-7-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-O-β-D- glucopyranoside 174 1α,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- O-(6'-O-acetyl)-β-D-glucopyranoside 175 1α,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-α-L-arabinopyranosyl-6-O-β-D- Ambrosia artemisiifolia [60] Ambrosia artemisiifolia [60] 		<i>O-β-D-</i> glucopyranoside		
glucopyranoside 174 1α,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6- Ambrosia artemisiifolia [60] 0-(6'-O-acetyl)-β-D-glucopyranoside 1α,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-a-L-arabinopyranosyl-6-O-β-D- Ambrosia artemisiifolia [60] 175 1α,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-a-L-arabinopyranosyl-6-O-β-D- Ambrosia artemisiifolia [60]	173	1β , 6α -Dihydroxy-7-epi-eudesm-3-ene-1-O-[(S)-3"-hydroxy-3"-methylglutaryl]-6-O- β -D-	Ambrosia artemisiifolia	[60]
 174 1α,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-9-O-[(S)-3⁻-hydroxy-3⁻-methylglutaryl]-6- Ambrosia artemisiifolia [60] O-(6[']-O-acetyl)-β-D-glucopyranoside 175 1α,6β,9β-Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-α-L-arabinopyranosyl-6-O-β-D- Ambrosia artemisiifolia [60] 		glucopyranoside		
O-(6'-O-acetyl)-β-D-glucopyranoside175 $1\alpha_5\beta_9\beta_7$ -Trihydroxy-5,10-bis-epi-eudesm-3-ene-1-O-α-L-arabinopyranosyl-6-O-β-D-Ambrosia artemisiifolia[60]	174	$1\alpha, 6\beta, 9\beta$ -Trihydroxy-5,10-bis- <i>epi</i> -eudesm-3-ene-9-O-[(<i>S</i>)-3"-hydroxy-3"-methylglutaryl]-6-	Ambrosia artemisiifolia	[60]
175 $1\alpha_{,6}\beta_{,9}\beta_{-}$ Trihydroxy-5,10-bis- <i>epi</i> -eudesm-3-ene-1- <i>O</i> - $\alpha_{-}L$ -arabinopyranosyl-6- <i>O</i> - $\beta_{-}D$ - <i>Ambrosia artemisiifolia</i> [60]		O -(6'- O -acetyl)- β - D -glucopyranoside		
	175	$1\alpha, 6\beta, 9\beta$ -Trihydroxy-5,10-bis- <i>epi</i> -eudesm-3-ene-1- <i>O</i> - α - <i>L</i> -arabinopyranosyl-6- <i>O</i> - β - <i>D</i> -	Ambrosia artemisiifolia	[60]
glucopyranoside		glucopyranoside		
176 $1\alpha_5\beta_{\beta}\beta_{\sigma}$ -Trihydroxy-5,10-bis- <i>epi</i> -eudesm-3-ene-6-O- β -D-glucopyranoside Ambrosia artemisiifolia [60]	176	$1\alpha, 6\beta, 9\beta$ -Trihydroxy-5,10-bis- <i>epi</i> -eudesm-3-ene-6- <i>O</i> - β - <i>D</i> -glucopyranoside	Ambrosia artemisiifolia	[60]
177 $1\beta_{\beta}\alpha_{-}$ Dihydroxy-7-epi-eudesm-3-ene-6-O- β -D-apiofuranosyl(1 \rightarrow 6)- β -D-glucopyranoside Ambrosia artemisiifolia [60]	177	$1\beta, 6\alpha\text{-Dihydroxy-7-}\textit{epi-eudesm-3-ene-6-}\textit{O-}\beta\text{-}\textit{D-apiofuranosyl}(1 \rightarrow 6)\text{-}\beta\text{-}\textit{D-glucopyranoside}$	Ambrosia artemisiifolia	[60]
178 (1 <i>R</i> ,5 <i>S</i> ,6 <i>R</i> ,7 <i>S</i> ,9 <i>S</i> ,10 <i>S</i>)-1,6,9-Trihydroxy-eudesm3-ene-1,6-di- <i>O</i> -β-D-glucopyranoside Aster koraiensis [59]	178	(1R,5S,6R,7S,9S,10S)-1,6,9-Trihydroxy-eudesm3-ene-1,6-di- <i>O-β-D</i> -glucopyranoside	Aster koraiensis	[59]
179 $(1R,5S,6S,7R,9S,10S)$ -1,6,9,11-Tetrahydroxy-eudesm-3-ene-1,6-di- $O_r\beta$ - D -glucopyranoside Aster koraiensis [59]	179	$(1R, 5S, 6S, 7R, 9S, 10S)$ -1, 6, 9, 11-Tetrahydroxy-eudesm-3-ene-1, 6-di- O - β -D-glucopyranoside	Aster koraiensis	[59]
180Pulisignoside CPulicaria insignis[58]	180	Pulisignoside C	Pulicaria insignis	[58]
1814(15)-en-Eudesma-6,12-olide-15-O-β-D-glucopyranosideAinsliaea bonatii Beauverd[47]	181	4(15)-en-Eudesma-6,12-olide-15- O - β - D -glucopyranoside	Ainsliaea bonatii Beauverd	[47]
1823(4)-en-Eudesma-6,12-olide-15-O-β-D-glucopyranosideAinsliaea bonatii[47]	182	3(4)-en-Eudesma-6,12-olide-15- <i>O-β-D</i> -glucopyranoside	Ainsliaea bonatii	[47]

Table 1 (continued)

3.6. Eudesmane-type sesquiterpenoids from species in the family Thymelaeaceae

Previous studies have isolated and characterized 11 eudesmane-type sesquiterpenoids from *Aquilaria agallocha* of family Thymelaeaceae (Fig. 12, Table 6), the compounds of which often have double bonds at C-3(4), C-4(5), or C-4(15). Furthermore, compounds **270–274** all possess an aldehyde group at C-4.

Fig. 6. Structures of eudesmane-type sesquiterpenoids from species in the genus Inula.

3.7. Eudesmane-type sesquiterpenoids isolated from species in other families

In addition to 280 eudesmane-type sesquiterpenoids isolated from species belonging to the families Asteraceae, Lamiaceae, Chloranthaceae, Solanaceae, Anacardiaceae, and Thymelaeaceae, previous studies have isolated and characterized 81 eudesmane-type sesquiterpenoids from species in 17 other families (Fig. 13, Table 7). These eudesmane-type sesquiterpenoids are vulnerable to substitution at C-6, while hydroxy substitution is easily achieved at C-1. In combination, these compounds are analogous to those of the above families whose C-1 and C-2 are susceptible to being oxidized to carbonyl groups. Moreover, a proportion of these compounds often contain $\Delta^{3(4)/4(5)/4(15)}$ double bonds, and some compounds have an oxygen-bridged structures. It is worth noting that compounds (**318–339**) tend to form five-membered rings through their isopropyl branch chains. Specifically, compounds **318–320** predominantly yield furan rings, while compounds **321–339** predominantly yield lactone rings. Some compounds contain a C₅–OH group, of which compounds **323–326** are the first examples of eudesmane sesquiterpene lactones containing C₅–OH groups. These compounds are also representative of the eudesmane-type sesquiterpenoids found in the genus *Croton*. In particular, compound **314**, from *Ammoides atlantica*, contains an acetyl moiety at C-6, and compounds **301–302** are peroxide-substituted eudesmane-type sesquiterpenoids. Moreover, compound **342** was also characterized as a sesquiterpenoid dimer with a hybrid framework of eudesmane and germacrene from the family Meliaceae.

3.8. Eudesmane-type sesquiterpenoids of non-plant origin

In addition to the aforementioned plants, eudesmane-type sesquiterpenoids can also be synthesized from marine organisms and microbes (Fig. 14, Table 8). A summary reveals that these compounds are readily substituted with hydroxy groups at C-1, C-2, or C-11. Compounds **373–375**, isolated from *Laurencia pinnata*, are examples of brominated eudesmane-type sesquiterpenoids featuring bromine at C-1. Compound **389** from *Flammulina velutipes* contains a C-3–O–C-9 oxygen bridge, while compounds **380–383** from *Axinyssa variabilis* are nitrogen-containing eudesmane-type sesquiterpenoids. Additionally, compound **391** possesses a benzoic acid

Fig. 7. Structures of eudesmane-type sesquiterpenoids from species in other genera.

Fig. 8. Structures of eudesmane-type sesquiterpenoids from plants in the family Lamiaceae.

Table 2				
Eudesmane-type sesquiterpenoids (compounds	183-214) from	plants in the fa	amily Lamiacea	e.

No.	Name	Sources	Reference
183	Plebeic acid C	Salvia plebeia R.Br.	[61]
184	Plebeic acid B	S. plebeia	[61]
185	Methyl plebeiate A	S. plebeia	[61]
186	Sapleudesone	S. plebeia	[62]
187	Eudebeiolide A	S. plebeia	[63]
188	Eudebeiolide B	S. plebeia	[63]
189	Eudebeiolide C	S. plebeia	[63]
190	8-epi-Eudebeiolide C	S. plebeia	[64]
191	8-Methoxy-plebeiolide B	S. plebeia	[63]
192	Eudebeiolide E	S. plebeia	[63]
193	6-Hydroxyplebeiolide A	S. plebeia	[64]
194	Eudebeiolide F	S. plebeia	[63]
195	1 <i>-epi</i> -Phaeusmane G	S. plebeia	[64]
196	Eudebeiolide K	S. plebeia	[64]
197	Eudebeiolide G	S. plebeia	[64]
198	Eudebeiolide H	S. plebeia	[64]
199	Salplebeone D	S. plebeia	[65]
200	Salviplenoid E	S. plebeia	[66]
201	Salplebeone E	S. plebeia	[65]
202	(1S,5S,8R,10R)-1-Acetoxy-2-oxoeudesman-3,7(11)-dien-8,12olide	S. plebeia	[61]
203	(1R,5R,8S,10S)-1-Acetoxy-8-methoxy-2-oxoeudesman-3,7(11)-dien-8,12-olide	S. plebeia	[61]
204	(1S,5S,8S,10R)-1-Acetoxy-8-methoxy-2-oxoeudesman-3,7(11)-dien-8,12-olide	S. plebeia	[64]
205	Eudebeiolide I	S. plebeia	[64]
206	Eudebeiolide J	S. plebeia	[64]
207	Eudebeiolide D	S. plebeia	[63]
208	(1S,3S,4S,5S,8S,10R)-3-Acetoxy-1-hydroxyeudesman-7(11)-en-8,12-olide	S. plebeia	[61]
209	Salplebeone F	S. plebeia	[65]
210	Salviplenoid A	S. plebeia	[66]
211	Salviplenoid B	S. plebeia	[66]
212	Salviplenoid C	S. plebeia	[66]
213	Salviplenoid D	S. plebeia	[66]
214	Salplebeone G	S. plebeia	[65]

linked to the eudesmane-type sesquiterpenoid via a C-N bond.

4. Biological activity of eudesmane-type sesquiterpenoids

Numerous experimental data have shown that eudesmane-type sesquiterpenoids possess a wide range of biological activities, including anti-inflammatory, cytotoxic, anti-bacterial, anti-malaria, insecticidal, and neuroprotective activities. In general, the biological activities of compounds are strongly influenced by their molecular structures, particularly the types, positions, quantities, and electronic effects of substituent groups. This phenomenon arises because structural modifications can significantly affect the stability

Fig. 9. Structures of eudesmane-type sesquiterpenoids from species in the family Chloranthaceae.

and the stereo configuration of a compound, as well as the mode of interaction with the target molecule. Prior investigations have indicated that the inclusion of alkenes or hydroxy groups in eudesmane-type sesquiterpenoids often leads to enhanced activity. In addition, numerous other factors can potentially influence their activity. For example, the size and type of the fused ring (e.g., a five-, six- or seven-ring), the presence of heteroatoms like nitrogen or sulfur, the polarity of the molecule, and the availability of hydrogen bond donor and acceptor sites, can all affect their biological activity. Here we present a summary of the different activities of eudesmane-type sesquiterpenoids reported from 2016 to 2022.

4.1. Anti-inflammatory activity

The inhibition of inflammatory responses is one of the most important biological activities of eudesmane-type sesquiterpenoids. In recent years, many researchers have reported that eudesmane-type sesquiterpenoids can significantly inhibit the release of NO (Table 9), which plays an important role in the inflammatory response [133,139]. Taking LPS-induced RAW 264.7 cells as an inflammatory cell model. Specifically, the position of the substituent group has a significant effect on the anti-inflammatory activity of eudesmane-type sesquiterpenoids. Noteworthy substituent positions include C-8, C-11, and C-13, wherein substitutions can introduce new chemical properties that modify the activity. To elaborate, within the scope of compounds exhibiting anti-inflammatory activity (Table 9), compounds 1–21, along with compound 109, have substitutions at these three pivotal positions. This is manifested by the oxidation of C-11 to an alkene, the substitution of C-13 with a carboxylic acid or a methyl/ethyl formate group, and C-8 being incorporated into a group containing oxygen. Further analysis of compounds 22-27, underlining their anti-inflammatory activities, reveals that substituent variations at C-8 considerably influence their activities. Meanwhile, the impact is less significant when there is a substitution with either methyl formate or ethyl formate at C-1. Supplementing this, the anti-inflammatory properties of eudesmane-type sesquiterpenoids are also influenced by the number of substituents, not merely their positions. It can be discerned from compounds 248–253 that the anti-inflammatory activity is augmented when both C-11 and C-13 are adorned with hydroxy substituents. This signifies that an increase in the number of hydroxy substituents often corresponds to an enhancement in the anti-inflammatory activity. Moreover, the evaluation of compounds 61-65 and 67-70 suggests that noreudesmane-type sesquiterpenoids might be responsible for the anti-inflammatory effects, among which compounds 61-63 and 67 strongly inhibit the aforementioned expression; meanwhile, compounds 68–70 show much weaker effects, thereby indicating that an acetoxy group at C-9 may enhance the anti-inflammatory activity.

Furthermore, lipopolysaccharide (LPS)-induced M1-like macrophages had a typical pro-inflammatory phenotype, and the overactivation of M1-like macrophages results in the production of large amounts of pro-inflammatory cytokines, usually including TNF- α , IL-6, IL-12, and IFN- γ ; this leads to a series of inflammatory responses. Importantly, compounds **9**, **12**, **15**, **28**, and **55** were found to significantly reduce the levels of TNF- α , IL-6, IL-12, and IFN- γ in LPS-induced M1-type macrophages, thus demonstrating good anti-

Eudesmane-type sesquiterpenoids (compounds 215-247) from plants in the family Chloranthaceae.

No.	Name	Sources	Reference
Chloranthus			
215	Chloraserratiol A	Chloranthus serratus (Thunb.) Roem. et Schult	[67]
216	Chloraserratiol B	C. serratus	[67]
217	Chloraserratiol C	C. serratus	[67]
218	Chloraserratiol D	C. serratus	[67]
219	Chloraserratiol E	C. serratus	[67]
220	Chloraserratiol F	C. serratus	[67]
221	Chlorajaponol B	Chloranthus japonicus Siebold	[68]
222	Chlojaponol A	C. japonicus	[69]
223	Chlojaponol B	C. japonicus	[69]
224	Chloraserratiol G	C. serratus	[67]
225	Chlorajaponol A	C. japonicus	[68]
226	Chlorajapotriol	C. japonicus	[70]
Sarcandra			
227	Sarglanoid D	Sarcandra glabra (Thunb.) Nakai	[71]
228	Sarglanoid E	S. glabra	[71]
229	Sarglanoid C	S. glabra	[71]
230	Sarglanoid D	S. glabra	[72]
231	Sarglanoid E	S. glabra	[72]
232	Sarglanoid A	S. glabra	[71]
233	Sarglanoid B	S. glabra	[71]
234	Sarglanoid A	S. glabra	[72]
235	Sarglanoid C	S. glabra	[72]
Chloranthus			
236	Fortunoid B	Chloranthus fortunei (A. Gray) Solms	[73]
237	Fortunoid C	C. fortunei	[73]
Hedyosmum			
238	Horienoid A	Hedyosmum orientale Merr. et Chun	[74]
239	Horienoid B	H. orientale	[74]
Chloranthus			
240	(+)-Chlorahupetene A	Chloranthus henryi var. hupehensis (Pamp.) K. F. Wu	[75]
241	(–)-Chlorahupetene A	C. henryi var. hupehensis	[75]
242	(+)-Chlorahupetene B	C. henryi var. hupehensis	[75]
243	(–)-Chlorahupetene B	C. henryi var. hupehensis	[75]
244	(+)-Chlorahupetene C	C. henryi var. hupehensis	[75]
245	(–)-Chlorahupetene C	C. henryi var. hupehensis	[75]
246	(+)-Chlorahupetene D	C. henryi var. hupehensis	[75]
247	(–)-Chlorahupetene D	C. henryi var. hupehensis	[75]

Fig. 10. Structures of eudesmane-type sesquiterpenoids from species in the family Solanaceae.

Table 4

Eudesmane-type sesquiterpenoids (compounds 248-257) from plants in the family Solanaceae.

No.	Name	Sources	Reference
248	Dmetelin E	Datura metel L.	[76]
249	Dmetelin F	D. metel	[76]
250	Dmetelin B	D. metel	[76]
251	Dmetelin C	D. metel	[76]
252	Dmetelin D	D. metel	[76]
253	10β -Eudesm-4-en-3-one-11,12-diol-12- O - β -glucopyranoside	Nicotiana tabacum L.	[77]
254	Septemlobin E	Solanum septemlobum Bunge	[78]
255	Dmetelin G	D. metel	[76]
256	Dmetelin I	D. metel	[76]
257	Dmetelin H	D. metel	[76]

Fig. 11. Structures of eudesmane-type sesquiterpenoids from species in the family Anacardiaceae.

 Table 5

 Eudesmane-type sesquiterpenoids (compounds 258–269) from plants in the family Anacardiaceae.

No.	Name	Sources	Reference
258	Dobinin J	Dobinea delavayi (Baill.) Baill.	[79]
259	Dobinin D	D. delavayi	[79]
260	Dobinin E	D. delavayi	[79]
261	Dobinin F	D. delavayi	[79]
262	Dobinin G	D. delavayi	[79]
263	Dobinin H	D. delavayi	[79]
264	Dobinin I	D. delavayi	[79]
265	Dodelate A	D. delavayi	[7]
266	Dodelate B	D. delavayi	[7]
267	Dodelate C	D. delavayi	[7]
268	Dodelate D	D. delavayi	[7]
269	Dodelate E	D. delavayi	[7]

Fig. 12. Structures of eudesmane-type sesquiterpenoids from species in the family Thymelaeaceae.

 Table 6

 Eudesmane-type sesquiterpenoids (compounds 270–280) from plants in the family Thymelaeaceae.

No.	Name	Sources	Reference
270	Agalleudesmanol A	Aquilaria agallocha Roxb.	[9]
271	Agalleudesmanol E	A. agallocha	[9]
272	Agalleudesmanol D	A. agallocha	[9]
273	Agalleudesmanol I	A. agallocha	[9]
274	Aquisinenoid C	A. sinensis	[80]
275	Agalleudesmanol B	A. agallocha	[9]
276	Agalleudesmanol F	A. agallocha	[9]
277	Agalleudesmanol G	A. agallocha	[9]
278	Agalleudesmanol H	A. agallocha	[9]
279	Agalleudesmanol C	A. agallocha	[9]
280	Aquisinenoid D	Aquilaria sinensis (Lour.) Spreng.	[80]

 S_5 Fig. 13. Structures of eudesmane-type sesquiterpenoids from species in other families.

Glc

R_X

 S_4

Eudesmane-type sesquiterpenoids (compounds **281–361**) from plants in other families.

No.	Name	Sources	Reference
281	11-Acetoxyeudesman-4 <i>β</i> -ol	Cunninghamia konishii Hayata	[81]
282	Eudesmane-4 β ,7 α -diol	Lawsonia inermis Linn.	[82]
283	1β , 4β , 5α -Trihydroxyeudesmane	Homalomena occulta (Lour.) Schottt	[83]
284	5-Hvdroxv- <i>a</i> -eudesmol	Guatteria friesiana (W. A. Rodrigues)	[84]
		Erkens & Maas	1.0.1
285	Comminhorane I	Comminhora myrrha (Nees) Engl	[85]
286	(2R 5S 6R 7S 10R)-6 7-Dihydroxy-2-methoxy-eudesma-37-ene	Chiloscyphus polyanthus yar rivularis	[86]
200	(21,00,01,70,101,0,70, Diffuloxy 2 methoxy cudeshill of the	(Schrad) Nees	[00]
287	(3S 6R 7S 10S)-3 6 7-Tribydroxyeudesma-4F-ene	Chiloscyphus polyanthus	[87]
288	(35 7R 10S)-3 7-Dihydroxy-eudesma-47-ene	Chiloscyphus polyanthus	[87]
289	(35 55 7R 105)-3-Hydroneroxy-7-hydroxy-eudesma-4(15)-ene	Chiloscyphus polyanthus var rivularis	[86]
200	(35,55,7R,105), 37 . Dibudrovy-eudesma-4(15)-ene	Chiloscyphus polyanthus var. rivularis	[86]
201	(35,55,67,75,105)-3,67,Tribydroxy-eudesma 4(15)-ene	Chiloscyphus polyanthus var. rivularis	[86]
292	Forkienin C	Fokienia hodainsii (Dunn) A Henry & H	[88]
272		H Thomas	[00]
293	Forkienin B	Fokienia hodainsii	[88]
204	$ent_Fudesma_4(15)$ 11(13)-dien_6a 12-diol	Diplophyllum taxifolium (Wahlenh)	[80]
274	<i>Un</i> -Endesing-4(15),11(15)-4(1-00,12-4(6)	Dumort	[09]
205	(5P 75 85 05) ant 8 Hudrovy 1(15) 11 audoemodiona	Tritomaria avinavedentata (Huds.) H	[00]
293	(3K,73,63,53)-ent-6-11ydioxy-4(13),11-eudesinaulene	Puch	[90]
206	Secomonal C	Secamone lanceolata Blume	[01]
290	ant Chlorontono C	Mactigophora dialados (Pird.) Noos	[91]
297	Crearseid F	Croton grantetus Plumo	[92]
298	Croargold E	Croton argyratus Bluine	[93]
299	Croargold F	Croton argyraius	[93]
300	3,/(11)-Eudesmadien-2-one	Alainia angla la Mis	[94]
301	$/\alpha$ -Hydroperoxy-eudesma-3,11-diene-2-one		[95]
302	β -Hydroperoxy-eudesma-3,11-diene-2-one	Alpinia oxyphylla Chilesen when we have the second string basis	[95]
303	(55,6K,/S,10K)-6,/-Dinydroxy-2-oxo-eudesma-32-ene	chuoscyphus polyanthus var. rivularis	[86]
204	(EC 6 P 7 C 10 P) 7 Hydrowy 6 postowy 2 ovo sudorma 27 ono	Chilosophus pohanthus yon minularis	F06 1
20F	(55,0K,/5,10K)-/-Hydroxy-0-acetoxy-2-0x0-endesina-52-ene	Chiloscyphus polyanthus var. rivularis	[00]
305	(55,75,10R)-7-Hydroxy-2-0x0-eudesina-52-ene	Linidozia nontena (L.) Dum ort	[80]
300	(6R,/5,10R)-6,/-Dillydroxy-5-0x0-eudesilla-4E-elle	Lepidozia replans (L.) Dumort.	[90]
307	Neumbosesqui A	Neumbo nucijeru Gaerin.	[97]
308	Cyllabulgolie	Cynanchum bunget Deche.	[98]
309	0a,12-Dinyaroxy-4(15)-eudesinen-1-one	Pissisiigma macurel Merr.	[99]
310	Shihuone F	Michelia shiluensis Chun & Y. F. Wu	[100]
311	Sinuone G	Magnoua snuuensis	[100]
312	Homaiomenin D	Thesis and horses in French	[101]
313		Inuja sutchuenensis Franch.	[102]
314	1β , 3β , 13 -1rihydroxy- 6α -acetoxy-eudesma-4(15), 7(11)-dien-12-oic acid	Ammoides atlantica (Coss. & Durieu) H.	[103]
015		Wolff	[07]
315	(35,6K,75,105)-3,7-Epoxy-bacetoxy-eudesma-4E-ene	Chuoscyphus polyanthus	[87]
316	Salaterpene E	Salacia longipes var. camerunensis Loes.	[104]
317	$(15,48,55,6R,7R,8R,9R,10S)$ -6-Acetoxy-4,9,10-trinydroxy-2,2,5 α ,9-tetramethyloctahydro-2H-	Maytenus boaria Molina	[105]
	$3,9\alpha$ -methanobenzo[b]oxepin-5-yl furan-3-carboxylate		54.0.43
318	Commiphorane E1	Commiphora myrrha (T.Nees) Engl.	[106]
319	Commiphorane E2	Commiphora myrrha	[106]
320	Commiphorane E3	Commiphora myrrha	[106]
321	Gracilistone A	Acanthopanax gracilistylus W.W.Sm.	[107]
322	Gracilistone B	Acanthopanax gracilistylus	[107]
323	Croargoid A	Croton argyratus	[93]
324	Croargold C	Croton argyratus	[93]
325	Croargoid B	Croton argyratus	[93]
326	Croargoid D	Croton argyratus	[93]
327	Shizukolidol	Magnolia vovidesii A.Vázquez,	[108]
		Domínguez-Yescas & L.Carvajal	
328	ent-Atractylenolide III	Diplophyllum taxifolium	[89]
329	Ermiasolide A	Croton megalocarpus Hutch.	[109]
330	Ermiasolide B	Croton megalocarpus	[109]
331	Ermiasolide C	Croton megalocarpus	[109]
332	Myrrhalindenane C	Lindera myrrha (Lour.) Merr.	[110]
333	ent-3β-Hydroxyeudesma-4,11-dien-12,8α-olide	Diplophyllum taxifolium	[89]
334	(5R,7R,8S,9S,11R)-ent-11,13-Epoxy-isoalantolactone	Tritomaria quinquedentata	[90]
335	ent-Isoalantolactone	Diplophyllum taxifolium	[89]
336	ent-Isotelekin	Diplophyllum taxifolium	[89]
337	ent-3-Epiisotelekin	Diplophyllum taxifolium	[89]
338	ent -11 β -Hydroxydihydro-isoalantolactone	Diplophyllum taxifolium	[89]
339	(5R,7R,8S,9S,11S)-11-Ethoxy-13-hydroxy-ent-11,13-dihydroisoalantolactone	Tritomaria quinquedentata	[<mark>90</mark>]

(continued on next page)

Table 7 (continued)

No.	Name	Sources	Reference
340	Artahongkongol A	Artabotrys hongkongensis Hance	[10]
341	Croargoid G	Croton argyratus	[93]
342	Dysotican E	Dysoxylum parasiticum (Osbeck) Kosterm.	[111]
343	Eucarobustol D	Eucalyptus robusta Sm.	[112]
344	Sonneratioside A	Sonneratia alba Griff.	[113]
345	Sonneratioside B	Sonneratia alba	[113]
346	Sonneratioside C	Sonneratia alba	[113]
347	Sonneratioside E	Sonneratia alba	[113]
348	Sonneratioside D	Sonneratia alba	[113]
349	Epheganoside	Ephedra sinica Stapf	[114]
350	Pitqinlingoside M	Pittosporum qinlingense Y. Ren & X. Liu	[115]
351	Dictameudesmnoside A1	Dictamnus dasycarpus Turcz.	[13]
352	Dictameudesmnoside A ₂	Dictamnus albus	[13]
353	Dictameudesmnoside B	Dictamnus albus	[13]
354	Dictameudesmnoside C	Dictamnus albus	[13]
355	1α , 4β , 8β , 9β -Eudesmane-tetrol-1-O- β -D-glucopyranoside	Merremia yunnanensis (Courchet &	[116]
		Gagnep.) R. C. Fang	
356	1α , 6β , 9β -Trihydroxy-eudesm-4(15)-en-1, 6 - O - β -diglucopyranoside	Lecokia cretica (Lam.) DC	[117]
357	1α , 6β , 9β -Trihydroxy-eudesm-3-en-1, 6 - O - β -diglucopyranoside	Lecokia cretica	[117]
358	Liangwanoside A	Metapanax delavayi (Franch.) J. Wen &	[118]
		Frodin	
359	Dictameudesmnoside D	Dictamnus albus	[13]
360	Dictameudesmnoside E	Dictamnus albus	[13]
361	Codonopsesquiloside C	Codonopsis pilosula (Franch.) Nannf.	[119]

Fig. 14. Structures of eudesmane-type sesquiterpenoids from non-plant sources.

inflammatory activity [18].

Studies on the relevant pharmacological mechanisms suggested that compounds **190** and **210** had anti-inflammatory effects by intervening in the NF- κ B signaling pathway. They specifically inhibited the phosphorylation of I κ B α and prevented the nuclear translocation of p65, thereby suppressing NF- κ B activation and the subsequent production of inflammatory mediators such as NO, TNF- α , IL-6, IL-1 β , and IL-1 α . Moreover, compound **210** further dampened inflammation by reducing the expression of iNOS and COX-2, as well as decreasing Erk1/2 phosphorylation. The discovery of these compounds holds promise as potential candidates for the development of innovative anti-inflammatory therapeutics [64,69].

4.2. Cytotoxic activity

Cytotoxicity is another important biological activity of eudesmane-type sesquiterpenoids (Table 10). An initial study examining structure–activity relationships was conducted on compounds **42–44** and compounds **48–50**. A comparison of compounds **42** and **43** revealed that the inclusion of a β -oriented hydroxyl group at C-4 bolstered the cytotoxic activity of **43**, with the effect being especially

Eudesmane-type sesquiterpenoids (compounds 362-391) from non-plant sources.

No.	Name	Sources	Reference
362	Penicieudesmol A	Penicillium sp. J-54	[120]
363	Penicieudesmol B	P. sp. J-54	[120]
364	Penicieudesmol C	P. sp. J-54	[120]
365	Penicieudesmol D	P. sp. J-54	[120]
366	Ganodermanol I	the cultured mycelia of Ganoderma capense	[121]
367	Ganodermanol J	the cultured mycelia of Ganoderma capense	[121]
368	Penicieudesmol E	P. sp. J-54	[6]
369	Penicieudesmol F	P. sp. J-54	[6]
370	Ganodermanol K	the cultured mycelia of Ganoderma capense	[121]
371	(1 <i>S</i> ,5 <i>S</i> ,6 <i>S</i> ,7 <i>S</i> ,10 <i>S</i>)-10α-Eudesm-4(15)-ene-1α,6α-diol	Streptomyces sp.	[122]
		JMRC:ST027706.	
372	Penicieudesmol G	P. sp. J-54	[6]
373	1β -Bromoselin-11-en- 4α -ol	Laurencia pinnata Yamada	[123]
374	1β -Bromo-4 α ,5 α -epoxyselinane	L. pinnata	[123]
375	1β -Bromoselin-3,11-diene	L. pinnata	[123]
376	3β , 5α -Dihydroxyeudesma-4(15),11-diene	Vietnamese soft coral Sinularia erecta	[124]
377	Eudesma-4(15),11-diene-5,7-diol	Laurencia obtusa Lamouroux	[125]
378	Eudesma-4(15),7-diene-5,11-diol	L. obtusa	[126]
379	(4 <i>S</i> ,5 <i>S</i> ,7 <i>R</i> ,10 <i>S</i>)-4β,10α-Eudesmane-5β,11-diol	Streptomyces sp.	[122]
		JMRC:ST027706.	
380	Axiriabiline D	Hainan Sponge Axinyssa variabilis	[127]
381	Axiriabiline A	Hainan Sponge Axinyssa variabilis	[127]
382	Axiriabiline B	Hainan Sponge Axinyssa variabilis	[127]
383	Axiriabiline C	Hainan Sponge Axinyssa variabilis	[127]
384	Stigolone	Scytonema sp. (strain U-3-3)	[128]
385	11R,12-Dihydroxystigolone	Scytonema sp. (strain U-3-3)	[128]
386	11S,12-Dihydroxystigolone	Scytonema sp. (strain U-3-3)	[128]
387	Thomimarine E	Penicillium thomii KMM 4667	[129]
388	4α , 8α -Dihydroxyeudesman-11-en-1-one	Aspergillus flavus	[122]
389	1,2,6,10-Tetrahydroxy-3,9-epoxy-14-nor-5(15)-eudesmane	Flammulina velutipes (Fr)Sing.	[130]
390	Eudesmacarbonate	Marine Filamentous Cyanobacterial Mat (Oscillatoriales)	[131]
391	Eudesm-4(15),7-diene-9 α -hydroxy-11-amino-benzoicacid	Streptomyces sp. A68	[132]

pronounced against the LNCaP cell line. In contrast, a decrease in cytotoxicity was evident in compound **48** compared to compound **49** due to the oxidation of the hydroxyl group at C-8 to a ketone. Furthermore, an analysis of cytotoxicity results from compounds **33–34** and **35–38** suggested that the presence of a phenylacetoxy group at C-8 could augment the cytotoxicity against three distinct human hepatocellular carcinoma cell lines. Overall, it was apparent that the majority of cytotoxic compounds predominantly originated from the family Asteraceae and were primarily sequiterpene lactones.

4.3. Anti-microbial activity

Inhibition of fungal and bacterial growth is an important biological activity of eudesmane-type sesquiterpenoids (Table 11). Compounds 146–153 were eudesmane-type sesquiterpenes with cinnamoyloxy groups at C-6. Compounds 146, 150, 152, and 153 all exhibited strong inhibitory activity against *Plasmopara viticola*. Notably, compound **378** isolated from *L. obtusa* showed significant growth inhibition activity against *Candida albicans, C. tropicals, Aspergillus flavus,* and *A. niger,* with better effects than the positive control Amphotericin B or comparable to its effect [126]. Compound **219** displayed a certain activity against *Botrytis cinerea* and *Sclerotinia sclerotiorum* with inhibition rates of 34.62 % and 13.04 %, respectively, at the concentration of 50 µg/mL [69]. The anti-protozoal activity against *L. major* amastigotes with IC₅₀ values in the range of 4.9–25.3 µM—which were favorably far below their toxicity against normal murine macrophages—and CC₅₀ values ranging from 432.5 to 620.7 µM after 48 h of treatment. Compound **158** exhibited the strongest activity and the highest selectivity index (SI) with an IC₅₀ and SI values of 15.5 ± 2.1 µM and 40.0, respectively.

Compound **377** also showed a strong inhibitory effect on the growth of two fungi, *C. albicans* and *C. tropicals*, with half the effect of Amphotericin B [125]. In addition, researchers found that compound **379** was effective against bacteria (*Bacillus subtilis, Mycobacterium vaccae, Pseudomonas aeruginosa, Staphylococcus aureus*, methicillin-resistant *S. aureus*, vancomycin-resistant *Enterococcus faecalis*, and *Escherichia coli*) and fungi (*Sporobolomyces salmonicolor, C. albicans*, and *P. notatum*) by an agar diffusion method. This suggests that compound **379** is a potential broad-spectrum antimicrobial agent [134]. The antimicrobial activities of compounds **377–379** are all significant, and it is hypothesized that the hydroxy group at C-5 may enhance the antimicrobial activity of the compounds.

Anti-inflammatory of eudesmane-type sesquiterpenoids

No.	Cells	Cytokines	IC ₅₀ (µM)	Positive control	IC ₅₀ (μM)	References
1	RAW 264.7	NO	15.0 ± 0.4	Dexamethasone	10.7 ± 0.3	[17]
19	RAW 264.7	NO	36.36 ± 1.86	L-NMMA	$\textbf{24.95} \pm \textbf{11.46}$	[21]
20	RAW 264.7	NO	30.6 ± 0.7	Dexamethasone	10.7 ± 0.3	[17]
22	RAW 264.7	NO	61.19 ± 2.54	Quercetin	74.34 ± 1.39	[21]
23	RAW 264.7	NO	31.69 ± 1.93	Quercetin	74.34 ± 1.39	[22]
24	RAW 264.7	NO	8.08 ± 0.21	Quercetin	74.34 ± 1.39	[22]
25	RAW 264.7	NO	7.66 ± 0.53	Quercetin	74.34 ± 1.39	[22]
26	RAW 264.7	NO	26.90 ± 3.92	Quercetin	74.34 ± 1.39	[22]
27	RAW 264.7	NO	44.26 ± 1.74	Quercetin	74.34 ± 1.39	[22]
71	BV-2	NO	$\textbf{27.3} \pm \textbf{0.7}$	Quercetin	8.7 ± 0.3	[30]
72	BV-2	NO	39.8 ± 2.7	Quercetin	8.7 ± 0.3	[30]
73	BV-2	NO	$\textbf{29.8} \pm \textbf{1.4}$	Quercetin	8.7 ± 0.3	[30]
74	BV-2	NO	33.0 ± 1.3	Quercetin	8.7 ± 0.3	[30]
75	BV-2	NO	40.6 ± 0.9	Quercetin	8.7 ± 0.3	[30]
109	RAW 264.7	NO	$\textbf{4.78} \pm \textbf{0.06}$	Indomethacin	$\textbf{57.21} \pm \textbf{1.21}$	[37]
117	RAW 264.7	NO	34.24 ± 0.36	Indomethacin	$\textbf{57.21} \pm \textbf{1.21}$	[37]
119	RAW 264.7	NO	46.79 ± 0.66	Indomethacin)	$\textbf{57.21} \pm \textbf{1.21}$	[37]
190	RAW 264.7	NO	17.90 ± 1.0	Luteolin	5.6 ± 0.2	[64]
197	RAW 264.7	NO	57.00 ± 6.2	Luteolin	5.6 ± 0.2	[64]
200	RAW 264.7	NO	46.92	Quercetin	14.55	[66]
210	RAW 264.7	NO	5.1	Quercetin	14.55	[66]
221	RAW 264.7	NO	9.56 ± 0.71	Aminoguanidinea	8.5 ± 0.35	[67]
229	RAW 264.7	NO	20.00 ± 1.30	L-NMMA	41.40 ± 2.30	[71]
230	RAW 264.7	NO	25.7 ± 0.2	dexamethasone	9.3 ± 0.2	[72]
240	RAW 264.7	NO	12.91	Dex		[75]
241	RAW 264.7	NO	9.62	Dex		[75]
242	RAW 264.7	NO	12.31	Dex		[75]
243	RAW 264.7	NO	11.89	Dex		[75]
244	RAW 264.7	NO	10.07	Dex		[75]
245	RAW 264.7	NO	10.87	Dex		[75]
248	RAW 264.7	NO	10.50 ± 1.17	L-NMMA	15.33 ± 1.69	[76]
249	RAW 264.7	NO	15.44 ± 1.72	L-NMMA	15.33 ± 1.69	[76]
250	RAW 264.7	NO	16.32 ± 0.45	L-NMMA	15.33 ± 1.69	[76]
251	RAW 264.7	NO	18.97 ± 1.00	L-NMMA	15.33 ± 1.69	[76]
252	RAW 264.7	NO	16.54 ± 0.39	L-NMMA	15.33 ± 1.69	[76]
253	RAW 264.7	NO	29.30 ± 2.09	L-NMMA	15.33 ± 1.69	[77]
255	RAW 264.7	NO	$\textbf{28.12} \pm \textbf{2.41}$	L-NMMA	15.33 ± 1.69	[76]
257	RAW 264.7	NO	29.73 ± 0.55	L-NMMA	15.33 ± 1.69	[76]
270	RAW 264.7	NO	5.46 ± 4.11	Aminoguanidine	20.33 ± 1.08	[9]
271	RAW 264.7	NO	45.59 ± 4.35	Aminoguanidine	20.33 ± 1.08	[9]
272	RAW 264.7	NO	14.07 ± 2.08	Aminoguanidine	20.33 ± 1.08	[9]
321	RAW 264.7	NO	1.95 ± 0.20	L-NMMA	12.89 ± 1.14	[107]
322	RAW 264.7	NO	1.21 ± 0.21	L-NMMA	12.89 ± 1.14	[107]

4.4. Antimalarial activity

Malaria is a parasitic disease caused by the *Plasmodium falciparum*, *Plasmodium vivax* and *Plasmodium malariae*, which poses a serious health risk to humans. Currently, artemisinin derivatives, such as sodium artesunate, artemether or dihydroartemisinin, are widely used for the treatment of malaria. However, the recent emergence of *Plasmodium falciparum* parasites with reduced susceptibility to artemisinin-based drugs poses a significant challenge [135]. This resistance to traditional antimalarial drugs not only complicates treatment but also undermines malaria control efforts. To address this issue, it is critical to explore new antimalarial drug use strategies to address this issue. Compound **164** showed strong inhibition of the growth of the *Plasmodium falciparum* strain Dd2 (chloroquine resistant), with an IC₅₀ value of $0.5 \pm 0.01 \mu$ M, while the IC₅₀ value for the positive drug (artemisinin) was 4.0 ± 4.2 nM [73]. Compounds **179**, **180**, **185**, and **187** derived from *D. delavayi* exhibited moderate antimalarial activity against *Plasmodium yoelii* BY265RFP with inhibition rates of 14.5 % (30 mg/kg/day), 18.5 % (30 mg/kg/day), 23.29 % (50 mg/kg/day), and 28.94 % (50 mg/kg/day), respectively.

4.5. Insecticidal activity

Certain eudesmane-type sesquiterpenoids from the family Asteraceae have good insecticidal activity; for example, compound **84** has a high internal insecticidal effect against *Varroa destructor*, a parasite of *Apis mellifera*, and can be used for the control of *Varroa destructor* in bee colonies with high efficiency and low toxicity [12]. The sesquiterpene dimer (**104**) showed significant inhibition of aphids *Lipaphis erysimi*, *Sitobion avenae*, *Rhopalosiphum padi*, and *Aphis craccivora* with LC₅₀ values of $7.53 \pm 0.33 \mu$ M, $35.80 \pm 1.78 \mu$ M,

Cytotoxic activity of eudesmane-type sesquiterpenoids

No.	Cells	IC ₅₀ (μM)	Positive control	IC ₅₀ (µM)	References
34	HepG2	35.1 ± 2.9	Sorafenib	10.3 ± 1.0	[24]
	Huh 7	35.0 ± 2.0	Sorafenib	8.2 ± 2.4	
	SK-Hep-1	32.7 ± 4.0	Sorafenib	13.3 ± 2.2	
42	LNCaP	34.96 ± 8.5	Doxorubicin	0.45 ± 0.15	[26]
	DU-145	26.30 ± 5.7	Doxorubicin	0.43 ± 0.09	
43	LNCaP	16.05 ± 6.1	Doxorubicin	0.45 ± 0.15	[26]
	DU-145	18.40 ± 4.9	Doxorubicin	0.43 ± 0.09	
44	LNCaP	36.17 ± 11.5	Doxorubicin	0.45 ± 0.15	[26]
	DU-145	38.70 ± 11.5	Doxorubicin	0.43 ± 0.09	
48	LNCaP	24.66 ± 7.7	Doxorubicin	0.45 ± 0.15	[26]
	DU-145	18.10 ± 7.7	Doxorubicin	0.43 ± 0.09	
49	LNCaP	9.10 ± 4.5	Doxorubicin	0.45 ± 0.15	[26]
	DU-145	17.77 ± 3.6	Doxorubicin	0.43 ± 0.09	
50	LNCaP	26.92 ± 3.1	Doxorubicin	0.45 ± 0.15	[26]
	DU-145	23.93 ± 10.6	Doxorubicin	0.43 ± 0.09	
55	BGC-823	49.87 ± 4.12	5-FU	75.05 ± 8.55	[28]
	HepG2	59.47 ± 5.81	5-FU	77.05 ± 6.36	
	A549	68.31 ± 4.40	5-FU	70.29 ± 6.50	
	MDA-MB231	71.07 ± 4.46	5-FU	86.01 ± 14.25	
	Kyse30	$\textbf{72.60} \pm \textbf{10.22}$	5-FU	84.54 ± 14.64	
	HUVEC	205.3 ± 28.51	5-FU	117.3 ± 20.93	
76	HepG2	23.23 ± 1.35	DDP	4.75 ± 1.32	[31]
93	HepG2	21.50 ± 1.21	DDP	4.75 ± 1.32	[31]
94	HepG2	19.43 ± 0.93	DDP	4.75 ± 1.32	[31]
96	SGC-7901	31.78 ± 0.23	L-NAME		[32]
97	HepG2	$\textbf{42.40} \pm \textbf{1.81}$	DDP	4.75 ± 1.32	[31]
139	HL-60	17.3	Etoposide	1 and 10	[50]
145	HeLa	106.2 ± 3.6	Cisplatin	11.9 ± 1.5	[52]
	K562	51.1 ± 3.7	Cisplatin	6.1 ± 0.1	
	MDA231	131.6 ± 5.0	Cisplatin	8.3 ± 0.9	
	B16	$\textbf{70.17} \pm \textbf{3.9}$	Cisplatin	8.4 ± 0.7	
	NCI-H460	11.8 ± 0.2	Cisplatin	10.3 ± 0.7	
199	pfeiffer	17.06 ± 1.05	Cytarabine	17.20 ± 1.84	[65]
214	K562	7.92 ± 0.35	Cytarabine	25.10 ± 1.74	[65]
	THP-1	3.96 ± 0.48	Cytarabine	24.34 ± 0.57	
	pfeiffer	3.87 ± 0.51	Cytarabine	17.20 ± 1.84	
254	P-388	7.1 ± 0.4	Cisplatin	2.2 ± 0.3	[78]
	HONE-1	3.8 ± 0.5	Cisplatin	2.1 ± 0.5	
	HT-29	3.0 ± 0.3	Cisplatin	2.0 ± 0.3	
274	MCF-7	2.834 ± 1.121	-		[80]
	MDA-MB-231	1.545 ± 1.116			
	LO2	$\textbf{27.82} \pm \textbf{1.093}$			
297	A549	27.7	Doxorubicin	2.4	[86]
340	HL-60	0.68 ± 0.07	Doxorubicin	0.36 ± 0.05	[10]
	SMMC-7721	2.46 ± 0.11	Doxorubicin	0.96 ± 0.07	
	A-549	1.49 ± 0.08	Doxorubicin	3.02 ± 0.10	
	MCF-7	3.92 ± 0.12	Doxorubicin	1.63 ± 0.08	
	SW480	0.57 ± 0.06	Doxorubicin	5.98 ± 0.13	
342	MCF-7	40.56 ± 0.24	Cisplatin	53.00 ± 0.02	[111]
363	K-562	90.1	Paclitaxel	9.5	[120]
366	HCT116	12.2			[121]
376	A549	14.79 ± 0.91	Camptothecin	11.42 ± 0.13	[124]
378	MCE-7	39.5 ± 0.04	Cisplatin	59 ± 0.045	[126]

 $17.09 \pm 2.04 \ \mu$ M, and $20.17 \pm 1.63 \ \mu$ M, respectively, which were better than the positive control pymetrozine with LC₅₀ values of $28.57 \pm 2.51 \ \mu$ M, $19.68 \pm 0.31 \ \mu$ M, $61.89 \pm 5.39 \ \mu$ M, and $133.96 \pm 9.50 \ \mu$ M, respectively; this indicated that compound **104** could be used as a potential biocide [45]. Compound **119** had strong nematicidal activity against *Meloidogyne incognita* (IC₅₀ = 25.42 \pm 0.28 \ \muM), which was better than albendazole (IC₅₀ = 65.4 \pm 0.33 μ M) [58]. The above findings suggested that plants of the family Asteraceae could be an important resource for biopesticides.

4.6. Neuroprotective activity

Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive decline, common in elderly patients [136–138]. Compounds 110, 111, 113, and 115 isolated from *A. artemisiifolia* are protective against $A\beta_{1.42}$ -induced HT22 cell damage, while compound 114 has comparable effects to the positive control andrographolide [60]. Further analysis by flow cytometry revealed that compounds 114 and 115 could reduce the fluorescence intensity in $A\beta_{1.42}$ -transfected HT22 cells to some extent. The analysis

 Table 11

 Anti-microbial activity of eudesmane-type sesquiterpenoids.

No.	Strains	MIC	Positive control	MIC	References
146	P. viticola	7.9 μg/mL			[3]
150	P. viticola	9.9 μg/mL			[3]
152	P. viticola	50 μg/mL			[3]
153	P. viticola	39.7 μg/mL			[3]
291	Candida albicans DSY654	64 µg/mL			[90]
313	B. cereus	25 μg/mL	Vancomycin	0.62 μg/mL	[102]
	Staphylococcus epidermids	25 μg/mL	Vancomycin	0.62 μg/mL	
377	C. albicans	8.27 μM	Amphotericin B	4.63 μM	[125]
	C. tropicals	10.13 μM	Amphotericin B	5.27 µM	
378	C. albicans	2.92 μM	Amphotericin B	4.6 µM	[126]
	C. tropicals	2.10 μM	Amphotericin B	5.2 µM	
	A. flavus	2.92 μM	Amphotericin B	4.6 µM	
	A. niger	6.50 μM	Amphotericin B	5.4 µM	

demonstrated that the neuroprotective effect can be enhanced by the 5,10-bis-*epi*-eudesm-3-ene-6-O- β -D-glucopyranosyl structural unit. In another study, it has been observed that both compounds **158** and **161** can increase the viability of H₂O₂- damaged PC12 cells in neuroprotection assays.

4.7. Other biological activities

Eudesmane-type sesquiterpenoids exhibit a diverse array of other biological activities, thus becoming highly versatile in various aspects of health and disease. These compounds display anti-HIV, anti-hepatitis B (HBV), and anti-inflammatory properties, thereby displaying important potential in combating viral infections and modulating immune responses [13,34,50,98,112]. Additionally, the ability to inhibit triglyceride accumulation, suppress T lymphocyte proliferation, and interfere with enzyme activity has been demonstrated. Moreover, eudesmane-type sesquiterpenoids have shown promising effects in preserving cellular integrity and exerting hypoglycemic and hypolipidemic effects, indicating the potential thereof as therapeutic agents for managing lipid metabolism disorders and regulating glucose levels [6,130].

The inhibitory effects of select eudesmane-type sesquiterpenoids on IL6/STAT3 activation highlight their significance in modulating signaling pathways involved in cell growth and inflammation [63]. These findings underscore the remarkable range of the biological activities of eudesmane-type sesquiterpenoids, thereby emphasizing the potential thereof as valuable compounds for pharmacological and therapeutic applications.

5. Discussion

Given the unique skeletal structures, variations in functional groups, and diverse biological activities, natural sesquiterpenoids have been one of the popular research areas in natural product chemistry. Within the same genus, compounds originating from these plants may exhibit similarities in terms of their overall structural type or biological activity. This could be attributed to the fact that plants belonging to the same genus often possess comparable genomes, which leads to the possibility of similar synthetic and metabolic pathways in their chemical compositions.

Compounds isolated from the genus *Artemisia* in the family Asteraceae exhibit distinct characteristics, which are specifically characterized by the easy dehydrogenation of the C-11; this results in the formation of a double bond, while the C-13 is typically oxidized to a carboxyl group. Moreover, these compounds share the same stereo-configuration at C-5, C-7, and C-10, and are all in the *S*-configuration. Notably, within the genus *Artemisia*, a significant number of eudesmane-type sesquiterpenoids feature an α -methylene- γ -lactone moiety, located between C-6 and C-12, or between C-8 and C-12. Most of the compounds in plants from the genus *Atractylodes* are sesquiterpene glycosides with one carbonyl group at C-2 or C-3. In the plants of the genus *Inula*, sesquiterpene lactones are generated in most compounds by linking C-8 and C-12 through ester bonds, while compounds in other genera virtually do not form lactone rings. Moreover, the majority of the eudesmane-type sesquiterpenoids isolated from plants in the family Lamiaceae, Chloranthaceae, or Anacardiaceae normally have an α,β -unsaturated γ -lactone structure. In contrast, compounds from the family Thyme-laeaceae often contain $\Delta^{3(4)/4(5)/4(14)}$ double bonds and lack lactone rings formed by isopropyl chains.

The bioactivities of eudesmane-type sesquiterpenoids vary across compounds due to their different substituents and different substitution positions. Nevertheless, the structure–activity relationships (SAR) of eudesmane-type sesquiterpenoids so far have not been studied systematically, but a few attempts can be made to discuss the effect of substitution on biological activity. For instance, the majority of compounds featuring an α -substituted acrylic acid or acrylate moiety exhibit an anti-inflammatory activity. The substituent at C-8 can also affect the efficacy of the anti-inflammatory activity. In addition, it is presumed that the number and positions of hydroxy groups in the structures of the compounds could affect their anti-inflammatory effects, and the terminal double bond between C-4 and C-15 could significantly enhance the anti-inflammatory activity of the compounds. Furthermore, a comparison of the anti-inflammatory effects of eudesmane-type sesquiterpenoids showed that the propane-1,2-diol moiety is likely the key active site. In addition, it was found that the neuroprotective effects of these compounds can be promoted by the 5,10-bis-*epi*-eudesm-3-ene-6-O- β -D-glucopyranosyl structural unit, and the α , β -unsaturated carbonyl at C-3 could be related to the enhanced inhibition of IL-6/STAT3

G.-X. Wu et al.

activation.

This review systematically explored the diversity of eudesmane-type sesquiterpenoids with a significant number isolated from plants in the families Asteraceae and Lamiaceae, which have a long-standing use in Traditional Chinese Medicine (TCM). For instance, compounds from the family Asteraceae are renowned for their anti-inflammatory and antimalarial properties, aligning with their use to treat fevers and infections. Similarly, species from the family Lamiaceae, such as *Salvia plebeia*, have analgesic and antipyretic effects, which are often attributed to the presence of bioactive sesquiterpenoids.

It has been found that some compounds can exert anti-inflammatory effects by interfering with the NF-κB signalling pathway. But, it is noteworthy that the majority studies only conducted preliminary efficacy at the cellular level, lacking in-depth exploration of the mechanism. As indicated in Table 9, with the exception of L-NMMA and aminoguanidine, the positive controls used in most studies (dexamethasone, quercetin, indomethacin, luteolin) are not specific inhibitors of NO synthesis. This highlights certain limitations in the current research on the anti-inflammatory efficacy of eudesmane-type sesquiterpenoids. Therefore, the anti-inflammatory mechanisms of these compounds require further investigation, including animal experiments. In the section on neuroprotection, it is important to note that the studies conducted so far have mainly been limited to simple cell models. The authors have not evaluated whether these compounds can effectively penetrate the blood-brain-barrier and exert their neuroprotective effects in brain tissue. Therefore, it is necessary to conduct further research using animal models to comprehensively evaluate the neuroprotective potential of these compounds. Such research will serve to address the current limitations in the research, enhance the scientific validity and reliability of the studies, and provide a more robust foundation for further advancements in this field. Moreover, a comprehensive exploration in absorption, distribution, metabolism, excretion, and toxicity of these compunds is pivotal for foreseeing the efficacy and safety of potential drug candidates, and ultimately enhancing their likelihood of success in clinical trials and beyond. Finally, the study on the mechanism of eudesmane-type sesquiterpenoids should be deepened, especially the definition of their targets. This is crucial for optimizing their pharmacological properties, crafting targeted therapies, and laying the groundwork for designing and synthesizing more potent, selective analogs with refined pharmacological profiles.

There are extensive and meticulous literature about eudesmane-type sesquiterpenoids but not any published research pertaining to the molecular targets of them. Subsequent studies should be directed towards the precise identification and rigorous validation of the prospective molecular targets of these bioactive compounds. Such endeavors will be instrumental in demystifying the modus operandi of their biological activity and could potentially unearth novel avenues for therapeutic intervention. Moreover, there were only a few studies on the synthesis and structural modification of eudesmane-type sesquiterpenoids, for example, compounds **48–50** were derived by acetylation or oxidation of the known compound,11*-epi*-artapshin [26]. Works in this area still need to be strengthened, and the incorporation of computational methods, including molecular docking and dynamics simulations, is particularly advantageous for forecasting their bioactivities and facilitating the rational design of more efficacious analogs.

6. Conclusion

The present review summarized the progress of research on the chemical structures and pharmacological activities of natural eudesmane-type sesquiterpenoids from 2016 to 2022. Notably, over 391 eudesmane-type sesquiterpenoids were reported in the published literature. These compounds were mainly found in the plants of the families Asteraceae, Lamiaceae, Chloranthaceae, Solanaceae, Anacardiaceae, and Thymelaeaceae; some compounds were from bryophytes, microorganisms, and marine organisms. Furthermore, about one third of all compounds were from the family Asteraceae, primarily from the genus *Artemisia*. Most of the eudesmane-type sesquiterpenoids isolated from the genera *Inula* and *S. plebeia* were sesquiterpene lactones with an α,β -unsaturated- γ -lactone ring. Multiple sesquiterpene dimers were available in plants of the families Asteraceae, Lamiaceae, Chloranthaceae, and Anacardiaceae. Pharmacological studies showed that eudesmane-type sesquiterpenoids had a variety of bioactivities. Among these, anti-inflammatory activity was preeminent, followed by cytotoxic, antibacterial, anti-malarial, insecticidal, and neuroprotective activities. Interestingly, the eudesmane-type sesquiterpenoids with anti-inflammatory effects were primarily isolated from species in the families Asteraceae and Solanaceae. Importantly, eudesmane-type sesquiterpenoids were found to widely exist in plants, microorganisms, and marine organisms, with a variety of remarkable bioactivities. As several eudesmane-type sesquiterpenoids with significant activity have been discovered, the in-vivo activity and mechanism of action should be studied in more depth. Simultaneously, the development and utilization of eudesmane-type sesquiterpenoids should also be proactively explored.

Data availability

The data referenced in this review are sourced from existing literature. As this study did not involve the generation of new data, there are no datasets to deposit in public repositories. Readers seeking detailed information are encouraged to refer to the cited works within our reference list, which thoroughly detail the methodologies, findings, and conclusions of the underlying research.

Ethical considerations

The present study is a comprehensive literature review and it does not encompass any primary data collection or experimental procedures, including those involving animal subjects. Therefore, the research was exempt from undergoing ethical review and did not require ethical clearance from an institutional review board.

CRediT authorship contribution statement

Guang-Xu Wu: Writing – original draft, Methodology, Investigation, Data curation. **Hao-Yu Zhao:** Methodology, Investigation, Data curation. **Cheng Peng:** Project administration, Conceptualization. **Fei Liu:** Writing – review & editing, Validation, Formal analysis. **Liang Xiong:** Validation, Project administration, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NNSFC; Grant Nos. 82022072 and 82104371), the Natural Science Foundation of Sichuan Province (Grant Nos. 2023NSFSC1773, 2022NSFSC1332, and 2022NSFC1557), the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (Grant No. ZYYCXTD-D-202209), the Scientific and Technological Industry Innovation Team of Traditional Chinese Medicine of Sichuan Province (Grant No. 2022C001), and the Xinglin Scholar Plan of Chengdu University of Traditional Chinese Medicine (Grant Nos. XKTD2022006, QJRC2021008, and QJRC2022020).

References

- [1] Y. Shi, Monoterpene and Sesquiterpene Chemistry, Chemical Industry Press, Beijing, 2008.
- [2] H.Z. Shu, C. Peng, L. Bu, L. Guo, F. Liu, L. Xiong, Bisabolane-type sesquiterpenoids: structural diversity and biological activity, Phytochemistry 192 (2021) 112927, https://doi.org/10.1016/j.phytochem.2021.112927.
- [3] J. Ramseyer, B. Thuerig, M. De Mieri, H.J. Scharer, T. Oberhansli, M.P. Gupta, L. Tamm, M. Hamburger, O. Potterat, Eudesmane sesquiterpenes from Verbesina lanata with inhibitory activity against grapevine downy mildew, J. Nat. Prod. 80 (12) (2017) 3297–3305, https://doi.org/10.1021/acs.jnatprod.7b00868.
- [4] K. Sofou, D. Isaakidis, A. Spyros, A. Buttner, A. Giannis, H.E. Katerinopoulos, Use of costic acid, a natural extract from *Dittrichia viscosa*, for the control of Varroa destructor, a parasite of the European honey bee, Beilstein J. Org. Chem. 13 (2017) 952–959, https://doi.org/10.3762/bjoc.13.96.
- [5] S.C. Yang, Z. Li, J.L. Wang, J.Y. Ruan, C. Zheng, P.J. Huang, L.F. Han, Y. Zhang, T. Wang, Eudesmane-type sesquiterpene glycosides from *Dictamnus dasycarpus* turcz, Molecules 23 (3) (2018) 642, https://doi.org/10.3390/molecules23030642.
- [6] H.Q. Chen, L.M. Qiu, P. Wang, C.H. Cai, H. Wang, H.F. Dai, W.L. Mei, Three new eudesmane-type sesquiterpenoids from the mangrove-derived endophytic fungus *Penicillium* sp. J-54, Phytochem. Lett. 33 (2019) 36–38, https://doi.org/10.1016/j.phytol.2019.07.005.
- [7] Y. Shen, H. Chen, L. Shen, H. Li, X. Dong, C. Xiao, B. Jiang, Dodelates A-E: five dimeric eudesmane sesquiterpenoids from Dobinea delavayi, Bioorg. Chem. 95 (2020) 103488, https://doi.org/10.1016/j.bioorg.2019.103488.
- [8] Q. Wen, Y.P. Liu, G. Yan, S. Yang, S. Hu, J. Hua, W.Q. Yin, G.Y. Chen, Y.H. Fu, Bioactive Eudesmane sesquiterpenes from Artabotrys hongkongensis Hance, Nat. Prod. Res. 34 (12) (2020) 1687–1693, https://doi.org/10.1080/14786419.2018.1527834.
- [9] Y.Q. Xie, L.X. Song, C.G. Li, Y.B. Yang, S.Y. Zhang, H. Xu, Z.T. Wang, Z.Z. Han, L. Yang, Eudesmane-type and agarospirane-type sesquiterpenes from agarwood of Aquilaria agallocha, Phytochemistry 192 (2021) 112920, https://doi.org/10.1016/j.phytochem.2021.112920.
- [10] Q. Wen, Y. Liu, G. Yan, S. Yang, S. Hu, J. Hua, W. Yin, G. Chen, Y. Fu, Bioactive Eudesmane sesquiterpenes from Artabotrys hongkongensis Hance, Nat. Prod. Res. 34 (12) (2020) 1687–1693, https://doi.org/10.1080/14786419.2018.1527834.
- [11] J. Ramseyer, B. Thuerig, M. De Mieri, H.J. Schaerer, T. Oberhaensli, M.P. Gupta, L. Tamm, M. Hamburger, O. Potterat, Eudesmane sesquiterpenes from Verbesina lanata with inhibitory activity against grapevine downy mildew (vol 80, pg 3296, 2017), J. Nat. Prod. 81 (4) (2018), https://doi.org/10.1021/acs. jnatprod.8b00140, 1130-1130.
- [12] K. Sofou, D. Isaakidis, A. Spyros, A. Buettner, A. Giannis, H.E. Katerinopoulos, Use of costic acid, a natural extract from Dittrichia viscosa, for the control of Varroa destructor, a parasite of the European honey bee, Beilstein J. Org. Chem. 13 (2017) 952–959, https://doi.org/10.3762/bjoc.13.96.
- [13] S.C. Yang, Z. Li, J.L. Wang, J.Y. Ruan, C. Zheng, P.J. Huang, L.F. Han, Y. Zhang, T. Wang, Eudesmane-type sesquiterpene glycosides from *Dictamnus dasycarpus* turcz, Molecules 23 (3) (2018) 642, https://doi.org/10.3390/molecules23030642.
- [14] H. Chen, L. Qiu, P. Wang, C. Cai, H. Wang, H. Dai, W. Mei, Three new eudesmane-type sesquiterpenoids from the mangrove-derived endophytic fungus Penicillium sp. J-54, Phytochem. Lett. 33 (2019) 36–38, https://doi.org/10.1016/j.phytol.2019.07.005.
- [15] V. Krishna, P. Khandelwal, N. Koolwal, M. Sharma, P. Singh, Eudesmane derivatives from some Asteraceae plants an overview, J. Indian Chem. Soc. 91 (2014) 1509–1516.
- [16] Q.X. Wu, Y.P. Shi, Z.J. Jia, Eudesmane sesquiterpenoids from the Asteraceae family, Nat. Prod. Rep. 23 (5) (2006) 699–734, https://doi.org/10.1039/ b606168k.
- [17] C. Zhang, R. Wen, X. Ma, K. Zeng, Y. Xue, P. Zhang, M. Zhao, Y. Jiang, G. Liu, P. Tu, Nitric oxide inhibitory sesquiterpenoids and its dimers from Artemisia freyniana, J. Nat. Prod. 81 (4) (2018) 866–878, https://doi.org/10.1021/acs.jnatprod.7b00947.
- [18] X. Wang, X. Peng, C. Tang, S. Zhou, C.-Q. Ke, Y. Liu, S. Yao, J. Ai, Y. Ye, Anti-inflammatory eudesmane sesquiterpenoids from Artemisia hedinii, J. Nat. Prod. 84 (5) (2021) 1626–1637, https://doi.org/10.1021/acs.jnatprod.1c00177.
- [19] T. Truong Van Nguyen, T. Lien Thi Kim, N. Thi Tiet, D. Toan Phan, D. Lien Thi My, T. Dung Duc, K. Phi Phung Nguyen, T. Quang Ton, A new eudesmane-type sesquiterpene from the leaves of Artemisia vulgaris, Chem. Nat. Compd. 54 (1) (2018) 66–68, https://doi.org/10.1007/s10600-018-2260-z.
- [20] X.F. Wu, A. Turak, H.A. Aisa, Sesquiterpenes from the aerial parts of Artemisia tournefortiana, Phytochem. Lett. 49 (2022) 182–186, https://doi.org/10.1016/j. phytol.2022.04.006.
- [21] J. Chi, B. Li, W. Dai, L. Liu, M. Zhang, Highly oxidized sesquiterpenes from Artemisia austro-yunnanensis, Fitoterapia 115 (2016) 182–188, https://doi.org/ 10.1016/j.fitote.2016.10.013.
- [22] L. Zhang, X. Nie, J. Chang, F. Wang, J. Lu, Nitric oxide production inhibitory eudesmane-type sesquiterpenoids from Artemisia argyi, Chem. Biodivers. 17 (7) (2020) e2000238, https://doi.org/10.1002/cbdv.202000238.
- [23] T.T.H. Hanh, L.B. Vinh, N.X. Cuong, T.H. Quang, Two new eudesmane sesquiterpene glucosides from the aerial parts of Artemisia vulgaris, Nat. Prod. Res. 37 (9) (2023) 1544–1549, https://doi.org/10.1080/14786419.2022.2025591.
- [24] Y. Wang, Y.B. Ma, X.Y. Huang, T.Z. Li, X.F. He, X.M. Zhang, J.J. Chen, A.-L. Artemleucolides, eudesmane-type sesquiterpenoids from Artemisia leucophylla and their antihepatoma cytotoxicity, Fitoterapia 165 (2023) 105339, https://doi.org/10.1016/j.fitote.2022.105399.
- [25] S.M. Adekenov, Z.R. Shaimerdenova, Y.V. Gatilov, G.A. Atazhanova, Two new sesquiterpene lactones from Artemisia halophila, Chem. Nat. Compd. 53 (2) (2017) 284–289, https://doi.org/10.1007/s10600-017-1971-x.

- [26] M. Fattahian, M. Ghanadian, B. Zolfaghari, M. Aghaei, F. Zulfiqar, I.A. Khan, Z. Ali, Phytochemical analysis of Artemisia kopetdaghensis: sesquiterpene lactones with proapoptotic activity against prostate cancer cells, Phytochemistry 203 (2022) 113411, https://doi.org/10.1016/j.phytochem.2022.113411.
- [27] R.F. Mukhamatkhanova, K.K. Turgunov, K.M. Bobakulov, D.E. Dusmatova, B. Tashkhodzhaev, I.D. Sham'yanov, N.D. Abdullaev, Terpenoids from Artemisia ferganensis, Chem. Nat. Compd. 58 (6) (2022) 1034–1038, https://doi.org/10.1007/s10600-022-03861-0.
- [28] L. Zhang, Y. Yan, S. Wang, Z. Ren, Y. Cheng, Three new sesquiterpenoids with cytotoxic activity from Artemisia argvi, Nat. Prod. Res. 35 (6) (2021) 893–899, https://doi.org/10.1080/14786419.2019.1610754.
- [29] X. Wang, C. Tang, S. Meng, B. Tang, Y. Zang, C. Ke, S. Yao, J. Li, Y. Ye, Noreudesmane sequiterpenoids from Artemisia hedinii and their anti-inflammatory activities, Fitoterapia 153 (2021) 104961, https://doi.org/10.1016/j.fitote.2021.104961.
- [30] C. Zhang, S. Wang, K.W. Zeng, J. Li, D. Ferreira, J.K. Zjawiony, B.Y. Liu, X.Y. Guo, H.W. Jin, Y. Jiang, P.F. Tu, Nitric oxide inhibitory dimeric sesquiterpenoids from Artemisia rupestris, J. Nat. Prod. 79 (1) (2016) 213–223, https://doi.org/10.1021/acs.jnatprod.5b00894.
- [31] L.X. Zhuang, Y. Liu, S.Y. Wang, Y. Sun, J. Pan, W. Guan, Z.C. Hao, H.X. Kuang, B.Y. Yang, Cytotoxic sesquiterpenoids from Atractylodes chinensis (DC.) koidz, Chem. Biodivers. 19 (12) (2022) e202200812, https://doi.org/10.1002/cbdv.202200812.
- [32] H.X. Zhang, J.G. Si, J.R. Li, M. Yu, C.X. Zhao, T. Zhang, Z.M. Zou, Eudesmane-type sesquiterpenes from the rhizomes of Atractylodes macrocephala and their bioactivities, Phytochemistry 206 (2023) 113545, https://doi.org/10.1016/j.phytochem.2022.113545.
- [33] S. Wang, L. Ding, J. Su, L. Peng, L. Song, X. Wu, Atractylmacrols A-E, sesquiterpenes from the rhizomes of Atractylodes macrocephala, Phytochem. Lett. 23 (2018) 127–131, https://doi.org/10.1016/j.phytol.2017.11.021.
- [34] K. Xu, Z. Feng, Y. Yang, J. Jiang, P. Zhang, Eight new eudesmane- and eremophilane-type sesquiterpenoids from Atractylodes lancea, Fitoterapia 114 (2016) 115–121, https://doi.org/10.1016/j.fitote.2016.08.017.
- [35] K. Xu, Z. Feng, J. Jiang, Y. Yang, P. Zhang, Sesquiterpenoid and C-14-polyacetylene glycosides from the rhizomes of Atractylodes lancea, Chin. Chem. Lett. 28 (3) (2017) 597–601, https://doi.org/10.1016/j.cclet.2016.10.036.
- [36] X. Wu, L. Ding, W. Tu, H. Yang, J. Su, L. Peng, Y. Li, Q. Zhao, Bioactive sesquiterpenoids from the flowers of *Inula japonica*, Phytochemistry 129 (2016) 68–76, https://doi.org/10.1016/j.phytochem.2016.07.008.
- [37] X. Zheng, Z. Wu, J. Xu, X. Zhang, Y. Tu, J. Lei, R. Yuan, H. Cheng, Q. Wang, J. Yu, Bioactive sesquiterpenes from Inula helenium, Bioorg. Chem. 114 (2021) 105066, https://doi.org/10.1016/j.bioorg.2021.105066.
- [38] Y.Y. Zhou, C.Z. Jin, Y.Q. Ma, X.J. Zhang, X. Liu, S.L. Xiao, A new phytotoxic sesquiterpene from Inula japonica, Chem. Nat. Compd. 58 (1) (2022) 47–49, https://doi.org/10.1007/s10600-022-03594-0.
- [39] Y. Ding, W. Pan, J. Xu, T. Wang, T. Chen, Z. Liu, C. Xie, Q. Zhang, Sesquiterpenoids from the roots of *Inula helenium* inhibit acute myelogenous leukemia progenitor cells, Bioorg. Chem. 86 (2019) 363–367, https://doi.org/10.1016/j.bioorg.2019.01.055.
- [40] S.S. Ebada, D.H. El-Kashef, W.E.G. Mueller, P. Proksch, Cytotoxic eudesmane sesquiterpenes from Crepis sancta, Phytochem. Lett. 33 (2019) 46–48, https://doi. org/10.1016/j.phytol.2019.07.007.
- [41] Y. Mastoropoulos, C. Barda, E. Kalpoutzakis, H. Skaltsa, Two novel eudesmane esters from Anthemis orientalis (L.) degen, Phytochem. Lett. 28 (2018) 179–182, https://doi.org/10.1016/j.phytol.2018.10.006.
- [42] T. Wu, X.J. Yan, T.R. Yang, Y.F. Wang, J.Y. He, Y. Feng, L.H. Su, H. Chen, M. Xu, Structure-based molecular networking for the discovery of anti-HBV compounds from *Saussurea lappa* (deene.) C.B Clarke, Molecules 27 (6) (2022) 2023, https://doi.org/10.3390/molecules27062023.
- [43] S. Demir, C. Karaalp, E. Bedir, Specialized metabolites from the aerial parts of *Centaurea polyclada* DC, Phytochemistry 143 (2017) 12–18, https://doi.org/ 10.1016/j.phytochem.2017.07.002.
- [44] Y.P. Sun, Y.F. Huang, Y. Yu, J.S. Yang, J.S. Liu, G.K. Wang, Two new sesquiterpenoids from Kalimeris shimadae, Record Nat. Prod. 17 (3) (2022) 566–570, https://doi.org/10.25135/rnp.369.2210.2604.
- [45] T. Liu, H. Wu, H. Jiang, L. Zhang, Y. Zhang, L. Mao, Echingridimer A, an oxaspiro dimeric sesquiterpenoid with a 6/6/5/6/6 fused ring system from *Echinops grijsii* and aphicidal activity evaluation, J. Org. Chem. 84 (17) (2019) 10757–10763, https://doi.org/10.1021/acs.joc.9b01212.
- [46] J.J. Zhang, Y.J. Xu, R. Li, Y. Zhang, C.F. Yue, D.W. Bi, B. Cheng, X.W. Wu, R.H. Zhang, X.J. Zhang, X.L. Li, W.L. Xiao, A.-F. Ainslides, Six sesquiterpenoids isolated from *Ainsliaea pertyoides* and their NLRP3-inflammasome inhibitory activity, Chem. Biodivers. 19 (5) (2022) e202200135, https://doi.org/10.1002/ cbdv.202200135.
- [47] C. Zhang, W.B. Zhou, X.Y. Lei, S.Q. Zhao, Nitric oxide inhibitory terpenes and its glycosides from Ainsliaea bonatii, Fitoterapia 156 (2022) 105028, https://doi. org/10.1016/j.fitote.2021.105028.
- [48] D.A. Kambire, A.T. Yapi, J.B. Boti, Z.A. Ouattara, Z.F. Tonzibo, J.-J. Filippi, A. Bighelli, F. Tomi, Two new eudesman-4 alpha-ol epoxides from the stem essential oil of Laggera pterodonta from Cote d'Ivoire, Nat. Prod. Res. 34 (19) (2020) 2765–2771, https://doi.org/10.1080/14786419.2019.1586701.
- [49] B. Liu, J. Wu, H. Li, Y. Ma, Y. Luo, G.-L. Huang, X. Tian, Y. Chen, Constituents of the glandular trichome exudate on the leaves of Laggera pterodonta, Chem. Nat. Compd. 52 (5) (2016) 902–903, https://doi.org/10.1007/s10600-016-1809-y.
- [50] M. Blaschke, M. Zehl, B. Hartl, C. Strauss, J. Winkler, E. Urban, G. Krupitza, B. Kopp, Isolation of eudesmanes from *Pluchea odorata* and evaluation of their effects on cancer cell growth and tumor invasiveness in vitro, Phytochemistry 141 (2017) 37–47, https://doi.org/10.1016/j.phytochem.2017.05.009.
- [51] Y. Wang, J. Zhao, S. Zhou, J. Yang, X. Yao, Y. Tao, L. Mei, Y. Shi, New sesquiterpenes and benzofuran derivatives from the aerial parts of Asterothamnus centraliasiaticus, Tetrahedron 72 (32) (2016) 4910–4917, https://doi.org/10.1016/j.tet.2016.06.061.
- [52] X. Pang, Y. Li, Y. Gong, Y. Yan, H. Li, Y. Zhu, Sesquiterpenes from the whole plants of Parasenecio roborowskii, Fitoterapia 116 (2017) 24–33, https://doi.org/ 10.1016/j.fitote.2016.10.010.
- [53] H.B. Wu, L.H. Ma, X.M. Li, T.T. Liu, Selective phytotoxic effects of sesquiterpenoids from Sonchus arvensis as a preliminary approach for the biocontrol of two problematic weeds of wheat, J. Agric. Food Chem. 70 (30) (2022) 9412–9420, https://doi.org/10.1021/acs.jafc.2c03462.
- [54] M. Fattahian, M. Ghanadian, B. Zolfaghari, S. Abdeyazdan, S. Saberi, F. Zulfiqar, I.A. Khan, Z. Ali, Phytochemical study of Seriphidium khorassanicum (syn. Artemisia khorassanica) aerial parts: sesquiterpene lactones with anti-protozoal activity, Nat. Prod. Res. 38 (1) (2024) 16–27, https://doi.org/10.1080/ 14786419.2022.2102630.
- [55] Y. Hui, J. Cao, J. Lin, J. Yang, Y. Liu, C. Han, X. Song, C. Dai, X. Zhang, W. Chen, G. Chen, Eudesmanolides and other constituents from the flowers of Wedelia trilobata, Chem. Biodivers. 15 (3) (2018) 1700411, https://doi.org/10.1002/cbdv.201700411.
- [56] Y. Xie, X. Du, D. Liu, X. Chen, R. Li, Z. Zhang, Chemical constituents from Laggera pterodonta and their anti-inflammatory activities in vitro, Phytochem. Lett. 43 (2021) 126–129, https://doi.org/10.1016/j.phytol.2021.04.001.
- [57] Z. Wu, Q. Wang, J. Wang, H. Dong, X. Xu, Y. Shen, H. Li, W. Zhang, A. Vlasoulamine, A neuroprotective 3.2.2 cyclazine sesquiterpene lactone dimer from the roots of Vladimiria souliei, Org. Lett. 20 (23) (2018) 7567–7570, https://doi.org/10.1021/acs.orglett.8b03306.
- [58] Q. Wang, W.L. Mei, H.F. Dai, D.G. Tan, J.M. Zhang, S.-Z. Huang, Sesquiterpene glycoside diversities with anti-nematodal activities from *Pulicaria insignis*, Phytochem. Lett. 38 (2020) 161–165, https://doi.org/10.1016/j.phytol.2020.06.003.
- [59] J.Y. Kim, Y.H. Seo, I.H. Lee, H.Y. Choi, H.C. Kwon, J.H. Choi, J. Lee, D.S. Jang, New eudesmane-type sesquiterpene glycosides from the leaves of Aster koraiensis, Plants-Basel 9 (12) (2020) 1811, https://doi.org/10.3390/plants9121811.
- [60] J.P. An, T.K.Q. Ha, H.W. Kim, B. Ryu, J. Kim, J. Park, C.H. Lee, W.K. Oh, Eudesmane glycosides from Ambrosia artemisiifolia (common ragweed) as potential neuroprotective agents, J. Nat. Prod. 82 (5) (2019) 1128–1138, https://doi.org/10.1021/acs.jnatprod.8b00841.
- [61] P. Nhoek, H.S. Chae, Y.M. Kim, P. Pel, J. Huh, H.W. Kim, Y.H. Choi, K. Lee, Y.W. Chin, Sesquiterpenoids from the aerial parts of Salvia plebeia with inhibitory activities on proprotein convertase subtilisin/kexin type 9 expression, J. Nat. Prod. 84 (2) (2021) 220–229, https://doi.org/10.1021/acs.jnatprod.0c00829.
- [62] Y. Lu, Y. Chen, Eudesmane sesquiterpenoids from Salvia plebeia, Record Nat. Prod. 15 (6) (2021) 613–616, https://doi.org/10.25135/rnp.218.20.10.1856.
 [63] H.J. Jang, H.M. Oh, J.T. Hwang, M.H. Kim, S. Lee, K. Jung, Y.H. Kim, S.W. Lee, M.C. Rho, Eudesmane-type sesquiterpenoids from Salvia plebeia inhibit IL-6-
- [15] H.S. Jang, H.M. OL, S.T. Hwang, W.H. Kim, S. Lee, K. Sung, T.H. Kim, S.W. Lee, M.C. Rife, Educational-type sequeleptions from Sulva proceed infinite fields induced STAT3 activation, Phytochemistry 130 (2016) 335–342, https://doi.org/10.1016/j.phytochem.2016.08.001.
- [64] H.J. Jang, S. Lee, S.J. Lee, H.J. Lim, K. Jung, Y.H. Kim, S.W. Lee, M.C. Rho, Anti-inflammatory activity of eudesmane-type sesquiterpenoids from Salvia plebeia, J. Nat. Prod. 80 (10) (2017) 2666–2676, https://doi.org/10.1021/acs.jnatprod.7b00326.

- [65] L. Ma, H. Xu, J. Wang, X. Tong, Z. Zhan, Y. Ying, J. Wang, H. Zhang, W. Shan, Three new eudesmane sesquiterpenoids and a new dimer from the aerial part of Salvia plebeia R, Br, Phytochemistry Letters 25 (2018) 122–125, https://doi.org/10.1016/j.phytol.2018.04.020.
- [66] Y. Zou, L. Zhao, Y. Xu, J. Bao, X. Liu, J. Zhang, W. Li, A. Ahmed, S. Yin, G. Tan, Anti-inflammatory sequiterpenoids from the Traditional Chinese Medicine Salvia plebeia: regulates pro-inflammatory mediators through inhibition of NF-kappa B and Erk1/2 signaling pathways in LPS-induced Raw 264.7 cells, J. Ethnopharmacol. 210 (2018) 95–106, https://doi.org/10.1016/j.jep.2017.08.034.
- [67] F. Chen, W. Yu, J. Huang, W. Huang, Y. Bian, P. Shuang, Y. Luo, Discovery of eudesmane-type sequiterpenoids with neuroprotective effects from the roots of Chloranthus serratus, Fitoterapia 153 (2021) 104971, https://doi.org/10.1016/j.fitote.2021.104971.
- [68] Z. Zhuo, G. Wu, X. Fang, X. Tian, H. Dong, X. Xu, H. Li, N. Xie, W. Zhang, Y. Shen, Chlorajaponols A-F, sesquiterpenoids from *Chloranthus japonicus* and their in vitro anti-inflammatory and anti-tumor activities, Fitoterapia 119 (2017) 90–99, https://doi.org/10.1016/j.fitote.2017.04.009.
- [69] X. Li, H. Yan, W. Ni, X. Qin, Q. Zhao, Z. Ji, H. Liu, Antifungal sesquiterpenoids from Chloranthus japonicus, Phytochem. Lett. 15 (2016) 199–203, https://doi. org/10.1016/j.phytol.2016.01.005.
- [70] Z. Zhuo, Z. Cheng, J. Ye, H. Li, X. Xu, N. Xie, W. Zhang, Y. Shen, Two new sesquiterpenoids and a new lindenane sesquiterpenoid dimer from *Chloranthus japonicus*, Phytochem. Lett. 20 (2017) 133–138, https://doi.org/10.1016/j.phytol.2017.04.021.
- [71] Y.Y. Wang, Q.R. Li, J. Chi, J.X. Li, L.Y. Kong, J. Luo, Sesquiterpenoids from the leaves of Sarcandra glabra, Chin. J. Nat. Med. 20 (3) (2022) 215–220, https:// doi.org/10.1016/s1875-5364(21)60102-4.
- [72] Y.T. Li, S.F. Li, C. Lei, J.Q. You, J.C. Huang, A.J. Hou, Dimeric sesquiterpenoids and anti-inflammatory constituents of Sarcandra glabra, Bioorg. Chem. 124 (2022) 105821, https://doi.org/10.1016/j.bioorg.2022.105821.
- [73] B. Zhou, Q. Liu, S. Dalal, M.B. Cassera, J. Yue, Fortunoids A-C, three sesquiterpenoid dimers with different carbon skeletons from *Chloranthus fortunei*, Org. Lett. 19 (3) (2017) 734–737, https://doi.org/10.1021/acs.orglett.7b00066.
- [74] Y. Fan, L. Gan, S. Chen, Q. Gong, H. Zhang, J. Yue, Horienoids A and B, two heterocoupled sesquiterpenoid dimers from *Hedyosmum orientale*, J. Org. Chem. 86 (16) (2021) 11277–11283, https://doi.org/10.1021/acs.joc.1c00307.
- [75] D.Y. Zhang, J.J. Zhou, H. Yang, M. Wang, Y.N. Wang, S. Liu, Z.M. Zhang, P.Y. Zhuang, X.X. Wang, H. Liu, A.-D. Chlorahupetenes, Four eudesmane-type sesquiterpenoid dimer enantiomers with two unusual carbon skeletons from *Chloranthus henryi* var. Hupehensis, J. Org. Chem. 87 (13) (2022) 8623–8632, https://doi.org/10.1021/acs.joc.2c00819.
- [76] J. Tan, Y. Liu, Y. Cheng, Y. Sun, J. Pan, S. Yang, H. Kuang, B. Yang, Anti-inflammatory sesquiterpenoids from the leaves of *Datura metel* L, Fitoterapia 142 (2020) 104531, https://doi.org/10.1016/j.fitote.2020.104531.
- [77] C. Yang, S. Xie, L. Ni, Y. Du, S. Liu, M. Li, K. Xu, Chemical constituents from Nicotiana tabacum L. And their antifungal activity, Nat. Prod. Commun. 16 (11) (2021) 1–5, https://doi.org/10.1177/1934578x211059578.
- [78] Q. Song, L. Zhang, G. Li, K. Xiao, Q. Han, S. Dai, Cytotoxic sesquiterpenoid derivatives from the whole plant of Solanum septemlobum, Chem. Nat. Compd. 54 (1) (2018) 69–72, https://doi.org/10.1007/s10600-018-2261-y.
- [79] Y. Shen, S. Cui, H. Chen, L. Shen, M. Wang, X. Dong, C. Xiao, B. Jiang, Antimalarial eudesmane sesquiterpenoids from *Dobinea delavayi*, J. Nat. Prod. 83 (4) (2020) 927–936, https://doi.org/10.1021/acs.jnatprod.9b00761.
- [80] L.L. Chen, Y.Y. Liu, Y.F. Li, W. Yin, Y.X. Cheng, Anti-Cancer effect of sesquiterpene and triterpenoids from agarwood of Aquilaria sinensis, Molecules 27 (16) (2022) 5350, https://doi.org/10.3390/molecules27165350.
- [81] C.I. Chang, C. Chen, C. Chao, S. Wang, H. Chang, P. Sung, G. Huang, Y. Li, Y. Kuo, Sesquiterpenoids and diterpenoids from the Wood of *Cunninghamia konishii* and their inhibitory activities against NO production, Molecules 21 (4) (2016) 490, https://doi.org/10.3390/molecules21040490.
- [82] C.S. Yang, J.J. Chen, H.C. Huang, G.J. Huang, S.Y. Wang, L.K. Chao, C. Hsu, Y.H. Kuo, New flavone and eudesmane derivatives from Lawsonia inermis and their inhibitory activity against NO production, Phytochem. Lett. 21 (2017) 123–127, https://doi.org/10.1016/j.phytol.2017.06.012.
- [83] Q. Zhang, L. Ma, Z. Qu, Y. Wang, C. Wang, F. Zhao, Purification, characterization, crystal structure and NO production inhibitory activity of three new sesquiterpenoids from *Homalomena occulta*, Acta Crystallogr., Sect. C: Struct. Chem. 74 (11) (2018) 1440–1446, https://doi.org/10.1107/ s2053229618013815.
- [84] E.V. Costa, L.R.A. Menezes, L.M. Dutra, M.L.B. Pinheiro, E.M. Lavor, M.G. Silva, C.D.C. Alves, J. Almeida, F.M.A. da Silva, H.H.F. Koolen, A. Barison, A novel eudesmol derivative from the leaf essential oil of *Guatteria friesiana* (Annonaceae) and evaluation of the antinocicceptive activity, Zeitschrift Fur Naturforschung Section C-a Journal of Biosciences 78 (5–6) (2023) 169–177, https://doi.org/10.1515/znc-2022-0059.
- [85] S. Zhu, D. Qin, S. Wang, C. Yang, G. Li, Y. Cheng, Commipholactam A, a cytotoxic sesquiterpenoidal lactam from Resina Commiphora, Fitoterapia 134 (2019) 382–388, https://doi.org/10.1016/j.fitote.2019.03.008.
- [86] J. Zhang, Y. Qiao, L. Li, Y. Wang, Y. Li, X. Fei, J. Zhou, X. Wang, P. Fan, H. Lou, ent-Eudesmane-Type Sesquiterpenoids from the Chinese Liverwort Chiloscyphus polyanthus var. rivularis, Planta Med. 82 (11–12) (2016) 1128–1133, https://doi.org/10.1055/s-0042-108736.
- [87] J. Zhang, Y. Wang, R. Zhu, Y. Li, Y. Li, Y. Qiao, J. Zhou, H. Lou, Cyperane and eudesmane-type sequiterpenoids from Chinese liverwort and their anti-diabetic nephropathy potential, RSC Adv. 8 (68) (2018) 39091–39097, https://doi.org/10.1039/c8ra08125e.
- [88] X. Wu, W. Zhong, L. Ding, W. Tu, H. Yang, X. Gong, L. Peng, Y. Li, Z. Xu, Q. Zhao, Sesquiterpenoids from the twigs and leaves of Fokienia hodginsii, J. Asian Nat. Prod. Res. 19 (7) (2017) 666–672, https://doi.org/10.1080/10286020.2016.1247350.
- [89] X. Wang, J. Zhang, J. Zhou, T. Shen, H. Lou, Terpenoids from Diplophyllum taxifolium with quinone reductase-inducing activity, Fitoterapia 109 (2016) 1–7, https://doi.org/10.1016/j.fitote.2015.11.023.
- [90] S. Li, H. Shi, W. Chang, Y. Li, M. Zhang, Y. Qiao, H. Lou, Eudesmane sesquiterpenes from Chinese liverwort are substrates of Cdrs and display antifungal
- activity by targeting Erg6 and Erg11 of *Candida albicans*, Bioorg. Med. Chem. 25 (20) (2017) 5764–5771, https://doi.org/10.1016/j.bmc.2017.09.001. [91] P. Yang, W. Zhu, J. Xu, W. Liu, Z. Dong, T. Kikuchi, T. Yamada, N. Xie, F. Feng, J. Zhang, Sesquiterpenoids and triterpenoids from *Secamone lanceolata* blume
- with inhibitory effects on nitric oxide production, Fitoterapia 133 (2019) 5–11, https://doi.org/10.1016/j.fitote.2018.11.016. [92] S.Y. Ng, T. Kamada, C.S. Vairappan, New pimarane-type diterpenoid and ent-eudesmane-type sesquiterpenoid from bornean liverwort *Mastigophora diclados*,
- Record Nat. Prod. 11 (6) (2017) 508–513, https://doi.org/10.25135/rnp.65.17.04.071.
 [93] M. Wu, K.L. Ji, P. Sun, J.M. Lu, J.R. Yue, D.H. Cao, C.F. Xiao, Y.K. Xu, A.-G. Croargoids, Eudesmane sesquiterpenes from the bark of *Croton argyratus*, Molecules 27 (19) (2022) 6397, https://doi.org/10.3390/molecules27196397.
- [94] G. Ozek, E. Bedir, N. Tabanca, A. Ali, I.A. Khan, A. Duran, K.H.C. Baser, T. Ozek, Isolation of eudesmane type sesquiterpene ketone from *Prangos heyniae* H. Duman & M.F.Watson essential oil and mosquitocidal activity of the essential oils, Open Chem. 16 (1) (2018) 453–467, https://doi.org/10.1515/chem-2018-0051
- [95] P. Thapa, Y.J. Lee, N. Tiep Tien, D. Piao, H. Lee, S. Han, Y.J. Lee, A.-R. Han, H. Choi, J.-H. Jeong, J.-W. Nam, E.K. Seo, Eudesmane and eremophilane sesquiterpenes from the fruits of *Alpinia oxyphylla* with protective effects against oxidative stress in adipose-derived mesenchymal stem cells, Molecules 26 (6) (2021) 1762, https://doi.org/10.3390/molecules26061762.
- [96] S. Li, H. Niu, Y. Qiao, R. Zhu, Y. Sun, Z. Ren, H. Yuan, Y. Gao, Y. Li, W. Chen, J. Zhou, H. Lou, Terpenoids isolated from Chinese liverworts Lepidozia reptans and their anti-inflammatory activity, Bioorg. Med. Chem. 26 (9) (2018) 2392–2400, https://doi.org/10.1016/j.bmc.2018.03.040.
- [97] N.K. Vu, M.T. Ha, Y.J. Ha, C.S. Kim, M. Gal, Q.M.T. Ngo, J.A. Kim, M.H. Woo, J.H. Lee, B.S. Min, Structures and antiosteoclastogenic activity of compounds isolated from edible lotus (*Nelumbo nucifera* Gaertn.) leaves and stems, Fitoterapia 162 (2022) 105294, https://doi.org/10.1016/j.fitote.2022.105294.
- [98] J. Qin, X. Chen, Z. Lin, Y. Xu, Y. Li, J. Zuo, W. Zhao, C-21-steroidal glycosides and sesquiterpenes from the roots of *Cynanchum bungei* and their inhibitory activities against the proliferation of B and T lymphocytes, Fitoterapia 124 (2018) 193–199, https://doi.org/10.1016/j.fitote.2017.11.014.
- [99] C. Gao, F. Lin, Y. Luo, X. Zhou, Eudesmane-type sesquiterpenes and aporphine-type alkaloids from Fissistigma maclurei, Biochem. Systemat. Ecol. 97 (2021) 104298, https://doi.org/10.1016/j.bse.2021.104298.
- [100] J. Xiong, L. Wang, J. Qian, P. Wang, X. Wang, G. Ma, H. Zeng, J. Li, J. Hu, Structurally diverse sesquiterpenoids from the endangered ornamental plant *Michelia shiluensis*, J. Nat. Prod. 81 (10) (2018) 2195–2204, https://doi.org/10.1021/acs.jnatprod.8b00386.

- [101] J.L. Yang, D. Trong Tuan, H. Tran Thi, Y.M. Zhao, Y.P. Shi, Further sesquiterpenoids from the rhizomes of Homalomena occulta and their anti-inflammatory activity, Bioorg. Med. Chem. Lett 29 (10) (2019) 1162–1167, https://doi.org/10.1016/j.bmcl.2019.03.031.
- [102] M. Wang, L. Zhao, K. Chen, Y. Shang, J. Wu, X. Guo, Y. Chen, H. Liu, H. Tan, S.-X. Qiu, Antibacterial sesquiterpenes from the stems and roots of *Thuja sutchuenensis*, Bioorg. Chem. 96 (2020) 103645, https://doi.org/10.1016/j.bioorg.2020.103645.
- [103] S. Boudermine, V. Parisi, R. Lemoui, T. Boudiar, M.G. Chini, S. Franceschelli, M. Pecoraro, M. Pacale, G. Bifulco, A. Braca, N. De Tommasi, M. De Leo, Cytotoxic sesquiterpenoids from Ammoides atlantica aerial parts, J. Nat. Prod. 85 (3) (2022) 647–656, https://doi.org/10.1021/acs.jnatprod.1c01211.
- [104] B.M. Mba'ning, B.L. Ndjakou, F.M. Talontsi, A.M. Lannang, B. Dittrich, S.A. Ngouela, E. Tsamo, N. Sewald, H. Laatsch, E. Salaterpene, A eudesmane-type sesquiterpene from Salacia longipes var. camerunensis, Zeitschrift Fur Naturforschung Section B-a Journal of Chemical Sciences 71 (2) (2016) 87–93, https:// doi.org/10.1515/znb-2015-0106.
- [105] C. Paz, D. von Dossow, V. Tiznado, S. Suarez, F.D. Cukiernik, R. Baggio, A dihydro-beta-agarofuran sesquiterpene from *Maytenus boaria*, Acta Crystallogr., Sect. C: Struct. Chem. 73 (2017) 451–457, https://doi.org/10.1107/s2053229617006817.
- [106] L. Dong, Q. Luo, L. Cheng, Y. Yan, Y. Cheng, S. Wang, New terpenoids from Resina commiphora, Fitoterapia 117 (2017) 147–153, https://doi.org/10.1016/j. fitote.2017.01.013.
- [107] H. Xu, T. Yang, P. Xie, Z. Tang, X. Song, H. Xu, Y. Li, D. Zhang, Y. Liu, Y. Liang, Y. Zhang, S. Liu, S. Wei, C. Sun, H. Liu, C. Deng, W. Wang, LC-MS guided isolation of gracilistones A and B, a pair of diastereomeric sesquiterpenoids with an unusual tetrahydrofuran-fused tricyclic skeleton from Acanthopanax gracilistylus and their potential anti-inflammatory activities, Fitoterapia 130 (2018) 265–271, https://doi.org/10.1016/j.fitote.2018.09.012.
- [108] T. Ramirez Reyes, J.L. Monribot Villanueva, O.D. Jimenez Martinez, A.S. Aguilar Colorado, I. Bonilla Landa, N. Flores Estevez, M. Luna Rodriguez, J. A. Guerrero Analco, Sesquiterpene lactones and phenols from polyfollicles of *Magnolia vovidessi* and their antimicrobial activity, Nat. Prod. Commun. 13 (5) (2018) 521–525.
- [109] E.M. Terefe, F.A. Okalebo, S. Derese, M.K. Langat, E. Mas-Claret, K.A. Qureshi, M. Jaremko, J. Muriuki, Anti-HIV ermiasolides from Croton megalocarpus, Molecules 27 (20) (2022) 7040, https://doi.org/10.3390/molecules27207040.
- [110] H.D. Nguyen, H.T. Nguyen, T.H.T. Nguyen, J. Sichaem, H.H. Nguyen, N.H. Nguyen, T.H. Duong, C. Myrrhalindenane, A new eudesmane sesquiterpenoid from Lindera Myrrha roots, Record Nat. Prod. 17 (2) (2023) 312–317, https://doi.org/10.25135/rnp.343.2203.2396.
- [111] A. Naini, T. Mayanti, D. Harneti, D. Nurlelasari, R. Maharani, K. Farabi, T. Herlina, U. Supratman, S. Fajriah, H. Kuncoro, M.N. Azmi, Y. Shiono, S. Jungsuttiwong, S. Chakthong, Sesquiterpenoids and sesquiterpenoid dimers from the stem bark of *Dysoxylum parasiticum* (osbeck) kosterm, Phytochemistry 205 (2023) 113477, https://doi.org/10.1016/j.phytochem.2022.113477.
- [112] Y. Yu, L. Gan, S. Yang, L. Sheng, Q. Liu, S. Chen, J. Li, J. Yue, Eucarobustols A-I, conjugates of sesquiterpenoids and acylphloroglucinols from *Eucalyptus robusta*, J. Nat. Prod. 79 (5) (2016) 1365–1372, https://doi.org/10.1021/acs.jnatprod.6b00090.
- [113] K. Katsutani, S. Sugimoto, Y. Yamano, H. Otsuka, K. Matsunami, T. Mizuta, Eudesmane-type sesquiterpene glycosides: sonneratiosides A-E and eudesmol betad-glucopyranoside from the leaves of Sonneratia alba, J. Nat. Med. 74 (1) (2020) 119–126, https://doi.org/10.1007/s11418-019-01353-0.
- [114] N. Oshima, T. Yamashita, N. Uchiyama, S. Hyuga, M. Hyuga, J. Yang, T. Hakamatsuka, T. Hanawa, Y. Goda, Non-alkaloidal composition of *Ephedra* Herb is influenced by differences in habitats, J. Nat. Med. 73 (1) (2019) 303–311, https://doi.org/10.1007/s11418-018-1265-z.
- [115] X.Y. Zhang, Y. Liu, J.L. Deng, J.K. Xia, Q. Zhang, X. Chen, R.Z. Liu, Y.Q. Gao, J.M. Gao, Structurally diverse sesquiterpenoid glycoside esters from *Pittosporum qinlingense* with anti-neuroinflammatory activity, J. Nat. Prod. 85 (1) (2022) 115–126, https://doi.org/10.1021/acs.jnatprod.1c00544.
- [116] M. Yuan, B. Liu, Q. Ding, X. Zhang, D. Wei, S. Mei, R. Li, J. Wan, Q. Li, A new bicyclic sesquiterpenoid from *Merremia yunnanensis*, Biochem. Systemat. Ecol. 89 (2020) 103964, https://doi.org/10.1016/j.bse.2019.103964.
- [117] K.T. Akca, P. Gurbuz, S.D. Dogan, E. Emerce, A.C. Goren, R. Polat, I. Suntar, Two new eudesmane-type sesquiterpene derivatives from *Lecokia cretica* (Lam.) DC, Nat. Prod. Res. 38 (9) (2022) 1494–1502, https://doi.org/10.1080/14786419.2022.2153301.
- [118] C. Sun, Y. Wu, B. Jiang, Y. Peng, M. Wang, J. Li, X. Li, Chemical components from *Metapanax delavayi* leaves and their anti-BHP activities in vitro, Phytochemistry 160 (2019) 56–60, https://doi.org/10.1016/j.phytochem.2019.01.002.
- [119] Y. Jiang, Y. Liu, Q. Guo, C. Xu, C. Zhu, J. Shi, Sesquiterpene glycosides from the roots of Codonopsis pilosula, Acta Pharm. Sin. B 6 (1) (2016) 46–54, https://doi. org/10.1016/j.apsb.2015.09.007.
- [120] L. Qiu, P. Wang, G. Liao, Y. Zeng, C. Cai, F. Kong, Z. Guo, P. Proksch, H. Dai, W. Mei, New eudesmane-type sesquiterpenoids from the mangrove-derived endophytic fungus *Penicillium* sp J-54, Mar. Drugs 16 (4) (2018) 108, https://doi.org/10.3390/md16040108.
- [121] Z. Tan, J. Zhao, J. Liu, M. Zhang, R. Chen, K. Xie, J. Dai, Sesquiterpenoids from the cultured mycelia of Ganoderma capense, Fitoterapia 118 (2017) 73–79, https://doi.org/10.1016/j.fitote.2017.02.007.
- [122] Z. Liu, J. Zhao, S. Sun, Y. Li, J. Qu, H. Liu, Y. Liu, Sesquiterpenes from an endophytic Aspergillus flavus, J. Nat. Prod. 82 (5) (2019) 1063–1071, https://doi.org/ 10.1021/acs.jnatprod.8b01084.
- [123] N. Ji, X. Li, L. Ding, B. Wang, Halogenated eudesmane derivatives and other terpenes from the marine red alga Laurencia pinnata and their chemotaxonomic significance, Biochem. Systemat. Ecol. 64 (2016) 1–5, https://doi.org/10.1016/j.bse.2015.11.010.
- [124] H. Nguyen Thi, N. Ninh Thi, T. Nguyen Van, D. Nguyen Hai, C. Nguyen Xuan, N. Nguyen Hoai, T. Do Cong, T. Ho Van, T. Vo Sy, K. Phan Van, M. Chau Van, Eudesmane and aromadendrane sesquiterpenoids from the Vietnamese soft coral *Sinularia erecta*, Nat. Prod. Res. 32 (15) (2018) 1798–1802, https://doi.org/ 10.1080/14786419.2017.1402326.
- [125] N.O. Bawakid, W.M. Alarif, H.S. Alorfi, K.O. Al-Footy, N.A. Alburae, M.A. Ghandourah, S.S. Al-Lihaibi, Z.H. Abdul-Hameed, Antimicrobial sesquiterpenoids from Laurencia obtusa Lamouroux, Open Chem. 15 (1) (2017) 219–224, https://doi.org/10.1515/chem-2017-0025.
- [126] W.M. Alarif, K.O. Al-Footy, M.S. Zubair, M.P.H. Halid, M.A. Ghandourah, S.A. Basaif, S.S. Al-Lihaibi, S.-E.N. Ayyad, F.A. Badria, The role of new eudesmanetype sesquiterpenoid and known eudesmane derivatives from the red alga *Laurencia obtusa* as potential antifungal-antitumour agents, Nat. Prod. Res. 30 (10) (2016) 1150–1155, https://doi.org/10.1080/14786419.2015.1046378.
- [127] X. Li, S. Chen, F. Ye, E. Mollo, W. Zhu, H. Liu, Y. Guo, Axiriabilines A-D, uncommon nitrogenous eudesmane-type sesquiterpenes from the Hainan sponge Axinyssa variabilis, Tetrahedron 73 (34) (2017) 5239–5243, https://doi.org/10.1016/j.tet.2017.07.027.
- [128] T.J. O'Donnell, Y.H. Luo, W.Y. Yoshida, S. Suzuki, R. Sun, P.G. Williams, Spirovetivane- and eudesmane-type sesquiterpenoids isolated from the culture media of two cyanobacterial strains, J. Nat. Prod. 85 (2) (2022) 415–425, https://doi.org/10.1021/acs.jnatprod.1c01014.
- [129] S.S. Afiyatullov, E.V. Leshchenko, M.P. Sobolevskaya, A.S. Antonov, V.A. Denisenko, R.S. Popov, Y.V. Khudyakova, N.N. Kirichuk, A.S. Kuz'mich, E. A. Pislyagin, N.Y. Kim, D.V. Berdyshev, New thomimarine E from marine isolate of the fungus *Penicillium thomii*, Chem. Nat. Compd. 53 (2) (2017) 290–294, https://doi.org/10.1007/s10600-017-1972-9.
- [130] Q. Tao, K. Ma, Y. Yang, K. Wang, B. Chen, Y. Huang, J. Han, L. Bao, X.-B. Liu, Z. Yang, W.-B. Yin, H. Liu, Bioactive sequiterpenes from the edible mushroom Flammulina velutipes and their biosynthetic pathway confirmed by genome analysis and chemical evidence, J. Org. Chem. 81 (20) (2016) 9867–9877, https:// doi.org/10.1021/acs.joc.6b01971.
- [131] C.A. Lydon, L. Mathivathanan, J. Sanchez, L.A.H. dos Santos, T. Sauvage, S.P. Gunasekera, V.J. Paul, J.P. Berry, Eudesmacarbonate, a eudesmane-type sesquiterpene from a marine filamentous cyanobacterial mat (oscillatoriales) in the Florida keys, J. Nat. Prod. 83 (6) (2020) 2030–2035, https://doi.org/ 10.1021/acs.jnatprod.0c00203.
- [132] L. Qin, B. Zhou, W. Ding, Z. Ma, Bioactive metabolites from marine-derived Streptomyces sp A68 and its Rifampicin resistant mutant strain R-M1, Phytochem. Lett. 23 (2018) 46–51, https://doi.org/10.1016/j.phytol.2017.11.002.
- [133] L.L. Zhang, X.B. Wei, R.J. Zhang, M. Koci, D.Y. Si, B. Ahmad, H.N. Guo, Y.F. Hou, C-terminal amination of a cationic anti-inflammatory peptide improves bioavailability and inhibitory activity against LPS-induced inflammation, Front. Immunol. 11 (2021) 618312, https://doi.org/10.3389/fimmu.2020.618312.
- [134] L. Ding, C. Hertweck, Oxygenated geosmins and plant-like eudesmanes from a bacterial mangrove endophyte, J. Nat. Prod. 83 (7) (2020) 2207–2211, https:// doi.org/10.1021/acs.jnatprod.0c00304.
- [135] B. Greenwood, Artemisinin-resistant and HRP-negative malaria parasites in africa, N. Engl. J. Med. 389 (13) (2023) 1162–1164, https://doi.org/10.1056/ NEJMp2309142.

- [136] R. Nortley, A. Mishra, Z. Jaunmuktane, V. Kyrargyri, C. Madry, H. Gong, A. Richard-Loendt, S. Brandner, H. Sethi, D. Attwell, Amyloid β oligomers constrict human capillaries in Alzheimer's disease via signalling to pericytes, bioRxiv, Neurosci (2018) 1–26, https://doi.org/10.1101/357095.
- [137] M.S. Sinha, A. Ansell Schultz, L. Civitelli, C. Hildesjo, M. Larsson, L. Lannfelt, M. Ingelsson, M. Hallbeck, Alzheimer's disease pathology propagation by exosomes containing toxic amyloid-beta oligomers, Acta Neuropathol. 136 (1) (2018) 41–56, https://doi.org/10.1007/s00401-018-1868-1.
- [138] R. van der Kant, L.S.B. Goldstein, R. Ossenkoppele, Amyloid-beta-independent regulators of tau pathology in Alzheimer disease, Nat. Rev. Neurosci. 21 (1) (2020) 21–35, https://doi.org/10.1038/s41583-019-0240-3.
 [139] J. Zuo, T.H. Zhang, C. Peng, B.J. Xu, O. Dai, Y. Lu, Q.M. Zhou, L. Xiong, Essential oil from *Ligusticum chuanxiong* Hort. alleviates lipopolysaccharide-induced
- [139] J. Zuo, T.H. Zhang, C. Peng, B.J. Xu, O. Dai, Y. Lu, Q.M. Zhou, L. Xiong, Essential oil from Ligusticum chuanxiong Hort. alleviates lipopolysaccharide-induced neuroinflammation: integrating network pharmacology and molecular mechanism evaluation, J. Ethnopharmacol. 319 (2024) 117337, https://doi.org/ 10.1016/j.jep.2023.117337.