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Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition, which is accompanied by differences in gray
matter neuroanatomy and white matter connectivity. However, it is unknown whether these differences are linked or reflect
independent aetiologies. Using a multimodal neuroimaging approach, we therefore examined 51 male adults with ASD and 48
neurotypical controls to investigate the relationship between gray matter local gyrification (lGI) and white matter diffusivity in
associated fiber tracts. First, ASD individuals had a significant increase in gyrification around the left pre- and post-central
gyrus. Second, white matter fiber tracts originating and/or terminating in the cluster of increased lGI had a significant increase
in axial diffusivity. This increase in diffusivity was predominantly observed in tracts in close proximity to the cortical sheet.
Last, we demonstrate that the increase in lGI was significantly correlated with increased diffusivity of short tracts. This
relationship was not significantly modulated by a main effect of group (i.e., ASD), which was more closely associated with gray
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matter gyrification thanwhitematter diffusivity. Our findings suggest that differences in graymatter neuroanatomy andwhite
matter connectivity are closely linked, and may reflect common rather than distinct aetiological pathways.
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Introduction
Autism spectrum disorder (ASD) comprises a group of heteroge-
neous neurodevelopmental conditions characterized by im-
paired communication, social reciprocity, and repetitive/
stereotypic behavior (Wing 1997). Despite the large degree of
genetic and phenotypic heterogeneity, several lines of evidence
now converge in suggesting a common etiological pathway for
ASD, that is, defective synaptic structure and aberrant brain con-
nectivity (Betancur et al. 2009). However, the notion of atypical
brain connectivity in ASD is complex, involving abnormalities
within the gray and white matter (Ecker et al. 2013; Ameis and
Catani 2015), and different levels of integration (Belmonte et al.
2004). To fully characterize the neural systems underlying ASD,
it is thus important to explore different aspects of brain anatomy
and connectivity within a unitary framework.

So far, evidence for altered structural brain connectivity in
ASD mainly comes from neuroimaging studies investigating
white matter (WM). For example, voxel-based morphometry
studies reported that individuals with ASD have spatially distrib-
uted reductions in regional WM volume during childhood (McA-
lonan et al. 2005), adolescence (Waiter et al. 2005), and adulthood
(Ecker et al. 2012). Atypical structural connectivity in ASD has
also beennoted in numerous diffusion tensor imaging (DTI) stud-
ies, particularly in fiber-tracts mediating autistic symptoms and
traits (e.g., language and limbic pathways (Pugliese et al. 2009),
fronto-striatal and fronto-occipital circuitry (Sahyoun et al.
2010; Langen et al. 2012; Catani et al. 2016), corpus callosum
(Alexander et al. 2007), hippocampo-fusiform and amygdalo-fu-
siform pathways (Conturo et al. 2008), and the cerebellar circuitry
(Catani et al. 2008)) (for review, seeAmeis andCatani 2015). Taken
together, these studies support the hypothesis that ASD is a
“neurodevelopmental disconnection syndrome” associated
with the altered formation of fiber pathways (Courchesne and
Pierce 2005; Geschwind and Levitt 2007; Wolff et al. 2012),
which accompanies the neurodevelopmental differences in
gray matter (GM) that are typically observed in individuals with
ASD (for review, see Amaral et al. 2008; Ecker et al. 2015).

Most prior neuroimaging studies examine differences in GM
or WM in isolation, therefore the relationship between atypical
GM and WM in ASD therefore remains poorly understood.
Studies examining typical brain development suggest that
the formation of the WM neurocircuitry is intrinsically linked to
developmental mechanisms underlying GM maturation. For
example, the formation of principal axonal and dendritic projec-
tions—and subsequent myelination—builds upon the comple-
tion of neuronal proliferation, migration, and differentiation
(Kostovic and Rakic 1980; Tau and Peterson 2010; Molnár et al.
2014). If perturbed, as has been suggested in ASD (Abrahams
and Geschwind 2010; Pinto et al. 2010; Parikshak et al. 2013), the
mechanisms that drive atypical GM development are thus likely
to also interfere with the development of WM. Moreover, genetic
studies link ASD to developmental events affecting axonal
growth and guidance (e.g., Pinto et al. 2014), which may affect
the formation of theWMcircuitry in addition to perturbedGMde-
velopment. In order to elucidate the causal mechanisms under-
lying the cortical systems pathology of ASD, it is important to
determine whether variations in GM neuroanatomy and WM
connectivity are linked, or are independently modulated by ASD.

While longitudinal studies during early brain development
would be required to establish a causal link between GM and
WM abnormalities in ASD, a recent cross-sectional study sug-
gests that altered WM connectivity in children with ASD is sig-
nificantly associated with atypical GM gyrification (Schaer et al.
2013). However, this association was only observed in intra-
lobar, but not in inter-hemispheric connections, suggesting
that the relationship between GM andWMmay be scale-depend-
ent, with short-distance tracts being more closely associated
with GM variations than long-distance tracts. This finding
extends a previous neuroimaging study showing that the nature
of volumetric WM differences in ASD may be related to their
proximity to the cortical sheet (Herbert et al. 2004), with tracts
in close proximity to the cortical sheet potentially beingmore af-
fected than tracts deep within the cortical WM. Last, there is
histological evidence to suggest that WM differences in ASD are
dependent on the length of axonal projections, and is character-
ized by a decrease in the number of large axons communicating
over long distances, but an excessive number of thin axons
linking neighboring areas (Zikopoulos and Barbas 2010). Taken
together, these findings provide a mechanism for the disconnec-
tion of long-distance pathways, and excessive short-distance
connections in ASD (Belmonte et al. 2004; Courchesne and Pierce
2005; Casanova et al. 2006).

Here, using a combined structural magnetic resonance
imaging (MRI) and DTI approach, we examined the relationship
between GM neuroanatomy andWM connectivity in male adults
with ASD and typically developing (TD) controls. As in Schaer
et al. (2013), we investigated GM anatomy based on measures of
surface area and local gyrification, as the degree of cortical gyrifi-
cation has previously been linked to various different aspects of
the cortical architecture (e.g., cellular complexity, neuronal dens-
ity, cellular alignment;Welker 1990) that are expected to alter the
underlying WM connectivity demands (Casanova 2004). How-
ever, unlike Schaer et al. (2013), we initiated tractography from
surface-based clusters with significant between-group differ-
ences in cortical folding, and also separated short from long
tracts based on their respective distance from the cortical
sheet. It was hypothesized that measures of GM gyrification
and WM connectivity are significantly linked, and are thus likely
to represent a common etiological pathway in ASD.

Materials and Methods
Participants

Fifty-one male right-handed adults with ASD and 48 typically
developing (TD) male controls aged 18–43 years were recruited
by advertisement and assessed at the Institute of Psychiatry,
Psychology and Neuroscience (IoPPN), London, and the Autism
Research Centre, University of Cambridge, UK. Approximately
equal ratios of cases to controls were recruited at each site: Lon-
don 27:24 (ASD:TD) and Cambridge (23:25). Groups werematched
for age, full-scale IQ, ethnicity, and handedness. All participants
with ASD were diagnosed during adulthood according to ICD-10
research criteria and using the Autism Diagnostic Interview-Re-
vised (ADI-R; Lord et al. 1994). All cases reached algorithm cut-
offs in the 3 domains of the ADI-R, although failure to reach
cut-off in one domain by one point was permitted. Current
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symptoms were assessed using the Autism Diagnostic Observa-
tion Schedule (ADOS; Lord et al. 1989). ADI-R rather than ADOS
scores were chosen as exclusion criteria as current symptoms
during adulthood are often masked by coping strategies and
can also be alleviated by treatment/intervention. The ADI-R diag-
nosis thus ensured that all individualswithASDmet the criterion
of childhood autism. Further exclusion criteria included contra-
indication to MRI, a history of major psychiatric disorder (e.g.,
psychosis), head injury, genetic disorder associated with autism
(e.g., fragile-X syndrome, tuberous sclerosis), or any othermedic-
al condition affecting brain function (e.g., epilepsy). We also ex-
cluded participants on antipsychotic medication, mood
stabilizers, or benzodiazepines. Overall intellectual ability was
assessed using the Wechsler Abbreviated Scale of Intelligence
(WASI; Wechsler 1999). All participants fell within the high-func-
tioning range on the spectrum defined by a Full Scale IQ (FSIQ)
>70. All participants gave informed written consent in accord-
ance with ethics approval by the National Research Ethics Com-
mittee, Suffolk, UK.

Structural MRI and DTI Data Acquisition

Scanning took place at the IoPPN, London, and the Adden-
brooke’s Hospital, Cambridge, using a 3T GE HDx Signa System
(General-Electric, Milwaukee, USA). Details of the acquisition
protocol have been described elsewhere (Deoni et al. 2008;
Ecker et al. 2012). Initially, multisite compatible quantitative
T1-maps were used to derive high-resolution structural
T1-weighted inversion-recovery images, with 1 × 1 × 1 mm reso-
lution, a 256 × 256 × 176 matrix, repetition time (TR) = 1800 ms,
time to inversion = 50 ms, fractional anisotropy (FA) = 20°, and
field of view (FOV) = 25 cm. Subsequently, DTI data using a spin-
echo echo-planar imaging double refocused sequence providing
whole-head coverage with isotropic image resolution (2.4 × 2.4 ×
2.4 mm) were acquired (32 diffusion-weighted volumes with
different noncollinear diffusion directions (Jones et al. 1999)
with b-value 1300 s/mm2 and 6 nondiffusion-weighted volumes;
60 slices; no slice gap; time echo = 104.5 ms; TR = 20 R–R interval;
128 × 128 acquisition matrix; FOV 307 × 307 mm). The acquisition
was peripherally gated to the cardiac cycle.

Cortical Reconstruction Using FreeSurfer

The FreeSurfer software package (http://surfer.nmr.mgh.harvard
.edu/) was used to derive models of the cortical surface for each
T1-weighted image. These well-validated and fully automated
procedures have been extensively described elsewhere (e.g.,
Dale et al. 1999). The resulting surface models were visually in-
spected for reconstruction errors, and surface reconstructions
with visible inaccuracieswere further excluded from the statistic-
al analysis (dropout < 10%) prior to sample generation.

Vertex-level measures of gyrification were derived as
described by Schaer et al. (2008). The local gyrification index
(lGI) is a local variant of the classical 2-dimensional (2D) gyrifica-
tion index originally proposed by Zilles et al. (1988), which is
defined as the ratio of the total pial surface area over the perim-
eter of the brain delineated on 2D coronal sections (Zilles et al.
1988). The lGI utilizes the high-resolution surface reconstructions
provided by FreeSurfer to measure the degree of gyrification at
each cerebral vertex, thus providing 3Dmeasures of local gyrifica-
tion at each spatial location on the entire cortical surface. The lGI
at a given vertex vi is computed as the ratio between the surface of
a circular patch (i.e., geodesic circlewith radius r centered at vi) on
the outer surface of the brain, and the surface of the

corresponding patch at vi on the pial surface (vertex positions
are preserved across surfaces). Thus, the lGI at each point vi re-
flects the amount of cortex buried within the sulcal folds in the
surrounding area (Schaer et al. 2008). Clusters of significant be-
tween-group differences in lGI on the cortical surfacewere subse-
quently converted to 3D regions of interest (ROIs) for automated
tract dissections. We also examined between-group differences
in vertex-wise estimates of cortical surface area (SA), which
were derived as outlined previously (Winkler et al. 2012). Last,
we extractedmeasures ofmean cortical thickness (meanCT), sul-
cal depth, andmean (i.e., radial) curvature from the cluster of sig-
nificant between-group difference in lGI in order to test whether
differences in lGI are driven by other morphometric measures.

DTI Preprocessing

Diffusion data were preprocessed and analyzed using ExploreDTI
software (Leemans et al. 2009), as described elsewhere (Langen
et al. 2012). Initially, whole-brain tractography was performed
using all voxels with a FA≥ 0.2. Seed-points were sampled from
a uniform grid at the same resolution of the diffusion dataset.
Streamlines were propagated using an Euler integration applying
a cubic-spline interpolation of the diffusion tensor field, and with
a step-size of 1 mm. Where FA < 0.2 or when the angle between
2 consecutive tractography steps was >35°, tractography stopped.
A minimum length threshold of 20 mm was also applied to ex-
clude ultra-short and spurious streamlines. Finally, diffusion ten-
sormaps andwhole-brain tractographywere exported toTrackVis
(Wang et al. 2007) for ROI-based tract dissection and visualization.

Automated Tract Dissections Using Surface-based ROI(s)

To examine the relationship between variations in lGI and charac-
teristics of the underlying white-matter connections, the indivi-
dual’s structural MRI data (T1-weighted volumes and brain
surfaces) were firstly coregistered with the DTI data (FA map)
using FreeSurfer tools and FSL FLIRT (fsl.fmrib.ox.ac.uk/fsl/fslwi-
ki/FLIRT). To create volumetric ROIs, the surface cluster(s) with a
significant between-group difference in lGI were then mapped
from the average standard-space cortical surface to the indivi-
dual’s reconstructedWM surface in native space, thus preserving
the individuals’ pattern of cortical folding. The surface-based
clusters in native space were then converted to 3D volumes,
which were subsequently used as “seed” regions to dissect out
tracts originating and/or terminating in the surface-based ROI (i.
e., we excluded tracts only passing through these ROIs) (Fig. 1).
TheMATLAB toolbox (TheMathworks,MA) “along-tract statistics”
(Colby et al. 2012) was used tomeasuremean FA,mean diffusivity
(MD), axial (perpendicular) diffusivity (AD), and radial diffusivity
(RD) across dissected streamlines for each participant, in addition
to calculations of the overall number of streamlines.

In order to generate a control region of comparable size and
underlying tract architecture, the cluster(s) of significant differ-
ences in lGI weremapped to homolog regions in the contralateral
hemisphere via a symmetric template (Greve et al. 2013) (see
Supplementary Fig. 1), and tract dissections were performed as
outlined above.

Distribution of Tract Lengths

Prior to the statistical analysis of tract-specific DTI measures, the
statistical distribution of tract lengths across subjects was exam-
ined to separate short- from long-distance tracts based on their
respective lengths. Initially, the Hartigan’s dip statistic (Hartigan
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and Hartigan 1985) was used to test for multimodality in the dis-
tribution, where a significant deviation from uni-modality is as-
sumed to be indicative of multiple tract classes based on their
length. Subsequently, Gaussian Mixture Models (EM algorithm
inR for statistical computing)were used tomodel the distribution
(and length cut-offs) for individual classes. The EM algorithm re-
turns the probability density function p of k Gaussian mixture
components, with

PðxÞ ¼
Xk

i¼1

λiniðx; μ;σÞ;

where ni(x; μ, σ) represents the kth Gaussian probability density
function with mean μ and standard deviation σ. The number of
components k was determined by means of cross-validation,
which estimates the log-likelihood for different component solu-
tions by performing a simple dataset splitting, where a randomly
selected half of the data is use to fit the model, and half to test.
Conventionally, a likelihood ratio test is performed to compare
the goodnessoffit of 2 (ormore)modelswithdifferentmodel para-
meters. Here, we simply chose the model with the fewest number
of n Gaussian components that provided a considerable increase
in log-likelihood relative to the n + 1 componentmodel.Depending
on thenumberof components and their respective length cut-offs,
streamlines were separated into short- and long-distance tract
classes based on their proximity to the surface-based label.

Statistical Comparison

Vertex-wise between-group Differences in lGI and SA
Exploratory vertex-based statistical analysis of lGI and SA mea-
sures was conducted using the SurfStat Toolbox (www.math.
mcgill.ca/keith/surfstat/) for MATLAB. To improve the ability to
detect population changes, the lGI and SA maps were smoothed
with a 5-mm full-width at half-maximum surface-based

Gaussian kernel. Parameter estimates for vertex-wise lGI and
SA estimates (Yi) were estimated by regression of a general linear
model (GLM) at each vertex iwith diagnostic group, and center as
categorical fixed-effects factor, and age and FSIQ as continuous
covariates:

Yi ¼ β0 þ β1 Groupþ β2 Centerþ β3 Ageþ β4 FSIQ þ εi;

where εi is the residual error. Between-group differences were es-
timated from the coefficient β1 normalized by the corresponding
standard error. Corrections for multiple comparisons across the
whole brain were performed using “random field theory” (RFT)-
based cluster analysis for nonisotropic images using a P < 0.05
(2-tailed) cluster-significance threshold (Worsley et al. 1999).
We also examined whether inter-individual variability in total
brain measures (total brain volume, total surface area) affected
the between-group difference in lGI, and in the subsequently de-
scribed DTI measures, by including total brain volume as con-
tinuous covariate.

Between-group Differences in DTIMeasures Using Surface-based ROIs
Statistical analysis of DTI measures in fiber tracts originating or
terminating in the surface-based ROI was conducted to (1) exam-
ine between-group differences inwhite-mattermicrostructure in
the ROI, and (2) to establish the relationship betweenmeasures of
gyrification and underlying white matter diffusion properties.
Here, a multivariate GLM (R Software, http://www.r-project.org/)
was initially used to examine between-group differences in
tract-specific DTI measures including diagnostic group and cen-
ter as categorical fixed effects, and age and FSIQ as continuous
covariates, using an initial test-wise error rate of P < 0.05
(2-tailed). Experiment-wide false positives were controlled for
using Bonferroni corrections based on the number of independ-
ent comparisons conducted, resulting in a corrected test-wise
error rate of P < 0.00625 (n = 8; see Table 2).

Figure 1. Automated tract dissections using surface-based clusters. (A) The cluster of significant between-group difference in lGI was initially mapped from the average

surface in standard space to each individual’s reconstructed surface in native space. For each individual, the surface-labels were then coregistered with the individual’s

structural volume andDTI data to create 3D volumetric ROIs. (B) The volumetric ROIswere subsequently used for automated fiber tracking, dissecting all tracts originating

and/or terminating in the surface-based cluster. These tracts mainly included the arcuate fasciculus, the frontal inferior longitudinal fasciculus, ascending and

descending projection tracts and local U-shaped fibers.
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Relationship Between lGI and DTI Measures
Univariate GLMs were used to examine the relationship between
local gyrification, whitematter tract characteristics, and diagnos-
tic status in clusters with significant between-group differences
in lGI. Initially, we examined the effects of diagnostic status
and local gyrification on diffusion properties of tracts with a
significant between-group difference, while covarying for
potential confounds of multisite acquisition (i.e., DTIi = β0 + β1
Group + β2lGI + β3[Group × lGI] + β5Center + εi). Analyses were
performed (1) for all tracts originating and/or terminating in the
surface-based ROI, and (2) for short- and long-distance tracts sep-
arately. Subsequently, we also examined the effect of variability
in diffusionmeasures and diagnostic status on the degree of local
gyrification (i.e., lGIi = β0 + β1 Group + β2DTI + β3[Group ×DTI] +
β4Centre + εi).

Seemingly unrelated regression equations (SURE) (Zellner and
Ando 2010) as implemented in the R software package were used
to examine (1) whether the effect of group onmeasures of lGIwas
significantly larger than the effect of group onmeasures of diffu-
sion; and (2) whether the effect of lGI on measures of diffusion
significantly exceeded the effect of diffusion properties on lGI.
Here, a χ2 test (P < 0.05) was used to compare a model in which
parameters of interest were fixed across equations with a
model in which parameters of interest were variable across
equations.

Last, to identify the degree to which the relationship between
the lGI and diffusion properties is significantly modulated by
other cortical features, we examined partial correlation coeffi-
cients (rpar) between the lGI and diffusivity measures while cov-
arying for variability in mean CT, sulcal depth, and mean
curvature within significant clusters. Furthermore, we examined
whether these additional features are predictive of WM charac-
teristics in addition to the lGI.

Results
Participant Demographics

There were no significant differences between individuals with
ASD and TD controls in age (t(97) = 1.04, P = 0.299) or full-scale IQ
(t(97) = 1.03, P = 0.305). There were also no significant between-

group differences in total surface area (t(97) = −0.613, P = 0.541),
total GM volume (t(97) =−0.89, P = 0.382), total WM volume (t(97) =
0.964, P = 0.337), or total brain volume (t(97) = 0.128, P = 0.899). In
individuals with ASD, there was a significant increase in the
ratio of total gray-to-white matter volume relative to controls
(t(97) = 2.831, P = 0.006) (Table 1).

Between-group Differences in lGI

Relative to controls, individuals with ASD had significantly
increased local gyrification in a large left-hemisphere cluster
(tmax = 3.59, nvertices = 9341, Pcluster = 0.026) centered around the
central sulcus (Talairach x = −47, y = −7, z = 32), which included
the primary motor and pre-motor cortex of the pre-central
gyrus, and a small portion of the posterior middle frontal gyrus
(approximate Brodmann area(s) [BA] 4/6), the somatosensory cor-
tex on the post-central gyrus (approximate BA 3/1/2), and part of
the supramarginal gyrus (BA 40) in the inferior parietal lobule.
Therewere no regions in which individuals with ASD had signifi-
cantly reduced lGI relative to controls (Fig. 2A). The same cluster
of increased lGI in ASD was also observed when covarying
for total brain volume or total surface area (see Supplementary
Fig. 2). Within the cluster of increase lGI, there were also no
significant between-group differences in mean CT (t(97) = 1.51,
P = 0.133), sulcal depth (t(97) =−1.57, P = 0.119), or radial curvature
(t(97) =−1.69, P = 0.093).

Between-group Differences in Surface Area

Individuals with ASD had significantly increased surface area
as compared with controls in a small right-hemisphere cluster
(tmax = 3.59, nvertices = 1739, Pcluster = 0.017) centered on the super-
ior precentral gyrus (i.e., primary motor cortex) (Talairach x = 23,
y =−16, z = 65). There were no regions in which individuals with

Table 1 Subjects demographics and global brain measures

ASD (n = 51) TD controls (n = 48)

Age, years 26 ± 7 (18–43) 28 ± 6 (18–43)
Full-scale IQ (WASI) 112 ± 13 (77–135) 115 ± 10 (86–137)
ADI total 35 ± 9 (21–57) –

ADI-R social 18 ± 5 (9–28) –

ADI-R communication 14 ± 4 (8–24) –

ADI-R repetitive behaviour 5 ± 2 (2–10) –

ADOS total 10 ± 4 (1–21) –

Total surface area (cm2) 2523 ± 252 2494 ± 215
Total white matter volume

(cm3)
488 ± 58 499 ± 53

Total gray matter volume
(cm3)

763 ± 86 749 ± 72

Total brain volume (cm3) 1251 ± 136 1248 ± 118
Ratio total gray:whitematter 1.568 ± 0.017 1.505 ± 0.099*

Note: Data expressed as mean ± standard deviation (range), surface area

expressed as cm2. There were no significant between-group differences in age,

FSIQ, or global brain measures at P < 0.05 (2-tailed). *There was a significant

between-group difference in the ratio of total GM to total WM (P < 0.05).

Table 2 Between-group differences in diffusion measures in tracts
and/or terminating in the cluster of significant differences in lGI
(i.e., ASD>control)

Subject groups Significance

ASD (n = 51) TD controls (n = 48) F(df = 1) P value

Short streamlines <30 mm
FA 0.36 ± 0.05 0.38 ± 0.04 3.31 0.072
MD 0.79 ± 0.07 (×10−3) 0.77 ± 0.06 (×10−3) 4.96 0.028*
RD 0.64 ± 0.09 (×10−3) 0.61 ± 0.07 (×10−3) 3.76 0.055
AD 1.10 ± 0.04 (×10−3) 1.08 ± 0.04 (×10−3) 8.09 0.005**

Long streamlines between 31 and 150 mm
FA 0.42 ± 0.06 0.44 ± 0.05 4.00 0.047*
MD 0.78 ± 0.05 (×10−3) 0.76 ± 0.05 (×10−3) 5.72 0.018*
RD 0.59 ± 0.07 (×10−3) 0.57 ± 0.06 (×10−3) 4.52 0.036*
AD 1.15 ± 0.04 (×10−3) 1.14 ± 0.03 (×10−3) 2.16 0.144

All streamlines <150 mm
FA 0.41 ± 0.06 0.43 ± 0.05 3.73 0.056
MD 0.78 ± 0.05 (×10−3) 0.76 ± 0.05 (×10−3) 5.62 0.019*
RD 0.60 ± 0.08 (×10−3) 0.58 ± 0.06 (×10−3) 4.32 0.040*
AD 1.14 ± 0.03 (×10−3) 1.13 ± 0.03 (×10−3) 3.57 0.061

Note: Data expressed as mean ± standard deviation; F(df = 1) statistic for main

effect of group resulting from the multivariate GLM; FA, fractional anisotropy;

MD, mean diffusivity (mm2 s−1); AD, axial diffusivity (mm2 s−1); RD, radial

(perpendicular) diffusivity (mm2 s−1).

*Significant at P < 0.05 (2-tailed).

**Significant following Bonferonni correction for multiple comparisons at

P < 0.00625 (2-tailed).
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ASD had significantly reduced surface area relative to controls
(Fig. 2B).

Distribution of Tract Lengths

The left-hemisphere cluster of significant between-group differ-
ences in lGI provided a 3-dimensional ROI for each subject, which
was subsequently used for automated fiber tracking. In native
space, the ROIs did not differ significantly between groups in
size as measured by surface area (t(97) = 0.222, P = 0.825), which
could affect the number of dissected streamlines.

When examining the distribution of tract lengths for all tracts
originating and/or terminating in the ROI, we found that the dis-
tribution significantly deviated from a unimodal distribution

(Hardigan’s Dip = 0.002, P < 0.001), thus indicating the existence
of one (or more) tract classes (see Fig. 3A left panel). More specif-
ically, the density distribution of tract lengths was best modeled
using a mixture of 3 Gaussian distributions of variable mean and
standard deviation, above which no significant improvement in
fit was observed (Fig. 3A middle and right panel). Approximately
95% of all streamlineswere < 90millimeters (mm), and fell within
the first 2 Gaussian components. We therefore subdivided
streamlines within the surface-based ROI into 2 dominant tract
classes based on cut-offs provided by the Gaussian Mixture Mod-
els: short fibers <30 mm, and long fibers between 31–150 mm in
lengths (Fig. 3B). There were no significant between-group differ-
ences in the number of dissected streamlines within and across
tract classes overall (t<30(97) = −1.07, P = 0.284, t31-150(97) = 0.04,

Figure 2. Between-group differences in lGI (A) and vertex-wise estimates of surface area (B). The left panel shows the un-thresholded t-maps where increased parameter

estimates in ASD relative to controls are indicated in yellow-red, and decreases in cyan-blue. The right panel shows the random-field theory-based cluster-corrected

(P < 0.05) difference map indicating clusters of significantly increased lGI and surface area in ASD relative to neurotypical controls. There were no significant clusters

where individuals with ASD had significantly reduced lGI or surface area.
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P = 0.969; t<150(97) =−0.28, P = 0.780), which could affect the exam-
ined measures of diffusion.

A similar distribution of tract lengthswas observed in the con-
trol cluster of the contralateral hemisphere, where no significant
difference in lGI was found (t(97) = 1.52, P = 0.130) (see Supplemen-
tary Fig. 3).

Between-group Differences in Tract-specific DTI
Measures in Tracts Originating or Terminating in the
Surface-based ROI

When controlling for the effect of multicenter image acquisition,
measures of MD were significantly increased in individuals with
ASD relative to TD controls when all tracts originating and/or ter-
minating in the cluster of increased lGI were examined (Table 2).
We also found a significant increase in MD measures when sep-
arating short- from long-distance tracts originating in the sur-
face-based ROI using a test-wise (uncorrected) error rate of
P < 0.05. However, none of these effects remained significant
when controlling for multiple comparisons. A similar pattern of
between-group differences was also observed, when covarying

for inter-individual differences in total brain volume or total sur-
face area (see Supplementary Table 1).

Notably, in short-distance streamlines exclusively, we found
that measures of AD were significantly increased in ASD relative
to controls (F97 = 8.02, P = 0.006) even after correction for multiple
comparisons. No significant between-group differences in AD
were observed in the long-distance streamlines (see Table 2 for
details). There were no significant between-group differences in
any of the examinedDTImeasures in the control ROI (see Supple-
mentary Table 2).

Relationship Between lGI, Measures of Diffusion, and
Diagnostic Category

Lastly, we examined the relationship between lGI, AD in short
streamlines, and diagnostic category in order to establish
whether diffusion properties of the cortical WM were (1) related
to variations in cortical GM as measured by lGI, or vice versa; (2)
a consequence of having ASD (i.e., diagnostic category); or (3)
resulting from the combination of both. First, we found that dif-
ferences in AD were primarily related to variations in mean lGI

Figure 3. (A) Length distribution of tracts originating and/or terminating in the surface-based ROI. The distribution was best modeled using a set of 3 Gaussian Mixture

Models, which are indicative of at least 2 dominant tract classes within the cluster. Based on the Mixture Models, a cut-off of 30 mmwas utilized to separate short- from

long-distance tracts within the cluster (B). There was a significant positive correlation between lGI measures and AD in short- but not long-distance tracts across groups

(left panel) and when controlling for between-group differences (right panel). ADres denotes the AD residuals after the removal of the main effect of group (C).
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within the cluster of significant between-group difference
(F1 = 4.58, P = 0.035), whereas therewas neither a significant effect
of group (F1 = 2.46, P = 0.120), nor a group-by-lGI interaction
(F1 = 2.11, P = 0.149) (Fig. 3C). Similarly, when predictingmeasures
of lGI-by-group, AD, and their interaction, we found that mea-
sures of lGI were significantly predicted by variations in AD
(F1 = 6.29, P = 0.014), and only marginally by group (F1 = 3.91, P =
0.056), or the group-by-diffusivity interaction (F1 = 3.56, P = 0.061).

Using SURE,we also found (1) that the effect of lGI on theADof
short tracts significantly exceeded the effect of AD on measures
of lGI (χ2(1) = 6.29, P = 0.012), and (2) that the effect of group on
measures of lGI significantly exceeded its effect on measures of
AD (χ2(1) = 3.91, P = 0.048). Thus, differences in GM gyrification
and WM connectivity are significantly linked. Moreover, mea-
sures of cortical gyrification seemmore predictive for WM differ-
ences than diagnostic status (i.e., having ASD).

The correlation between the lGI and AD in short tracts
remained significant even when partialling out the effect of
mean CT (rpar = 0.286, P = 0.002), sulcal depth (rpar = 0.274,
P = 0.003), or radial curvature (rpar = 0.275, P = 0.003) across groups,
and when controlling for the effect of these additional cortical
features within the GLM. Out of the 3 additional features exam-
ined, only mean CT explained significant variability in AD of
short tracts in addition to the lGI (F(1) = 4.44, P = 0.003). Thus,
WM characteristics are not only dependent on the degree of cor-
tical gyrification, but may also be associated with other morpho-
metric GM features including CT.

Discussion
This study examined the relationship between GM surface anat-
omy and characteristics of the underlying WM connectivity in
male adults with ASD and TD controls. First, we found that gyri-
fication of the brain in ASDwas significantly increased relative to
controls in a large left-hemisphere cluster centered around the
central sulcus. In this cluster, there was no commensurate in-
crease in vertex-wise estimates of surface area, thus suggesting
that these morphometric features represent independent
sources of neuroanatomical variability. Using DTI, we subse-
quently examined between-group differences in WM tracts ori-
ginating and/or terminating in the surface-based cluster of
increased lGI in ASD. We found that measures of AD in short
but not long tracts were significantly increased in ASD based on
their respective distance from the cortical sheet. Furthermore,
there was a significant positive relationship between measures
of local gyrification and AD in short tracts. This relationship
was not significantly modulated by diagnostic status, which
was more predictive for GM characteristics than for WM proper-
ties, hence implying that ASD might affect WM differences via
the cortical GM. Taken together, our findings suggest that gray
and white matter abnormalities are closely linked, and may re-
flect common rather thandistinct etiological pathways. However,
this relationship is scale-dependent and primarily affects fiber
tracts in close proximity to the cortical sheet.

Atypical Gyrification in ASD

Atypical patterns of gyrification in ASD have been noted previ-
ously although findings remain highly variable with regard to
the sign and the regional pattern of differences. For example,
Hardan et al. (2004), using a manual 2D tracing approach, re-
ported greater prefrontal gyrification of the brain in children
and adolescents with ASD relative to controls, while no signifi-
cant differences were found among adults (Hardan et al. 2004).

Previous studies implementing the lGI reported significant in-
creases in gyrification in bilateral posterior brain regions in
males with ASD compared with TD controls (12–23 years) (Wal-
lace et al. 2013), and significant reductions in lGI in the left supra-
marginal gyrus in males aged 8–40 years (Libero et al. 2014), and
in the right inferior frontal and medial parieto-occipital cortices
in children with ASD (Schaer et al. 2013). Furthermore, atypical
cortical gyrification in ASD has been demonstrated using a var-
iety of alternative metrics, including measures of sulcal morph-
ometry (Levitt et al. 2003), sulcal depth (Nordahl et al. 2007),
and gyral complexity (Williams et al. 2012). Our finding of an in-
creased lGI in ASD therefore agrees with some—but not all—pre-
vious observations in comparable groups of individuals.

While these divergent findings can be partially explained by
differences in sample size, demographics and analytical techni-
ques, evidence also suggests that patterns of cortical gyrification
are highly variable across individuals, even in normative popula-
tions, and that both genetic and nongenetic factors contribute to
the formation of cortical gyri (Bartley et al. 1997). For example,
Kates et al. (2009) report that cortical folding patterns are highly
discordant betweenmonozygotic twins, where onehad a diagno-
sis of ASD, although ASD individuals and their co-twins both ex-
hibited increased parietal-lobe folding relative to unrelated TD
controls (Kates et al. 2009). This finding contrasts with conven-
tional volumetric measures of brain anatomy, which are highly
concordant between twins, and are therefore largely genetically
determined (White et al. 2002). Moreover, cortical folding is not
significantly correlated with total brain weight or volume, or
with body weight and length, which are under strict genetic con-
trol (Zilles et al. 1988; Rogers et al. 2010). Measures of gyrification
thus seem to be particularly sensitive to environmental (i.e., non-
genetic) factors, and reflect a degree of plasticity that is inde-
pendent of overall brain size (Zilles et al. 2013). Variability in
findings across studies may therefore also be due to the high de-
gree of inter-individual variation that is naturally associatedwith
the lGI measure, which directly impacts on statistical effects. Ef-
fect sizes rely not only on the mean difference between groups
but also on the standard error of measurement associated with
a parameter. Differences in variability across samplesmay there-
fore influence the regional pattern of between-group differences
in lGI across studies. This particularly applies to complex neuro-
developmental conditions such as ASD, where genetic effects are
expected to interact with environmental factors to give rise to a
heterogeneous neurophenotype. On the other hand, the high
inter-individual variability associated with the lGI makes this
measure particularly suited for the investigation of genetic and
nongenetic factors driving the atypical development of the
brain in ASD, and to disentangle the large phenotypic variability
typically observed among ASD individuals.

Neurobiologically, the formation of cortical convolutions has
been linked to various cellular mechanisms, although it is likely
that there is no singularmechanism that could explain thehighly
complex patterns of cortical convolutions that are typically ob-
served across the cortex. Most theories relate cortical folding to
the neurobiological mechanisms mediating cortical expansion;
that is, as the cortex expands it eventually needs to fold to fit
an increasing surface area into the restricted space of the skull.
For example, the radial unit hypothesis links cortical expansion
to the early proliferation of radial unit progenitors, and thus an
increase in radial glial cells, which provide scaffold for migrating
neurons in the developing cortex (Rakic 1995). Recent studies also
suggest that cortical foldingmay be aided by so-called intermedi-
ate radial glia cells that are exclusively found in the gyrencephalic
cortex, and that facilitate the tangential—in addition to the radial
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—dispersion of neurons (Reillo et al. 2011;Wang et al. 2011). In the
mature brain, the degree of cortical folding has also been related
to (1) the neural complexity of a brain regions in terms of neuron-
al numbers, synaptic density, and/or dendritic arborization
(Welker 1990), and (2) differences in growth rates between the
outer and inner cortical layers (Richman et al. 1975; Kriegstein
et al. 2006). Thus, the neural mechanisms underlying cortical
folding and cortical expansion are intrinsically linked. It is there-
fore perhaps surprising that we did not observe a commensurate
increase in vertex-wise estimates of surface areawithin the clus-
ter of increased lGI, which agrees with a previous report by Wal-
lace (Wallace et al. 2013). Mathematically, however, it is very
difficult to compare the 3D nature of the lGI with the 2D nature
of point-wise estimates of surface (i.e., the average area of trian-
gles/faces touching a vertex). For example, it has previously been
shown that the cortex is intrinsically curved, and so cannot be
flattened or ‘unfolded’without having to tear or shear the surface
(Griffin 1994; Ronan et al. 2011). This means that the area of a cir-
clewith radius ron the 3D folded surface of the brain does not dir-
ectly translate to the area of the same circle in-plane. In ASD, it
has also been shown that 3D characteristics of the cortical sur-
face significantly differ from controls, which may impact on the
comparability of cortical features between groups. For instance,
Ecker et al. (2013) demonstrated that in the cluster where we
observed an increase in lGI, cortico-cortical separation distances
(i.e., shortest path connecting 2 points along the cortical surface)
were significantly reduced in ASD (Ecker et al. 2013), indicating
that the brain in ASD may be more intrinsically curved. It thus
seems that the potential increase in surface area associated
with the lGI cannot be adequately captured by point- or vertex-
wise estimates of surface area, and that both features reflect dif-
ferent sources of neuroanatomical variability.

Relationship Between lGI and White matter
Characteristics

Our study further demonstrates that the GM pathology of ASD, as
measured by lGI, is closely linked with abnormalities of the
underlyingWM. First, we found that tracts originating and/or ter-
minating in the cluster of increased lGI also have increased axial
diffusivity, and this was specific to short tracts <30 mm. Evidence
for atypical short-distance tracts inASD comes frompreviousDTI
studies (e.g., Sundaram et al. 2008; Shukla et al. 2011), which sup-
ports the notion that aberrant long-distance connectivity in ASD
may be accompanied by intact or even enhanced short-distance
connectivity (Casanova et al. 2002; Rubenstein and Merzenich
2003; Belmonte et al. 2004; Courchesne and Pierce 2005). More-
over, our finding agrees with previous reports suggesting that
the relationship between GM and WM characteristics may be
scale-dependent, with short-distance tracts being more closely
associated with GM variability than long-distance tracts (Schaer
et al. 2013). However, the definition of short versus long tracts is
ultimately arbitrary, and also significantly differs across prior
studies. For example, Herbert et al. (2004) subdivided cortical
WM based on proximity to the cortical sheet, and this is compar-
able to our approach (as tracts were separated according to their
lengths relative to the surface-based label). While this allows us
to further separate tract classes in an automated fashion, it is im-
portant to note that the length of a particular tract is not neces-
sarily indicative of its particular composition, even thoughWM in
close proximity to the cortical sheet is likely to contain propor-
tionately more “short” (i.e., cortico-cortical, U-shaped) fibers
than “long” (i.e., association or projection) tracts relative to the
deeper WM. In future research, it will thus be important to

investigate the relationship between GM and WM at different
scales, in order to establish the scale at which their association
starts to break down.

No significant between-group differences in DTI measures
were observed in the contralateral control region, where indivi-
duals with ASD did not differ significantly from controls in lGI.
While the unilaterality of differences in lGI is interesting in
itself, as it suggests that the trajectory of brain development is
idiosyncratic for different hemispheres in ASD, there is currently
no sufficient evidence that could explain our finding. Notably,
many of the functional impairments typically associated with
ASD (e.g., language and fine motor skills) are associated with a
left hemispheric specialization (reviewed in Floris et al. 2016).
Moreover, it has previously been shown that the left hemisphere
neuroanatomy is more predictive of ASD diagnosis than the
right hemisphere (Ecker et al. 2010). It will therefore be important
in the future to establish whether hemispheric differences
in lGI are accompanied by hemispheric differences in neuro-
developmental trajectories, and how these relate to autistic
symptoms.

While it may be tempting to speculate about the underlying
pathological substrate of WM diffusivity, it is however very diffi-
cult to unequivocally associate them with specific biophysical
changes, and particularly measures of directional diffusivity.
Some evidence suggests that radial diffusivity (i.e., the diffusion
of water perpendicular to WM fibers) is related to the degree of
myelination (Song et al. 2002; 2005), while decreased AD (i.e., dif-
fusion ofwatermolecules parallel to fibers) is indicative of axonal
damage (Song et al. 2003). For example, AD is highly correlated
with axonal damage in mice with autoimmune encephalomyeli-
tis (Budde et al. 2009), and mouse models of other WM injuries
(DeBoy et al. 2007). Thiswould imply that our finding of increased
AD in individualswith ASDmay be driven by differences in axon-
al characteristics rather than myelination. The interpretation of
the DTI measures examined in our study is further complicated
by several confounding factors, including the degree of cerebro-
spinal fluid partial volume effects (Vos et al. 2011), and crossing
fibers (Wheeler-Kingshott and Cercignani 2009). There are also
intrinsic tractography biases that may affect the comparison of
short and long fibers; for example, longer paths are less likely
to be reconstructed than shorter paths due to accumulated
error, and curved paths are less likely to be reconstructed than
straighter paths due to the eigenvector pointing “away” from
the tract (Girard et al. 2014). Thus, while our finding provides
some support for atypical short-distance WM connectivity in
ASD, future histological studies are needed to better characterize
the specific microstructural determinants of WM abnormalities
in ASD.

Last, we found that there was a significant positive relation-
ship between the lGI and AD in short tracts, which suggests
that variations in GM neuroanatomy and WM connectivity are
closely linked. Notably, the relationship was not significantly
modulated by diagnostic status, which was more predictive for
GM characteristics than for WM properties, implying that ASD
might affect WM differences via the cortical GM. Our finding
agrees with genetic studies highlighting the important role of
genes affecting GM development in the etiology of ASD. For ex-
ample,manyof the commonunderlyingmolecular pathways im-
plicated in ASD include genes involved in cell proliferation and
neuron motility, cell adhesion and axon targeting, and synapto-
genesis and synapse differentiation (e.g., Betancur et al. 2009;
Pinto et al. 2010; Gilman et al. 2011). Perturbations to the genetic
and molecular mechanisms underlying the typical development
of themicro-circuitry of the brain are thus likely to also affect the
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development of the brain’s WM macro-circuitry. On the other
hand, there is less evidence for an involvement of genes that tar-
get myelination directly. For example, according to the SFARI
Gene List (https://gene.sfari.org/), only 10 out of 706 risk genes
for ASD are involved in myelination, suggesting that the genetic
load for aberrant graymatter and axonal connectivity inASDmay
be higher than for atypical myelination. However, due to the
cross-sectional nature of the study in an adult population, our re-
sults naturally do not allow us to disentangle the causalmechan-
isms that drive the association between the lGI and WM
diffusivity. While some of our results indicate that the lGI pre-
dicts WM diffusivity significantly better than vice versa, we can-
not exclude the possibility that the association is driven bya third
mechanism affecting both gray andwhitematter neuroanatomy.
Furthermore, we found that mean CT within the cluster signifi-
cantly predicted measures of AD in addition to the lGI. Cortical
gyrification is therefore not the only GM feature that predicts
WM connectivity. Taken together, while our study demonstrates
that gray and white matter abnormalities are closely linked dur-
ing adulthood, and may reflect common rather than distinct
etiological pathways, future longitudinal studies are needed to
elucidate the causative link between atypical gray and white
matter development in ASD.

Methodological Limitations

The current study has a number of additional limitations. First, a
multicenter design was used for MRI data acquisition to over-
come single-site recruitment limitations. However, we utilized
a standardized protocol for multicenter acquisition (Deoni et al.
2008), and also accounted for inter-site effects in the statistical
model (Suckling et al. 2014). Our findings are therefore unlikely
to be driven by variance components unrelated to the between-
group difference. Second, while automated tractography allows
for the investigation of a large number of tracts in a large sample
of individuals, our approach relies on the accurate coregistration
of surface reconstructions and DTI volumes. We, however, did
not find any significant differences in the number of streamlines
within and across tract classes between individualswithASD and
controls, and the volumetric ROIs also did not differ significantly
between groups in size. Moreover, no significant between-group
differences were observed in the contralateral hemisphere,
which served as a control ROI. While this does not exclude the
possibility of registration errors, it seems that there was no sys-
tematic registration bias that could affect the size and number
of examined streamlines across groups. In the future, it will
also be crucial to address the important issue of crossing fibers
(e.g., using a deconvolution instead of conventional tensor mod-
els; Dell’acqua et al. 2013) and partial volume effects, which
might affect the accuracy of estimated DTImetrics. Furthermore,
the benefit of using alternative (e.g., non-linear) approaches for
image (or surface) registration may be explored in the future in
order to reduce inter-individual variability in DTI measures.
However, all of these issues are expected to affect both ASD
and TD group to an equal degree, and between-group compari-
sons are thus unlikely to be affected by these confounds. Lastly,
it is important to note thatASD is a disorder that recruitsmultiple
neural systems, which—as a whole—mediate the cluster of clin-
ical symptoms characteristic for ASD. Thus, while our approach
based on differences in lGI captures some aspects of perturbed
brain connectivity in ASD, it is by no means sufficient to explain
all atypical connections. Further research will be required to de-
termine if our findings generalize to other neuro-cognitive sys-
tems that are affected in ASD.

Supplementary Material
Supplementary Material can be found at http://www.cercor.
oxfordjournals.org/ online.
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