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Abstract 

Epigenetic clocks are increasingly being used as a tool to assess the impact of a wide variety of phenotypes and exposures on healthy 
ageing, with a recent focus on social determinants of health. However, little attention has been paid to the sociodemographic charac-
teristics of participants on whom these clocks have been based. Participant characteristics are important because sociodemographic 
and socioeconomic factors are known to be associated with both DNA methylation variation and healthy ageing. It is also well known 
that machine learning algorithms have the potential to exacerbate health inequities through the use of unrepresentative samples – 
prediction models may underperform in social groups that were poorly represented in the training data used to construct the model. To 
address this gap in the literature, we conducted a review of the sociodemographic characteristics of the participants whose data were 
used to construct 13 commonly used epigenetic clocks. We found that although some of the epigenetic clocks were created utilizing 
data provided by individuals from different ages, sexes/genders, and racialized groups, sociodemographic characteristics are generally 
poorly reported. Reported information is limited by inadequate conceptualization of the social dimensions and exposure implications 
of gender and racialized inequality, and socioeconomic data are infrequently reported. It is important for future work to ensure clear 
reporting of tangible data on the sociodemographic and socioeconomic characteristics of all the participants in the study to ensure that 
other researchers can make informed judgements about the appropriateness of the model for their study population.
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Introduction

DNA methylation (DNAm) is an epigenetic modification to DNA 
that is involved in a number of aspects of genome regulation. 
DNAm is dynamic, changing as we age [1], in the course of dis-
ease [2] and in the presence of environmental exposures such as 
smoking [3] and childhood adversity [4, 5]. Ageing is a particu-
larly well-established influence on DNAm, with changes occurring 
at many DNAm sites across the genome as humans get older 
[6]. These changes are so reliable that numerous research groups 
have developed ‘epigenetic clocks’, mathematical models that 
use DNAm measurements to predict chronological age and other 
age-related characteristics [7].

The first generation of epigenetic clock methods (e.g. Hor-
vath and Hannum [1, 8]) aimed simply to predict chronological 

age as accurately as possible. It was observed early on that 
errors in age prediction, subsequently known as ‘age acceler-
ation’ or ‘age deceleration’ (depending on the direction of the 
error), were associated with a variety of exposures and dis-
eases as well as mortality risk [9]. These associations suggested 
that, beyond chronological ageing, these clocks may actually 
provide a measure of biological ageing (which refers to the pro-
gressive decline of the body’s physiological functions [10]). To 
enhance this feature, a second generation of epigenetic clocks was 
developed; these incorporated health biomarkers and phenotypes 
alongside chronological age in the model. Increasing numbers of 
studies are now considering how social determinants of health 
might impact epigenetic ageing, with evidence indicating posi-
tive associations between accelerated epigenetic aging and social 
adversity measured in relation to socioeconomic position [11], 
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education [12], neighbourhood characteristics [13–15], and racial
discrimination [15].

Although the epigenetic clocks themselves have been quite 
extensively reviewed [7, 16–18], relatively little attention has been 
paid – in both these review articles and also the empirical stud-
ies that use these clocks – to the sociodemographic character-
istics of the individuals whose data have been used to develop 
these clocks. This sociodemographic information is important 
in order to assess the generalizability of the clocks to different 
populations, given robust evidence that (i) variation in DNAm is 
altered by genetic, social, and environmental factors [3, 19–24], (ii) 
adverse social and biophysical exposures are socially patterned 
and affect the risk of disease and also processes of healthy age-
ing [25–27], and (iii) study selection pressures (which may be 
related to sociodemographic characteristics) can induce biased 
study estimates [28–31], which could lead to problems with clock 
generalizability. Our concern is that for these reasons an algo-
rithm developed to estimate ageing using DNAm in one population 
may not translate to other populations with divergent sociodemo-
graphic or socioeconomic profiles. For example, a clock may miss 
environmental impacts on the methylome that contribute to age-
ing in some populations if it is developed in a population with low 
exposure to those impacts, e.g. pollution or social adversity [32].

This is not a new concern, as there is existing literature describ-
ing the potential for machine learning algorithms to exacerbate 
health inequities through the use of unrepresentative samples – 
this may happen when prediction models underperform in social 
groups that were poorly represented in the training data used to 
construct the model [33–35]. If prediction models underperform, 
then estimates will be less accurate, which could bias associa-
tions in either direction. Because of the nature of epigenetic clocks, 
the direction of bias is likely to be quite complicated. Epigenetic 
clocks are made up of many CpG sites (often hundreds) scattered 
across the genome. The dynamic and regulatory nature of DNAm 
therefore implies that clocks will integrate biological signals from 
a wide variety of biological functions and pathways (which for the 
most part are unknown). The responsive nature of DNAm implies 
that they will capture variation due to a multitude of endogenous 
biological factors and external exposures that differ between pop-
ulations. As such this bias may either over- or under-estimate the 
effects, and we do not think it would be easy to predict which 
direction the bias might go, even for specific studies.

The possibility of bias has already been described for PhenoAge, 
one measure of epigenetic age [36]; it is a particular concern for 
epigenetic data as two recent reviews show that, at least in regard 
to racialized groups, epigenetic data are predominantly from indi-
viduals of ‘European’ heritage [37, 38] (although no such review 
has been conducted for other sociodemographic characteristics). 
Wide-spread inconsistencies in the literature about associations 
with epigenetic age acceleration support this concern, as inconsis-
tencies are likely driven by differences in characteristics between 
study populations. For example, inconsistent associations have 
been reported with education [12, 15, 39–42], socioeconomic status 
[15, 39, 41, 43–50], and racialized group [51–54]; as well as inconsis-
tent associations between epigenetic age acceleration and health 
and social outcomes when analyses are stratified by sociodemo-
graphic characteristics, such as education level [55], country of 
birth [40], and racialized group [42, 55, 56]. One recent study 
reported that when testing the association between epigenetic 
clocks and healthspan-related characteristics, smaller effect sizes 
were found for Black American participants in comparison to 
white American participants [54], suggesting it is possible that 
associations could be biased towards the null in some study pop-
ulations. These inconsistencies may be due in part to some clocks 

including loci known to be differentially methylated by country of 
birth [40] and racialized group [36, 45].

Whatever the reason for these inconsistencies, it is clear that 
any interpretation of associations with epigenetic age acceleration 
should take into account any differences between the populations 
in which the epigenetic clock was derived and the populations 
where the associations were observed. To assist in these compar-
isons, we collate for the first time the basic social characteristics 
of the participants utilized in the development of 13 commonly 
used epigenetic clocks.

Results
Table 1 contains extracted information from each of the clock 
papers. Supplementary Table S1 reproduces Table 1 along with 
additional details of the conceptualization of racialized groups 
and genders. Supplementary Table S2 provides details of how each 
clock was constructed and the specific datasets used by each 
paper. 

Age, Biological Specimen Collection Date, and 
Birth Cohort
Eleven of the 13 papers report the chronological age of all their 
training and test dataset participants. Of these, three models 
included children in their training and test datasets: two included 
participants from birth to adulthood, with no information as to 
the biological specimen collection dates or birth cohorts of partic-
ipants (aged 0–100 years [1]; aged 0–78  years [57]), and one model 
included participants aged 2–104 years old, with 1/14 cohorts born 
in 1936 and one in 1921 [58]. Four papers reporting the chronologi-
cal age of all their participants report using only adult participants 
(aged between 16 and 101 years) without reporting specimen col-
lection date or birth cohort [8, 59–61]. One paper reported using 
only adult participants (ages 31– 82 years) and reported speci-
men collection date (2000–08) and birth cohort (1924–75) for all of 
their participants [62]. One paper reported age for all participants 
(adults, aged 20–91 years) and reported the specimen collection 
date (1988–2014) and birth cohort (1907–94) for the majority of 
their participants (4/5 datasets) [63]. Two papers reported using 
adult participants (aged 21–93 years), with information on spec-
imen collection date (1998–2007) and birth cohort (1906–86) for 
some of their participants [55, 64].

One paper reported age for their training data plus 81% of their 
test data, plus biological specimen collection date for all partici-
pants (1998–2013) and birth cohort for the majority of participants 
(1917–95) [65]. One paper did not report age but included it as the 
Y-axis on plots, illustrating that participants were ∼20–90 years 
old, with no information on biological specimen collection date or 
birth cohort [66].

Sex or Gender
Biological sex or gender were the most frequently reported char-
acteristics, with seven out of 13 clock papers reporting data for 
all participants, and three out of 13 reporting partial data. Of the 
seven reporting full data, four report ‘sex’ using the biological sex 
terms ‘males’ and ‘females’. These papers included between 48% 
and 83% females in their training and test datasets [55, 62, 64, 65]. 
One paper reports ‘gender’ using the gendered terms ‘women’ and 
‘men’, including 52% women [8], and two report using the terms 
‘female’ and ‘male’ without specifying sex or gender, including 
between 0% and 58% female participants [1, 60]. Of the three stud-
ies reporting partial data on sex/gender, one reported on one of 
eight datasets (100% women, with no use of the terms sex or gen-
der) [61]; one reported on two of five test datasets (46% women, no 



Epigenetic clocks and research implications of the lack of data on whom they have been developed  3

Ta
b

le
 1

: s
oc

io
d

em
og

ra
p

h
ic

 a
n

d
 s

oc
io

ec
on

om
ic

 c
h

ar
ac

te
ri

st
ic

s 
of

 p
ar

ti
ci

p
an

ts
 w

h
os

e 
d

at
a 

w
er

e 
u

ti
li

ze
d

 t
o 

cr
ea

te
 t

h
e 

13
 e

p
ig

en
et

ic
 c

lo
ck

 p
ap

er
s

C
lo

ck

A
ge

 (
ye

ar
s)

 a
n

d
 y

ea
r 

at
 t

im
e 

of
 s

p
ec

im
en

 
co

ll
ec

ti
on

; b
ir

th
 

co
h

or
t

R
ac

ia
li

ze
d

 g
ro

u
p

s
C

ou
n

tr
y

Se
x 

or
 g

en
d

er
N

at
iv

it
y

Ec
on

om
ic

 m
ea

su
re

s
Ed

u
ca

ti
on

So
ci

od
e-

m
og

ra
p

h
ic

 
ch

ar
ac

te
ri

st
ic

s 
u

se
d

 in
 m

od
el

 
co

n
st

ru
ct

in
g 

cl
oc

k?

R
ep

or
t 

va
li

d
at

io
n

 a
cr

os
s 

so
ci

od
em

og
ra

p
h

ic
 

gr
ou

p
s?

H
or

va
th

 [
1]

A
ge

: 0
–1

00
; y

ea
r:

 n
ot

 
st

at
ed

 in
 p

ap
er

; 
b

ir
th

 c
oh

or
t:

 
ca

n
n

ot
 d

et
er

m
in

e

N
o 

sp
ec

ifi
ca

ti
on

 
of

 t
er

m
in

ol
og

y;
 

th
e 

te
rm

 ‘e
th

n
ic

-
it

y’
 is

 u
se

d
 w

it
h

 
re

ga
rd

 t
o 

on
e 

of
 

th
e 

st
u

d
ie

s.
 T

ra
in

-
in

g:
 r

ep
or

te
d

 f
or

 
5/

39
 d

at
as

et
s;

 
on

e 
st

u
d

y 
co

m
-

p
ri

si
n

g 
fo

u
r 

d
at

as
et

s 
in

cl
u

d
es

 
in

d
iv

id
u

al
s 

of
 

‘n
on

-H
is

p
an

ic
 

C
au

ca
si

an
 e

th
n

ic
-

it
y’

 (
4 

b
ra

in
 r

eg
io

n
s 

fr
om

 t
h

e 
sa

m
e 

in
d

iv
id

u
al

s)
, a

n
d

 
on

e 
st

u
d

y 
in

cl
u

d
es

 
‘T

ai
w

an
es

e’
 in

d
i-

vi
d

u
al

s.
 T

es
t:

 
re

p
or

te
d

 f
or

 1
/3

2 
d

at
as

et
s;

 o
n

e 
st

u
d

y 
in

cl
u

d
es

 
‘G

am
b

ia
n

’ 
in

d
iv

id
u

al
s

Tr
ai

n
in

g:
 

re
p

or
te

d
 f

or
 

3/
39

 d
at

as
et

s 
– 

tw
o 

d
at

as
et

s 
fr

om
 o

n
e 

st
u

d
y 

in
cl

u
d

e 
d

at
a 

fr
om

 t
h

e 
N

et
h

er
la

n
d

s 
an

d
 o

n
e 

d
at

as
et

 
in

cl
u

d
es

 d
at

a 
fr

om
 t

h
e 

U
SA

. T
es

t:
 

re
p

or
te

d
 f

or
 

2/
32

 d
at

as
et

s 
– 

tw
o 

d
at

as
et

s 
d

ra
w

n
 f

ro
m

 o
n

e 
st

u
d

y 
in

cl
u

d
e 

d
at

a 
fr

om
 t

h
e 

U
K

N
o 

sp
ec

ifi
ca

ti
on

 
of

 t
er

m
in

ol
og

y;
 

te
rm

s 
‘m

al
e’

 
an

d
 ‘f

em
al

e’
 

on
ly

. T
ra

in
in

g:
 

37
%

 f
em

al
e.

 
Te

st
: 8

%
 f

em
al

e

N
ot

 s
ta

te
d

 
in

 p
ap

er
N

ot
 s

ta
te

d
 in

 p
ap

er
N

ot
 s

ta
te

d
 in

 
p

ap
er

N
o

N
o

H
an

n
u

m
 [

8]
A

ge
: 1

9–
10

1;
 y

ea
r:

 
n

ot
 s

ta
te

d
 in

 
p

ap
er

; b
ir

th
 

co
h

or
t:

 c
an

n
ot

 
d

et
er

m
in

e

Te
rm

 ‘e
th

n
ic

it
y’

 
w

it
h

 n
o 

ex
p

li
ci

t 
d

efi
n

it
io

n
. T

ra
in

-
in

g:
 ‘4

26
 C

au
ca

si
an

 
an

d
 2

30
 H

is
p

an
ic

 
in

d
iv

id
u

al
s’

N
ot

 s
ta

te
d

 in
 

p
ap

er
Te

rm
s 

‘g
en

d
er

’, 
‘w

om
en

’, 
an

d
 

‘m
en

’ w
it

h
 n

o 
ex

p
li

ci
t 

d
efi

n
i-

ti
on

. T
ra

in
in

g:
 

52
%

 w
om

en

N
ot

 s
ta

te
d

 
in

 p
ap

er
N

ot
 s

ta
te

d
 in

 p
ap

er
N

ot
 s

ta
te

d
 in

 
p

ap
er

G
en

d
er

 a
n

d
 

et
h

n
ic

it
y 

(n
o 

d
efi

n
it

io
n

 o
f 

ei
th

er
; e

th
n

ic
 

gr
ou

p
s 

in
cl

u
d

ed
 

ar
e 

‘C
au

ca
si

an
 

an
d

 H
is

p
an

ic
’)

N
o.

 C
om

p
ar

e 
th

e 
ag

e-
in

g 
ra

te
 b

et
w

ee
n

 m
en

 
an

d
 w

om
en

 in
 t

ra
in

-
in

g 
d

at
a;

 b
u

t 
n

o 
te

st
 

d
at

as
et

 is
 u

se
d

 s
o 

n
ot

 
co

n
si

d
er

ed
 v

al
id

at
io

n

(c
on

ti
n

u
ed

)



4 Environmental Epigenetics, 2023, Vol. 00, No. 00

Ta
b

le
 1

: (
C

on
ti

n
u

ed
)

C
lo

ck

A
ge

 (
ye

ar
s)

 a
n

d
 y

ea
r 

at
 t

im
e 

of
 s

p
ec

im
en

 
co

ll
ec

ti
on

; b
ir

th
 

co
h

or
t

R
ac

ia
li

ze
d

 g
ro

u
p

s
C

ou
n

tr
y

Se
x 

or
 g

en
d

er
N

at
iv

it
y

Ec
on

om
ic

 m
ea

su
re

s
Ed

u
ca

ti
on

So
ci

od
e-

m
og

ra
p

h
ic

 
ch

ar
ac

te
ri

st
ic

s 
u

se
d

 in
 m

od
el

 
co

n
st

ru
ct

in
g 

cl
oc

k?

R
ep

or
t 

va
li

d
at

io
n

 a
cr

os
s 

so
ci

od
em

og
ra

p
h

ic
 

gr
ou

p
s?

ep
iT

O
C

 [
59

]
A

ge
: 1

9–
10

1;
ye

ar
: 

n
ot

 s
ta

te
d

 in
 

p
ap

er
; b

ir
th

 
co

h
or

t:
 c

an
n

ot
 

d
et

er
m

in
e

N
ot

 s
ta

te
d

 in
 p

ap
er

N
ot

 s
ta

te
d

 in
 

p
ap

er
N

ot
 s

ta
te

d
 in

 
p

ap
er

N
ot

 s
ta

te
d

 
in

 p
ap

er
N

ot
 s

ta
te

d
 in

 p
ap

er
N

ot
 s

ta
te

d
 in

 
p

ap
er

Se
x 

(n
o 

d
efi

n
i-

ti
on

)
N

o

Z
h

an
g’

s 
el

as
ti

c 
n

et
 

[5
8]

A
ge

: 2
–1

04
;y

ea
r:

 n
ot

 
st

at
ed

 in
 p

ap
er

; 
b

ir
th

 c
oh

or
t:

 
re

p
or

te
d

 f
or

 t
w

o 
co

h
or

ts
 –

 o
n

e 
b

or
n

 
in

 1
92

1 
an

d
 t

h
e 

ot
h

er
 b

or
n

 in
 1

93
6

N
o 

sp
ec

ifi
ca

ti
on

 o
f 

te
rm

in
ol

og
y.

 T
ra

in
-

in
g:

 r
ep

or
te

d
 f

or
 

on
e 

of
 1

4 
co

h
or

ts
; 

‘t
h

e 
M

N
D

 c
oh

or
t 

is
 f

ro
m

 a
 s

ys
te

m
s 

ge
n

om
ic

s 
st

u
d

y 
of

 M
ot

or
 N

eu
ro

n
 

D
is

ea
se

 in
 C

h
in

es
e 

su
b

je
ct

s’

Tr
ai

n
in

g:
 

R
ep

or
te

d
 f

or
 

4/
14

 c
oh

or
ts

 –
 

th
re

e 
co

h
or

ts
 

fr
om

 S
co

tl
an

d
 

an
d

 o
n

e 
fr

om
 

A
u

st
ra

li
a

N
ot

 s
ta

te
d

 in
 

p
ap

er
N

ot
 s

ta
te

d
 

in
 p

ap
er

N
ot

 s
ta

te
d

 in
 p

ap
er

N
ot

 s
ta

te
d

 in
 

p
ap

er
N

o
N

o

M
iA

ge
 [

66
]

A
ge

: n
ot

 s
ta

te
d

 in
 

p
ap

er
, i

n
cl

u
d

ed
 

on
ly

 a
s 

Y
-a

xi
s 

on
 s

om
e 

p
lo

ts
 

(∼
20

–9
0

ye
ar

s 
ol

d
);

 
ye

ar
: n

ot
 s

ta
te

d
 

in
 p

ap
er

; b
ir

th
 

co
h

or
t:

 c
an

n
ot

 
d

et
er

m
in

e

N
ot

 s
ta

te
d

 in
 p

ap
er

N
ot

 s
ta

te
d

 in
 

p
ap

er
N

ot
 s

ta
te

d
 in

 
p

ap
er

N
ot

 s
ta

te
d

 
in

 p
ap

er
N

ot
 s

ta
te

d
 in

 p
ap

er
N

ot
 s

ta
te

d
 in

 
p

ap
er

N
o

N
o

(c
on

ti
n

u
ed

)



Epigenetic clocks and research implications of the lack of data on whom they have been developed  5

Ta
b

le
 1

: (
C

on
ti

n
u

ed
)

C
lo

ck

A
ge

 (
ye

ar
s)

 a
n

d
 y

ea
r 

at
 t

im
e 

of
 s

p
ec

im
en

 
co

ll
ec

ti
on

; b
ir

th
 

co
h

or
t

R
ac

ia
li

ze
d

 g
ro

u
p

s
C

ou
n

tr
y

Se
x 

or
 g

en
d

er
N

at
iv

it
y

Ec
on

om
ic

 m
ea

su
re

s
Ed

u
ca

ti
on

So
ci

od
e-

m
og

ra
p

h
ic

 
ch

ar
ac

te
ri

st
ic

s 
u

se
d

 in
 m

od
el

 
co

n
st

ru
ct

in
g 

cl
oc

k?

R
ep

or
t 

va
li

d
at

io
n

 a
cr

os
s 

so
ci

od
em

og
ra

p
h

ic
 

gr
ou

p
s?

D
N

A
m

T
L 

[6
4]

A
ge

 –
 t

ra
in

in
g:

 
22

–9
3,

 T
es

t 
1:

 
22

–8
2,

 a
n

d
 T

es
t 

2:
 2

1–
10

0;
 y

ea
r 

– 
tr

ai
n

in
g:

 s
ta

te
d

 
fo

r 
1/

2 
co

h
or

ts
: 

20
00

–0
4,

 T
es

t 
1:

 
st

at
ed

 f
or

 1
/3

 
co

h
or

ts
: 2

00
0–

04
, 

an
d

 T
es

t 
2:

 s
ta

te
d

 
fo

r 
4/

9 
co

h
or

ts
: 

19
98

–2
00

7;
 b

ir
th

 
co

h
or

t 
– 

tr
ai

n
-

in
g:

 1
/2

 c
oh

or
ts

: 
19

06
–8

1,
 T

es
t 

1:
 1

/3
 

co
h

or
ts

: 1
92

0–
81

, 
an

d
 T

es
t 

2:
 4

/9
 

co
h

or
ts

: 1
91

5–
86

Te
rm

s 
‘e

th
n

ic
it

y’
, 

‘r
ac

e/
et

h
n

ic
it

y’
, 

an
d

 ‘a
n

ce
st

ry
’ 

u
se

d
 w

it
h

 n
o 

d
ef

-
in

it
io

n
. T

ra
in

in
g:

 
19

%
 ‘E

u
ro

-
p

ea
n

 a
n

ce
st

ry
’ 

(t
ex

t)
/‘

Eu
ro

p
ea

n
’ 

(t
ab

le
s)

 a
n

d
 8

1%
 

‘A
fr

ic
an

 A
n

ce
s-

tr
y’

 (
te

xt
)/

‘A
fr

ic
an

 
A

m
er

ic
an

’ (
ta

b
le

s)
. 

Te
st

 1
: 1

4%
 

‘A
fr

ic
an

 A
n

ce
s-

tr
y’

 (
te

xt
)/

‘A
fr

ic
an

 
A

m
er

ic
an

’ (
ta

b
le

s)
, 

86
%

 ‘E
u

ro
-

p
ea

n
 a

n
ce

st
ry

’ 
(t

ex
t)

/‘
Eu

ro
p

ea
n

’ 
(t

ab
le

s)
. T

es
t 

2:
 7

7%
 ‘E

u
ro

-
p

ea
n

 a
n

ce
st

ry
’ 

(t
ex

t)
/‘

Eu
ro

p
ea

n
’ 

(t
ab

le
s)

, 1
5%

 
‘A

fr
ic

an
 A

n
ce

s-
tr

y’
 (

te
xt

)/
‘A

fr
ic

an
 

A
m

er
ic

an
’ 

(t
ab

le
s)

, 8
%

 ‘H
is

-
p

an
ic

 a
n

ce
st

ry
’ 

(t
ex

t)
/‘

H
is

p
an

ic
’ 

(t
ab

le
s)

Tr
ai

n
in

g:
 

re
p

or
te

d
 f

or
 

1/
2 

– 
on

e 
in

 
th

e 
U

SA
. T

es
t 

1:
 r

ep
or

te
d

 f
or

 
2/

3 
– 

tw
o 

in
 t

h
e 

U
SA

. T
es

t 
2:

 o
n

e 
in

 t
h

e 
U

K
, t

w
o 

in
 S

co
tl

an
d

, o
n

e 
in

 t
h

e 
U

SA
, o

n
e 

in
 I

ta
ly

Te
rm

 ‘s
ex

’ u
se

d
 

w
it

h
 n

o 
d

efi
-

n
it

io
n

; t
er

m
s 

m
al

es
/f

em
al

es
 

an
d

 
m

en
/w

om
en

 
u

se
d

. T
ra

in
in

g:
 

75
%

 f
em

al
e.

 
Te

st
 1

: 5
6%

 
fe

m
al

e.
 T

es
t 

2:
 7

4%
 f

em
al

e

N
ot

 s
ta

te
d

 
in

 p
ap

er
N

ot
 s

ta
te

d
 in

 p
ap

er
R

ep
or

te
d

 f
or

 5
41

7 
of

 9
87

5 
(5

4.
9%

) 
of

 t
es

t 
d

at
as

et
 

p
ar

ti
ci

p
an

ts
: 

16
.6

%
 l

es
s 

th
an

 
h

ig
h

 s
ch

oo
l,

 
16

.7
%

 h
ig

h
 

sc
h

oo
l 

d
eg

re
e,

 
33

.6
%

 s
om

e 
co

ll
eg

e,
 3

3.
2%

 
co

ll
eg

e 
d

eg
re

e 
an

d
 b

ey
on

d

N
o

Y
es

. C
om

p
ar

e 
th

e 
D

N
A

m
T

L 
co

rr
el

at
io

n
 

w
it

h
 c

h
ro

n
ol

og
ic

al
 

ag
e 

b
et

w
ee

n
 m

en
 a

n
d

 
w

om
en

 –
 in

 F
ra

m
in

g-
h

am
 H

ea
rt

 S
tu

d
y 

(F
H

S)
 

(t
es

t 
d

at
as

et
),

 h
ig

h
er

 
co

rr
el

at
io

n
 in

 m
en

 
(0

.3
9 

vs
. 0

.2
6)

 e
ve

n
 

th
ou

gh
 t

ra
in

in
g 

d
at

a 
w

er
e 

75
%

 w
om

en
. I

n
 

B
og

al
u

sa
 H

ea
rt

 S
tu

d
y 

(B
H

S)
 (

te
st

 d
at

as
et

),
 

h
ig

h
er

 c
or

re
la

ti
on

 in
 

w
om

en
 (

0.
48

 v
s.

 0
.3

4)
. 

A
ls

o 
co

m
p

ar
e 

b
et

w
ee

n
 

th
e 

ra
ci

al
iz

ed
 g

ro
u

p
s 

in
 o

n
e 

te
st

 d
at

as
et

 –
 

in
 B

H
S 

n
o 

d
if

fe
re

n
ce

 
b

et
w

ee
n

 c
or

re
la

ti
on

s 
b

et
w

ee
n

 ‘b
la

ck
’ a

n
d

 
‘w

h
it

e’
 p

ar
ti

ci
p

an
ts

 
(0

.3
6 

vs
. 0

.3
5)

(c
on

ti
n

u
ed

)



6 Environmental Epigenetics, 2023, Vol. 00, No. 00

Ta
b

le
 1

: (
C

on
ti

n
u

ed
)

C
lo

ck

A
ge

 (
ye

ar
s)

 a
n

d
 y

ea
r 

at
 t

im
e 

of
 s

p
ec

im
en

 
co

ll
ec

ti
on

; b
ir

th
 

co
h

or
t

R
ac

ia
li

ze
d

 g
ro

u
p

s
C

ou
n

tr
y

Se
x 

or
 g

en
d

er
N

at
iv

it
y

Ec
on

om
ic

 m
ea

su
re

s
Ed

u
ca

ti
on

So
ci

od
e-

m
og

ra
p

h
ic

 
ch

ar
ac

te
ri

st
ic

s 
u

se
d

 in
 m

od
el

 
co

n
st

ru
ct

in
g 

cl
oc

k?

R
ep

or
t 

va
li

d
at

io
n

 a
cr

os
s 

so
ci

od
em

og
ra

p
h

ic
 

gr
ou

p
s?

B
oc

kl
an

d
t 

[6
0]

A
ge

: 2
1–

55
;y

ea
r:

 n
ot

 
st

at
ed

 in
 p

ap
er

; 
b

ir
th

 c
oh

or
t:

 
ca

n
n

ot
 d

et
er

m
in

e

N
ot

 s
ta

te
d

 in
 p

ap
er

N
ot

 s
ta

te
d

 in
 

p
ap

er
Te

rm
s 

‘m
al

e’
 

an
d

 ‘f
em

al
e’

 
u

se
d

 w
it

h
 n

o 
d

efi
n

it
io

n
. 

Tr
ai

n
in

g:
 1

00
%

 
m

al
e.

 T
es

t:
 4

8%
 

fe
m

al
e

N
ot

 s
ta

te
d

 
in

 p
ap

er
N

ot
 s

ta
te

d
 in

 p
ap

er
N

ot
 s

ta
te

d
 in

 
p

ap
er

N
o

Y
es

. C
om

p
ar

e 
th

e 
co

r-
re

la
ti

on
 b

et
w

ee
n

 
p

re
d

ic
te

d
 a

ge
 a

n
d

 
ch

ro
n

ol
og

ic
al

 a
ge

 in
 

m
al

es
 a

n
d

 f
em

al
es

 
in

 t
es

t 
d

at
as

et
. T

h
e 

p
re

d
ic

to
r 

w
as

 t
ra

in
ed

 
in

 a
 m

al
e-

on
ly

 s
am

-
p

le
; h

ig
h

er
 c

or
re

la
ti

on
 

w
as

 o
b

se
rv

ed
 in

 m
al

es
 

(0
.8

3)
 v

s.
 f

em
al

es
 (

0.
75

),
 

w
it

h
 a

 h
ig

h
er

 e
rr

or
 

(d
if

fe
re

n
ce

 b
et

w
ee

n
 

ob
se

rv
ed

 a
n

d
 p

re
d

ic
te

d
 

ag
e)

 in
 t

h
e 

fe
m

al
es

 (
6.

2 
vs

. 5
.3

ye
ar

s 
fo

r 
m

al
es

)
K

oc
h

/W
ag

-
n

er
 

[6
1]

A
ge

: 1
6–

72
; y

ea
r:

 n
ot

 
st

at
ed

 in
 p

ap
er

; 
b

ir
th

 c
oh

or
t:

 
ca

n
n

ot
 d

et
er

m
in

e

N
ot

 s
ta

te
d

 in
 p

ap
er

N
ot

 s
ta

te
d

 in
 

p
ap

er
Te

rm
 ‘w

om
en

’ 
on

ly
 u

se
d

 in
 

re
fe

re
n

ce
 t

o 
on

e 
d

at
as

et
. 

Tr
ai

n
in

g:
 n

ot
 

re
p

or
te

d
. T

es
t:

 
re

p
or

te
d

 f
or

 1
/8

 
d

at
as

et
s 

– 
10

0%
 

‘w
om

en
’

N
ot

 s
ta

te
d

 
in

 p
ap

er
N

ot
 s

ta
te

d
 in

 p
ap

er
N

ot
 s

ta
te

d
 in

 
p

ap
er

N
o

Y
es

. S
ta

te
 t

h
at

 ‘G
en

d
er

-
re

la
te

d
 d

if
fe

re
n

ce
s 

in
 

th
e 

ag
e-

p
re

d
ic

ti
on

s 
w

er
e 

n
ot

 o
b

se
rv

ed
 

u
si

n
g 

th
is

 s
ig

n
at

u
re

 
(d

at
a 

n
ot

 s
h

ow
n

).’

W
ei

d
n

er
 

[5
7]

A
ge

: 0
–7

8;
 y

ea
r:

 n
ot

 
st

at
ed

 in
 p

ap
er

; 
b

ir
th

 c
oh

or
t:

 
ca

n
n

ot
 d

et
er

m
in

e

N
ot

 s
ta

te
d

 in
 p

ap
er

Tr
ai

n
in

g 
1 

an
d

 
Te

st
 1

: n
ot

 
re

p
or

te
d

. T
ra

in
-

in
g 

2:
 G

er
m

an
y.

 
Te

st
 2

: G
er

m
an

y

Te
rm

 ‘g
en

d
er

’ 
u

se
d

, w
it

h
 

‘m
al

es
’ a

n
d

 
‘f

em
al

es
’. 

Tr
ai

n
-

in
g 

1:
 8

1%
 

fe
m

al
e.

 T
es

t 
1:

 
u

n
cl

ea
r.

 T
ra

in
-

in
g 

2:
 u

n
cl

ea
r.

 
Te

st
 2

: u
n

cl
ea

r

N
ot

 s
ta

te
d

 
in

 p
ap

er
N

ot
 s

ta
te

d
 in

 p
ap

er
N

ot
 s

ta
te

d
 in

 
p

ap
er

N
o

Y
es

. C
om

p
ar

e 
th

e 
d

if
fe

r-
en

ce
 b

et
w

ee
n

 p
re

d
ic

te
d

 
an

d
 c

h
ro

n
ol

og
ic

al
 a

ge
 

fo
r 

m
al

es
 a

n
d

 f
em

al
es

 
in

 t
es

t 
d

at
as

et
 in

 p
lo

t 
in

 fi
gu

re
 3,

 s
h

ow
in

g 
n

o 
d

if
fe

re
n

ce
 a

t 
P

=
0.

05
, 

b
u

t 
d

o 
n

ot
 p

ro
vi

d
e 

st
at

is
ti

cs
 o

r 
el

ab
o-

ra
te

 o
n

 c
om

p
ar

is
on

. 
In

 t
h

e 
Su

p
p

le
m

en
ta

ry
 

m
at

er
ia

l,
 c

om
p

ar
e 

th
e 

d
if

fe
re

n
ce

 b
et

w
ee

n
 

p
re

d
ic

te
d

 a
n

d
 c

h
ro

n
o-

lo
gi

ca
l 

ag
e 

fo
r 

d
if

fe
ri

n
g 

n
u

m
b

er
s 

of
 y

ea
rs

 in
 

ed
u

ca
ti

on
, s

h
ow

in
g 

n
o 

d
if

fe
re

n
ce

 a
t 

P
=

0.
05

(c
on

ti
n

u
ed

)



Epigenetic clocks and research implications of the lack of data on whom they have been developed  7

Ta
b

le
 1

: (
C

on
ti

n
u

ed
)

C
lo

ck

A
ge

 (
ye

ar
s)

 a
n

d
 y

ea
r 

at
 t

im
e 

of
 s

p
ec

im
en

 
co

ll
ec

ti
on

; b
ir

th
 

co
h

or
t

R
ac

ia
li

ze
d

 g
ro

u
p

s
C

ou
n

tr
y

Se
x 

or
 g

en
d

er
N

at
iv

it
y

Ec
on

om
ic

 m
ea

su
re

s
Ed

u
ca

ti
on

So
ci

od
e-

m
og

ra
p

h
ic

 
ch

ar
ac

te
ri

st
ic

s 
u

se
d

 in
 m

od
el

 
co

n
st

ru
ct

in
g 

cl
oc

k?

R
ep

or
t 

va
li

d
at

io
n

 a
cr

os
s 

so
ci

od
em

og
ra

p
h

ic
 

gr
ou

p
s?

Z
h

an
g’

s 
m

or
ta

li
ty

 
[6

2]

A
ge

 –
 t

ra
in

in
g:

 
50

–7
5,

 t
es

t:
 3

1–
82

; 
ye

ar
 –

 t
ra

in
in

g:
 

20
00

–0
2,

 t
es

t:
 

20
06

–0
8;

 b
ir

th
 

co
h

or
t 

– 
tr

ai
n

in
g:

 
b

or
n

 1
92

5–
50

, t
es

t:
 

b
or

n
 1

92
4–

75

N
ot

 s
ta

te
d

 in
 p

ap
er

Tr
ai

n
in

g:
 G

er
-

m
an

y.
 T

es
t:

 
G

er
m

an
y

Te
rm

 ‘s
ex

’ u
se

d
 

w
it

h
 t

er
m

s 
m

al
es

/f
em

al
es

 
an

d
 

w
om

en
/m

en
 

(m
al

es
/f

em
al

es
 

in
 t

ab
le

 w
h

er
e 

%
 is

 t
ak

en
 

fr
om

).
 T

ra
in

in
g:

 
52

%
 f

em
al

e.
 

Te
st

: 5
0%

 
fe

m
al

e

N
ot

 s
ta

te
d

 
in

 p
ap

er
N

ot
 s

ta
te

d
 in

 p
ap

er
N

ot
 s

ta
te

d
 in

 
p

ap
er

Se
x 

(n
ot

 d
efi

n
ed

)
Y

es
. D

ow
n

st
re

am
 a

ss
o-

ci
at

io
n

 a
n

al
ys

es
 in

 
b

ot
h

 t
ra

in
in

g 
an

d
 t

es
t 

st
ra

ti
fi

ed
 b

y 
se

x/
ge

n
-

d
er

. M
os

t 
as

so
ci

at
io

n
s 

st
ro

n
ge

r 
in

 w
om

en
 in

 
tr

ai
n

in
g 

d
at

a;
 m

os
t 

as
so

ci
at

io
n

s 
st

ro
n

ge
r 

in
 m

en
 in

 t
es

t 
d

at
a 

(s
im

il
ar

 p
ro

p
or

ti
on

 
of

 m
en

 a
n

d
 w

om
en

 
in

 t
ra

in
in

g 
an

d
 t

es
t 

d
at

as
et

s)
Ph

en
oA

ge
 

[6
3]

A
ge

 –
 b

io
m

ar
ke

r 
se

le
ct

io
n

: 2
0+

, 
tr

ai
n

in
g:

 2
1–

91
 

(b
as

el
in

e)
 a

n
d

 
30

–1
00

 (
fo

ll
ow

-
u

p
),

 t
es

t:
 5

0–
80

; 
ye

ar
 –

 b
io

m
ar

ke
r 

se
le

ct
io

n
: 1

98
8–

94
 

an
d

 1
99

9–
20

14
, 

tr
ai

n
in

g:
 1

99
8 

(b
as

el
in

e)
 a

n
d

 2
00

7 
(f

ol
lo

w
-u

p
),

 t
es

t:
 

d
at

a 
p

re
se

n
te

d
 

fo
r 

4/
5 

d
at

as
et

s:
 

19
93

–2
00

8;
 b

ir
th

 
co

h
or

t 
– 

b
io

m
ar

ke
r 

se
le

ct
io

n
: b

ef
or

e 
19

74
–9

4,
 t

ra
in

-
in

g:
 1

90
7–

77
, t

es
t:

 
19

13
–4

3

Te
rm

s 
u

se
d

: 
‘r

ac
e/

et
h

n
ic

it
y’

 
an

d
 ‘a

n
ce

st
ry

’, 
n

o 
d

efi
n

it
io

n
. 

B
io

m
ar

ke
r 

se
le

c-
ti

on
: n

ot
 s

ta
te

d
 in

 
p

ap
er

. T
ra

in
in

g:
 n

o 
d

at
a 

p
re

se
n

te
d

. 
Te

st
: d

at
a 

p
re

-
se

n
te

d
 f

or
 4

/5
 

d
at

as
et

s 
(7

2%
 

of
 p

ar
ti

ci
p

an
ts

):
 

18
%

 ‘B
la

ck
’, 

26
%

 
‘A

fr
ic

an
 A

m
er

ic
an

’, 
11

%
 ‘H

is
p

an
ic

’ 4
1%

 
‘W

h
it

e’

B
io

m
ar

ke
r 

se
le

c-
ti

on
: t

h
e 

U
SA

. 
Tr

ai
n

in
g:

 n
o 

d
at

a 
p

re
se

n
te

d
. 

Te
st

: d
at

a 
p

re
-

se
n

te
d

 f
or

 4
/5

 
d

at
as

et
s,

 a
ll

 
b

as
ed

 in
 t

h
e 

U
SA

N
o 

m
en

ti
on

 f
or

 
D

N
A

m
 d

at
a 

ot
h

er
 t

h
an

 
co

h
or

t 
d

es
cr

ip
-

ti
on

 a
n

d
 n

o 
d

efi
n

it
io

n
. 

B
io

m
ar

ke
r 

se
le

ct
io

n
: n

ot
 

st
at

ed
 in

 p
ap

er
. 

Tr
ai

n
in

g:
 n

o 
d

at
a 

p
re

se
n

te
d

. 
Te

st
: d

at
a 

p
re

-
se

n
te

d
 f

or
 2

/5
 

d
at

as
et

s 
(2

7%
 o

f 
p

ar
ti

ci
p

an
ts

) 
– 

54
%

 ‘m
en

’ a
n

d
 

46
%

 ‘w
om

en
’

N
ot

 s
ta

te
d

 
in

 p
ap

er
N

ot
 s

ta
te

d
 in

 p
ap

er
N

ot
 s

ta
te

d
 in

 
p

ap
er

N
o

Y
es

, a
cr

os
s 

ra
ci

la
iz

ed
 

gr
ou

p
s 

in
 t

h
e 

te
st

 
d

at
as

et
 (

B
la

ck
, w

h
it

e,
 

an
d

 H
is

p
an

ic
 g

ro
u

p
s)

. 
Te

st
 v

ia
 t

h
e 

co
rr

el
a-

ti
on

 b
et

w
ee

n
 D

N
A

m
 

ag
e 

an
d

 c
h

ro
n

ol
og

i-
ca

l 
ag

e 
sh

ow
ed

 s
im

il
ar

 
co

rr
el

at
io

n
s 

fo
r 

B
la

ck
 

an
d

 w
h

it
e 

p
ar

ti
ci

-
p

an
ts

, w
it

h
 a

 s
li

gh
tl

y 
h

ig
h

er
 c

or
re

la
ti

on
 f

or
 

H
is

p
an

ic
 p

ar
ti

ci
p

an
ts

(c
on

ti
n

u
ed

)



8 Environmental Epigenetics, 2023, Vol. 00, No. 00

Ta
b

le
 1

: (
C

on
ti

n
u

ed
)

C
lo

ck

A
ge

 (
ye

ar
s)

 a
n

d
 y

ea
r 

at
 t

im
e 

of
 s

p
ec

im
en

 
co

ll
ec

ti
on

; b
ir

th
 

co
h

or
t

R
ac

ia
li

ze
d

 g
ro

u
p

s
C

ou
n

tr
y

Se
x 

or
 g

en
d

er
N

at
iv

it
y

Ec
on

om
ic

 m
ea

su
re

s
Ed

u
ca

ti
on

So
ci

od
e-

m
og

ra
p

h
ic

 
ch

ar
ac

te
ri

st
ic

s 
u

se
d

 in
 m

od
el

 
co

n
st

ru
ct

in
g 

cl
oc

k?

R
ep

or
t 

va
li

d
at

io
n

 a
cr

os
s 

so
ci

od
em

og
ra

p
h

ic
 

gr
ou

p
s?

D
u

n
ed

-
in

Po
A

m
 

[6
5]

A
ge

 –
 b

io
m

ar
ke

r 
se

le
ct

io
n

: 2
6,

 3
2,

 
an

d
 3

8,
 t

ra
in

in
g:

 
38

, t
es

t:
 r

ep
or

te
d

 
fo

r 
3/

4 
d

at
as

et
s 

(8
1%

 p
ar

ti
ci

p
an

ts
):

 
18

–9
5;

 y
ea

r 
– 

b
io

m
ar

ke
r 

se
le

c-
ti

on
: 1

99
8,

 2
00

4,
 

an
d

 2
01

0,
 t

ra
in

-
in

g:
 2

01
0,

 t
es

t:
 

19
99

–2
01

3;
 b

ir
th

 
co

h
or

t 
– 

b
io

m
ar

ke
r 

se
le

ct
io

n
 a

n
d

 
tr

ai
n

in
g:

 A
p

ri
l 

19
72

–M
ar

ch
 1

97
3,

 
te

st
: (

3/
4 

d
at

as
et

s)
 

19
17

–9
5

Te
rm

s 
u

se
d

: o
n

ly
 

‘w
h

it
e’

 a
n

d
 ‘o

f 
w

h
it

e 
Eu

ro
-

p
ea

n
 d

es
ce

n
t’

. 
B

io
m

ar
ke

r 
se

le
ct

io
n

 a
n

d
 

tr
ai

n
in

g:
 9

3%
 w

er
e 

‘w
h

it
e’

/‘
of

 w
h

it
e 

Eu
ro

p
ea

n
 d

es
ce

n
t’

; 
n

ot
 s

p
ec

ifi
ed

 f
or

 
th

e 
re

m
ai

n
in

g 
7%

 
of

 p
ar

ti
ci

p
an

ts
. 

Te
st

: ‘
m

os
tl

y 
of

 
w

h
it

e 
Eu

ro
p

ea
n

 
d

es
ce

n
t’

; d
at

a 
re

p
or

te
d

 f
or

 1
/4

 
d

at
as

et
s:

 7
7%

 
‘w

h
it

e’

B
io

m
ar

ke
r 

se
le

ct
io

n
 a

n
d

 
tr

ai
n

in
g:

 N
ew

 
Z

ea
la

n
d

. T
es

t:
 

re
p

or
te

d
 f

or
 3

/4
 

d
at

as
et

s 
– 

tw
o 

fr
om

 t
h

e 
U

K
 

an
d

 o
n

e 
fr

om
 

th
e 

U
SA

Te
rm

s 
‘s

ex
’, 

‘m
al

e’
/‘

m
en

’, 
an

d
 

‘f
em

al
e’

/‘
w

om
en

’ 
u

se
d

, n
o 

d
efi

n
i-

ti
on

. B
io

m
ar

ke
r 

se
le

ct
io

n
 a

n
d

 
tr

ai
n

in
g:

 4
8%

 
fe

m
al

e.
 T

es
t:

 
re

p
or

te
d

 f
or

 
3/

4 
d

at
as

et
s 

– 
61

.5
%

 m
al

e

B
io

m
ar

ke
r 

se
le

ct
io

n
 

an
d

 t
ra

in
-

in
g:

 1
00

%
 

b
or

n
 in

 
D

u
n

ed
in

, 
N

ew
 

Z
ea

la
n

d
. 

Te
st

: n
ot

 
st

at
ed

B
io

m
ar

ke
r 

se
le

ct
io

n
 

an
d

 t
ra

in
in

g:
 ‘T

h
e 

co
h

or
t 

re
p

re
se

n
ts

 
th

e 
fu

ll
 r

an
ge

 o
f 

so
ci

oe
co

n
om

ic
 

st
at

u
s 

on
 N

Z
’s

 
So

u
th

 I
sl

an
d

’. 
Te

st
: 

re
p

or
te

d
 f

or
 1

/4
 

d
at

as
et

s 
(4

1%
 o

f 
te

st
 p

ar
ti

ci
p

an
ts

) 
– 

25
.6

%
 o

f 
E-

R
is

k 
fa

m
il

ie
s 

li
ve

d
 in

 
‘w

ea
lt

h
y 

ac
h

ie
ve

r’
 

n
ei

gh
b

ou
rh

oo
d

s 
co

m
p

ar
ed

 t
o 

25
.3

%
 n

at
io

n
w

id
e;

 
5.

3%
 v

s.
 1

1.
6%

 
li

ve
d

 in
 ‘u

rb
an

 
p

ro
sp

er
it

y’
 n

ei
gh

-
b

ou
rh

oo
d

s;
 2

9.
6%

 
vs

. 2
6.

9%
 l

iv
ed

 in
 

‘c
om

fo
rt

ab
ly

 o
ff

’ 
n

ei
gh

b
ou

rh
oo

d
s;

 
13

.4
%

 v
s.

 1
3.

9%
 

li
ve

d
 in

 ‘m
od

er
at

e 
m

ea
n

s’
 n

ei
gh

b
ou

r-
h

oo
d

s;
 a

n
d

 2
6.

1%
 

vs
. 2

0.
7%

 l
iv

ed
 

in
 ‘h

ar
d

-p
re

ss
ed

’ 
n

ei
gh

b
ou

rh
oo

d
s

N
ot

 s
ta

te
d

 in
 

p
ap

er
N

o
Y

es
. I

n
cl

u
d

es
 s

lo
p

es
 f

or
 

‘m
en

’ a
n

d
 ‘w

om
en

’ 
fo

r 
on

e 
of

 t
h

e 
te

st
 

d
at

as
et

s 
in

 fi
gu

re
 3 

of
 t

h
e 

D
u

n
ed

in
Po

A
m

 
p

ap
er

, b
u

t 
n

o 
st

at
is

ti
cs

 
ar

e 
re

p
or

te
d

. C
om

-
p

ar
e 

cl
oc

k 
es

ti
m

at
es

 
b

et
w

ee
n

 p
ar

ti
ci

p
an

ts
 

fr
om

 l
ow

, m
id

d
le

, a
n

d
 

h
ig

h
 s

oc
ia

l 
cl

as
s 

ca
te

-
go

ri
es

, w
it

h
 t

h
os

e 
fr

om
 

th
e 

lo
w

er
 s

oc
io

ec
o-

n
om

ic
 g

ro
u

p
s 

h
av

in
g 

fa
st

er
 c

lo
ck

 a
ge

in
g

(c
on

ti
n

u
ed

)



Epigenetic clocks and research implications of the lack of data on whom they have been developed  9

Ta
b

le
 1

: (
C

on
ti

n
u

ed
)

C
lo

ck

A
ge

 (
ye

ar
s)

 a
n

d
 y

ea
r 

at
 t

im
e 

of
 s

p
ec

im
en

 
co

ll
ec

ti
on

; b
ir

th
 

co
h

or
t

R
ac

ia
li

ze
d

 g
ro

u
p

s
C

ou
n

tr
y

Se
x 

or
 g

en
d

er
N

at
iv

it
y

Ec
on

om
ic

 m
ea

su
re

s
Ed

u
ca

ti
on

So
ci

od
e-

m
og

ra
p

h
ic

 
ch

ar
ac

te
ri

st
ic

s 
u

se
d

 in
 m

od
el

 
co

n
st

ru
ct

in
g 

cl
oc

k?

R
ep

or
t 

va
li

d
at

io
n

 a
cr

os
s 

so
ci

od
em

og
ra

p
h

ic
 

gr
ou

p
s?

G
ri

m
A

ge
 

[5
5]

A
ge

 –
 b

io
m

ar
ke

r 
se

le
ct

io
n

 a
n

d
 

tr
ai

n
in

g:
 5

9–
73

, 
te

st
: 4

6.
5–

78
; y

ea
r 

– 
b

io
m

ar
ke

r 
se

le
c-

ti
on

 a
n

d
 t

ra
in

in
g:

 
n

ot
 r

ep
or

te
d

, t
es

t:
 

re
p

or
te

d
 f

or
 2

/5
 

te
st

 d
at

as
et

s:
 

19
98

–2
00

7;
 b

ir
th

 
co

h
or

t 
– 

b
io

m
ar

ke
r 

se
le

ct
io

n
 a

n
d

 
tr

ai
n

in
g:

 n
ot

 
re

p
or

te
d

, t
es

t:
 

fo
r 

2/
5 

d
at

as
et

s:
 

19
20

–5
7

Te
rm

s 
u

se
d

: 
‘r

ac
e/

et
h

n
ic

it
y’

 
an

d
 ‘a

n
ce

st
ry

’. 
B

io
m

ar
ke

r 
se

le
c-

ti
on

 a
n

d
 t

ra
in

in
g:

 
n

ot
 s

ta
te

d
 in

 
p

ap
er

. T
es

t:
 5

0%
 

‘E
u

ro
p

ea
n

 a
n

ce
s-

tr
y 

(C
au

ca
si

an
s)

’, 
40

%
 ‘A

fr
ic

an
 

A
m

er
ic

an
s’

, 1
0%

 
‘H

is
p

an
ic

 a
n

ce
st

ry
’

B
io

m
ar

ke
r 

se
le

ct
io

n
 a

n
d

 
tr

ai
n

in
g:

 t
h

e 
U

SA
. T

es
t:

 t
h

e 
U

SA
 (

2/
5)

 a
n

d
 

It
al

y 
(1

/5
)

Te
rm

s 
‘s

ex
’ a

n
d

 
‘m

al
e’

 a
n

d
 

‘f
em

al
e’

 u
se

d
, 

n
o 

d
efi

n
it

io
n

. 
B

io
m

ar
ke

r 
se

le
ct

io
n

 a
n

d
 

tr
ai

n
in

g:
 5

4%
 

fe
m

al
e.

 T
es

t:
 

83
%

 f
em

al
e

N
ot

 s
ta

te
d

 
in

 p
ap

er
N

ot
 s

ta
te

d
 in

 p
ap

er
St

at
ed

 f
or

 3
07

9 
(4

1.
7%

) 
of

 7
37

5 
te

st
 d

at
as

et
 p

ar
-

ti
ci

p
an

ts
: 8

.8
%

 
le

ss
 t

h
an

 h
ig

h
 

sc
h

oo
l,

 1
4.

8%
 

h
ig

h
 s

ch
oo

l 
d

eg
re

e,
 5

2%
 

so
m

e 
co

ll
eg

e,
 

24
.2

%
 c

ol
le

ge
 

d
eg

re
e 

an
d

 
b

ey
on

d

Se
x 

(n
ot

 d
efi

n
ed

)
Y

es
. S

tr
at

ifi
ed

 t
es

t 
d

at
as

et
s 

by
 r

ac
ia

li
ze

d
 

gr
ou

p
 m

em
b

er
sh

ip
 

to
 t

es
t 

w
h

et
h

er
 t

h
e 

m
or

ta
li

ty
 p

re
d

ic
-

to
rs

 a
p

p
li

ed
 t

o 
ea

ch
 

gr
ou

p.
 H

ow
ev

er
, d

o 
n

ot
 m

ak
e 

d
ir

ec
t 

co
m

-
p

ar
is

on
s 

in
 t

h
e 

te
xt

. 
St

ra
ti

fy
 b

y 
ed

u
ca

ti
on

al
 

at
ta

in
m

en
t 

in
 a

 S
u

p
-

p
le

m
en

ta
ry

 a
n

al
ys

is
 

an
d

 fi
n

d
 t

h
at

 A
ge

A
c-

ce
lG

ri
m

 r
em

ai
n

s 
a 

si
gn

ifi
ca

n
t 

p
re

d
ic

to
r 

of
 t

im
e-

to
-d

ea
th

 f
or

 
al

l 
ed

u
ca

ti
on

 l
ev

el
s 

(a
lt

h
ou

gh
 t

h
e 

lo
w

-
es

t 
H

R
 f

or
 l

es
s 

th
an

 
h

ig
h

 s
ch

oo
l 

ed
u

ca
ti

on
);

 
sa

m
e 

fo
r 

ti
m

e 
to

 C
or

o-
n

ar
y 

H
ea

rt
 D

is
ea

se
. 

A
ge

A
cc

el
G

ri
m

 is
 s

tr
at

i-
fi

ed
 b

y 
ra

ci
al

iz
ed

 g
ro

u
p

 
in

 a
 S

u
p

p
le

m
en

ta
ry

 
an

al
ys

is
 w

it
h

 d
if

fe
r-

en
ce

s 
b

et
w

ee
n

 g
ro

u
p

s,
 

w
it

h
 h

ig
h

er
 S

D
s 

in
 t

h
e 

b
la

ck
 p

ar
ti

ci
p

an
ts

 a
n

d
 

th
e 

lo
w

es
t 

in
 t

h
e 

H
is

-
p

an
ic

 p
ar

ti
ci

p
an

ts
, 

al
th

ou
gh

 t
h

is
 is

 n
ot

 
d

is
cu

ss
ed



10 Environmental Epigenetics, 2023, Vol. 00, No. 00

use of the terms sex or gender) [63]; and one paper reports ‘gender’ 
using the terms ‘female’ and ‘male’, including 81% female partic-
ipants in the training data, with no reporting for the test datasets 
[57]. Three studies use ‘sex’ and one used ‘gender’ as a covariate in 
the age estimation model, but none conceptualize the reason for 
this [8, 55, 59, 62].

None of the papers defined what they meant by the terms sex 
or gender beyond three studies identifying it as a ‘covariate’ or 
‘confounder’, so where terminology is mixed it is unclear which 
specific characteristic is being reported. Being specific about the 
characteristic that is reported is important because biological sex 
and gender identity have independent and interacting effects on 
health [67–70].

Racialized Groups and Country Context
Only two papers report data on racialized group membership for 
all the participants in their study, using descriptive terms per-
taining to ‘race’, ‘ethnicity’, and ‘ancestry’ (but without defining 
what these terms mean, whether these data were self-reported by 
participants or obtained from medical records, and with limited 
reporting of country context). The paper developing the Hannum 
clock [8] was developed using a training dataset including ‘426 
Caucasian and 230 Hispanic individuals’, with no country context 
reported. We note that there is scientific recognition that the ori-
gins of the term ‘Caucasian’ mean its use should be discontinued – 
this is because the term was derived from a scientifically fallacious 
typology that presumed humanity originated in the Caucuses 
and was ‘white’, with other ‘racial’ groups framed as ‘degener-
ate’ lineages that branched off of the ‘Caucasian’ trunk [71–73]. 
The paper developing the DNAmTL clock [64] utilized training 
and test datasets; the training dataset comprised a total of 2256 
individuals from two datasets, of whom 81% were categorized as 
being ‘African ancestry’ in the text and ‘African American’ in the 
tables; and 19% as ‘European ancestry’ in the text and ‘European’ 
in the tables. The country context was provided for one of these 
datasets (one was based in the US), so it is not possible to fully 
contextualize the reported racialized groups based on information 
reported in the paper. Their first test data comprised 1078 indi-
viduals from three datasets (Test and Training 1 comprise unique 
sets of individuals from two datasets). They report that 86% were 
categorized as being ‘European ancestry’ in the text and ‘Euro-
pean’ in the tables, and 14% as ‘African ancestry’ in the text and 
‘African American’ in the tables. The country context was provided 
for 2/3 of these datasets (two were based in the USA), so again 
it is not possible to fully contextualize the groups. A second test 
dataset comprised 9359 individuals from five additional datasets, 
of whom 77% were categorized as ‘European ancestry’ in the text 
and ‘European’ in the tables, 15% as ‘African ancestry’ in the text 
and ‘African American’ in the tables, and 8% as ‘Hispanic ancestry’ 
in the text and ‘Hispanic’ in the tables. The country context was 
reported for all five datasets: one in the UK, two in Scotland, one 
in the USA, and one in Italy.

Five papers that developed an epigenetic clock reported par-
tial data on racialized group membership but did not report clear 
numbers for all participants in the paper. The paper develop-
ing the Horvath clock [1] reported racialized group membership 
for 5/39 training datasets – participants from four datasets (four 
brain regions from the same individuals) were categorized as ‘non-
Hispanic Caucasian ethnicity’ (country context not reported), and 
participants from one dataset were categorized as ‘Taiwanese’ 
(country context not reported). Racialized group membership data 
was reported for 1/32 test datasets, where participants were cat-
egorized as ‘Gambian’ (country context not reported). The paper 

developing the DunedinPoAm clock [65] reported that 93% of 
their training dataset participants, all born and residing in New 
Zealand, were ‘white’ but did not explicitly report data on racial-
ized groups for the remainder of their training data participants. 
They state that test dataset participants were ‘mostly of white 
European descent’, reporting that 77% of participants in one of the 
four test datasets were ‘white’ with no country context; the coun-
try context was reported for the other three test datasets with no 
information on racialized groups (one recruited in the USA and 
two in the UK). The paper developing the GrimAge clock [55] did 
not report the racialized group memberships of their US-derived 
biomarker selection and training dataset (70% of the Framing-
ham Heart Study offspring cohort). Among individuals in their five 
test datasets, 50% were categorized as ‘European ancestry (Cau-
casians)’, 40% as ‘African American’, and 10% as ‘Hispanic’; the 
country context was not integrated, with 2/5 of the test datasets 
based in the USA and 1/5 in Italy. The paper developing the Phe-
noAge clock [63] did not report the racialized group membership 
of the participants in which the biomarkers were selected the 
National Health and Nutrition Examination Survey III and IV; 
both are US national datasets), or in whom the DNAm predictor 
was trained (InChianti, for which they do not report the country 
context); they reported the racialized group membership of partic-
ipants in four of the five test datasets, all of which were based in 
the USA, comprising 72% of test participants, of whom 18% were 
categorized as being ‘Black’, 26% as ‘African American’, 41% as 
‘White’, and 11% as ‘Hispanic’. No data on racialized group mem-
bership was provided for the remaining 36% of test participants 
from two other datasets. Finally, Zhang’s et al. paper develop-
ing an elastic net predictor [58] reported data on racialized group 
membership for one of 14 datasets, where they state that the 695 
participants from the motor neuron disease (MND) cohort dataset 
were ‘Chinese’ but did not provide further information or country 
context.

One study reports only the country context of training and 
test datasets (both based in Germany) [62]. Another reported only 
country context for 1/2 training datasets and 1/2 test datasets 
(both based in Germany) [57]. The remaining four studies [59–61, 
66] report no information about the racialized group membership 
or country context of their participants. None of the papers that 
did report data categorized by ‘racial’ or ‘ethnic’ terms that they 
employed explicitly explained or justified their conceptualization 
or usage of racialized groups, beyond three studies conceptual-
izing use as a ‘covariate’ or ‘confounder’. One study [8] includes 
‘ethnicity’ as a covariate in the age estimation model but does not 
conceptualize the reasons for this.

Nativity
Only one study explicitly reported the nativity status of their train-
ing dataset participants – 100% of the Dunedin PoAm [65] training 
dataset study participants were born in New Zealand (with no 
report as to the nativity status of the test dataset).

Economic Measures
Only the Dunedin PoAm study [65] included data for some partici-
pants on economic status in the paper. For the biomarker selection 
and training dataset, they state that ‘The cohort represents the full 
range of socioeconomic status on NZ’s South Island’, but they do 
not provide descriptive statistics that might enable comparison 
across datasets. For one of four of their test datasets (41% of test 
participants), they provide neighbourhood-level socioeconomic 
data alongside national statistics, illustrating that the sample is 
broadly representative of the UK in terms of neighbourhood SES.
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Education
Two papers developing epigenetic clocks included data on educa-
tional attainment for some of their participants. The first paper, 
developing the GrimAge clock [55], reported education data for 
41.7% of their test dataset participants; they were generally highly 
educated, with a quarter (24.2%) having a college degree or higher, 
and only 8.8% having less than high school education (14.8% had 
a high school degree, and 52% had some college education). The 
second paper, developing the DNAmTL clock [64], reported edu-
cation data for 54.9% of their test dataset participants. A higher 
proportion had less than high school education (16.6%), with the 
remainder of the sample generally highly educated: 16.7% had a 
high school degree, 33.6% had some college education, and 33.2% 
had a college degree or higher. Neither paper reported information 
on the education level of their training dataset, which is critical to 
the transportability of the predictor.

Validation across Social Groups
Eight of the 13 papers reporting epigenetic clock methods report 
some form of validation of their model in their test data stratified 
by one or more sociodemographic characteristics. One (developing 
the DNAmTL clock) compared model performance between men 
and women in the two test datasets, and additionally between 
racialized groups in one of these test datasets, by correlating the 
clock estimate with chronological age [64]. In the first test dataset, 
they found a lower correlation for women even though the train-
ing data comprised 75% women. In the second test dataset, they 
found a higher correlation for women. We suggest this shows 
the importance of the need to consider multiple participant char-
acteristics when validating predictive algorithms. There was no 
difference in clock correlation with chronological age between 
the two racialized groups (‘black’ and ‘white’ participants). The 
paper developing Zhang et al.’s mortality clock [62] stratified down-
stream analyses by sex/gender; in their test dataset, they found 
stronger associations in men despite a slightly higher proportion 
of women in the training data. The paper reporting the Bock-
landt clock [60] used 100% ‘males’ in their training data and tested 
clock performance in males and females in their test dataset. 
They found a lower correlation between chronological and pre-
dicted age for females compared to males, as well as a higher 
error between predicted and chronological age for females, sug-
gesting reduced accuracy of the clock. The paper developing the 
PhenoAge clock [63] looked at the correlation between the age esti-
mator and chronological age stratified by the racialized group – 
they found slightly higher correlations in ‘Hispanic’ participants, 
with similar correlations for ‘black’ and ‘white’ participants. The 
paper developing the GrimAge clock [55] stratified all analyses 
in the main text by the racialized group, conceptualizing this 
as testing whether the ageing predictor applied to each group; 
no conclusions from this were presented in the paper, but in a 
supplementary analysis shows higher standard deviations of the 
age estimator for ‘Black’ participants and lower standard devia-
tions for ‘Hispanic’ participants, with ‘white’ participants having 
standard deviations in the middle of these groups. However, racial-
ized group membership was not reported for the training dataset 
participants. Additionally, in the supplement they stratify model 
predictions by educational attainment and find that the model 
performed for participants of all education levels (although the 
lowest hazard ratio was found for less than high school educa-
tion). One paper compared the difference between predicted and 
chronological age for participants with differing numbers of years 
in education, showing no difference at P = 0.05 [57] and presented 
plots comparing clock performance in ‘males’ and ‘females’ but 

did not provide statistics or elaborate on the comparison in the 
text. One paper developing an epigenetic clock stated that no 
difference was observed in clock performance between genders 
but did not present data [61]. One paper presented plots compar-
ing clock performance in ‘males/men’ and ‘females/women’ but 
did not provide statistics or elaborate on the comparison in the 
text [65]. One paper compared the ageing rate between men and 
women but only in the test dataset (which we did not consider to 
be validation) [8].

Discussion
The basic sociodemographic characteristics of participants are 
generally poorly reported in the 13 papers which developed the 
most popular epigenetic clocks. This makes it challenging for 
researchers to judge whether the clock is likely to accurately 
transport to the population they want to study, where the esti-
mation of epigenetic age may be inaccurate in populations with 
different characteristics, introducing uncertainty to the relation-
ship between epigenetic age and health and social outcomes, 
therefore biasing estimates in uncertain directions. This is impor-
tant because different populations are likely to have different 
socially patterned social, economic, and biophysical exposures 
that affect their methylomes, and so clocks developed in a socially 
homogeneous population may not transport well to a population 
with different social characteristics and different exposures and 
experiences.

Chronological age was reported for all study participants in 
11 of 13 papers. Of these, three include infants and children in 
model development, meaning that researchers should be cautious 
about the application of other models to data from children. The 
majority of other studies included a wide range of adult ages. 
However, only six of the papers report the biological specimen 
collection dates, some with information reported on birth cohort 
(although birth cohort can be derived easily from age and speci-
men collection date). Biological specimen collection date and birth 
cohort are important because this means researchers can ascer-
tain whether participants lived through events or situations that 
might have had impacts on health and health equity. To properly 
analyse issues related to health equity, it is crucial to combine 
this with data on place and other sociodemographic characteris-
tics. Participants in the six epigenetic clock models where birth 
cohort could be derived were born from as long ago as 1906 to as 
recent as 1995, meaning a range of historical and social events 
(such as war, economic crisis, and changes in social environment) 
may have been experienced by participants, depending on their 
other characteristics.

Where gender or sex was reported, with one exception clocks 
were trained on both male and female/women and men partic-
ipants; however, gender or sex was not reported for all partici-
pants in five of the 13 studies, and none included any discussion 
of differences between the influences of sex-related biology and 
societal gender, or their potential interaction. The two clocks 
reporting data on the racialized group membership of all partic-
ipants in their training dataset did not provide country context 
for all of their participants. Each included individuals from two 
racialized groups: one included participants predominantly cat-
egorized as being ‘Caucasian’ (with no country context) and the 
other included participants predominantly categorized as being 
of ‘African ancestry’ or ‘African American’ (with at least some 
of these participants living in the USA). Only two studies (the 
papers developing DNAmTL and GrimAge) reported the racialized 
group membership of all participants in their test dataset (this 
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information is not as pertinent as the training dataset); neither 
fully integrated country context, with one study including persons 
located in the USA, the UK, Scotland, and Italy, as well as some 
participants from unspecified countries, who were categorized 
as being ‘European’ or ‘European ancestry’, ‘African American’ or 
‘African ancestry’, and ‘Hispanic’ or ‘Hispanic ancestry’; the other 
study included persons living in the USA and Italy, as well as 
unspecified countries, who were categorized as being ‘European 
ancestry (Caucasians)’, ‘African American’, and ‘Hispanic’. Both 
of these studies included a majority of participants categorized 
as being ‘European’ or ‘European ancestry’, some of whom were 
located in Europe, some in the USA, and for some participants, 
there was no country context. Only one paper reported the nativity 
of their participants alongside the country context.

We note that none of the papers that we reviewed explicitly 
explained or justified their conceptualization or usage of racial-
ized groups, even when they reported data on these character-
istics, utilizing them as covariates in the model in one case, or 
stratified their analysis according to categories they employed 
for ‘race’, ‘ethnicity’, or ‘ancestry’. This mirrors the findings of a 
recent systematic review examining how a large number of epige-
netic studies poorly incorporate data on social groups and social 
determinants of health [74]. The inclusion of sociodemographic 
characteristics as features in models such as epigenetic clocks 
needs to be thoroughly conceptualized and justified because the 
inclusion of these characteristics could exacerbate inequities by 
adjusting away inequalities experienced by individuals with these 
characteristics [75, 76], meaning inequalities in biological age 
would be masked by the inclusion in the clock algorithm.

Crucially, only three of the papers we reviewed presented tan-
gible data pertaining to the socioeconomic circumstances of their 
participants. Two reported education levels for 41.7% and 54.9% 
of their test dataset participants, where participants were gen-
erally highly educated (with the majority having at least some 
college education). One reported neighbourhood-level economic 
data for 41% of test dataset participants alongside national figures, 
illustrating that the sample was broadly representative of the 
UK. However, none of these papers reported education or eco-
nomic data for their training data, which are the critical dataset to 
report. This information is essential to assess the transportability 
of these clocks to other datasets; it is also important to ensure that 
health inequalities are not masked or perpetuated in epigenetic 
research (this may happen when prediction models underperform 
in social groups that are poorly represented in their training data). 
The lack of reporting that we find is likely to be due to at least 
in part the absence of social characteristics in publicly available 
datasets such as those on GEO; biological data repositories have 
previously been criticized for a lack of social characteristics of 
their participants because this prevents the investigation of health 
inequities that exist between social groups [77]. We would like 
to reiterate this need for socioeconomic data in the context of 
epigenetic datasets, as well as the importance of obtaining and 
reporting these data from cohort studies that have epigenetic
data.

Eight of the epigenetic clock models make efforts to validate 
their models in participants stratified by one or more sociodemo-
graphic characteristics, including sex/gender, racialized groups, 
and education level. Some suggested that there may be little dif-
ference between the groups tested, whereas some suggested lower 
accuracy in groups dissimilar in some way to the training popu-
lation. However, we suggest that validation methods ought to be 
improved beyond simple testing of correlation between the clock 
model and chronological age, or testing downstream associations 

and that papers should consider multiple sociodemographic char-
acteristics in these validation analyses and ensure to give them 
due consideration as an important part of the manuscript. None 
of the eight papers followed up any differences they found in the 
discussion, or relate differences they find to the characteristics of 
their training dataset, missing important opportunities to delve 
into whom these clocks may and may not apply to.

In conclusion, we find that although some of the epigenetic 
clocks were created utilizing data from datasets including indi-
viduals from different sexes/genders and racialized groups, this 
information is limited by inadequate conceptualization of the 
social dimensions and exposure implications of gender and racial-
ized inequality, the absence of any socioeconomic data, or any 
consideration of interactive effects involving these social groups, 
along with a frequent failure to be clear on the countries from 
which the data were obtained and also the nativity of the partic-
ipants. As a result, it is difficult to conclude how transportable 
the epigenetic clocks with poorly characterized sociodemographic 
data may be and which social groups they might apply to. Future 
epigenetic research should ensure to report these important par-
ticipant characteristics, in combination, to contextualize their 
work; to properly investigate health inequities, we recommend 
that at a minimum researchers should collect and report both 
individual-level and structural-level data as one of our authors 
has previously suggested [78]. Researchers working with existing 
methods should ensure they check (where possible) the charac-
teristics of the participants used to generate the clocks against 
their own population of study. They should also be mindful of the 
possibility of inaccurate prediction if the population the clock was 
developed in does differ (or is unknown), and ensure to report this 
as part of any published work. With the increasing use of epige-
netic clocks to conduct work into social determinants of health, an 
important piece of future work would be to obtain primary data 
study (where available) to ascertain a more complete picture of 
the populations in which these epigenetic clocks were developed 
and what impacts this may have had on the conclusions of sub-
sequent studies using the clocks. This is particularly important to 
enable studies to address inequalities in health.

Methods
We included the 13 epigenetic clocks discussed in a recent review 
that either provide the CpG sites used to construct the clock or 
provide the means to calculate it [7] – this includes all clocks com-
monly used in the literature. We extracted participant sociode-
mographic and socioeconomic characteristics, as reported in the 
original clock papers and all associated Supplementary mate-
rial. Where applicable, we extracted information separately for 
training and test data, as the DNAm data in which the clocks 
were trained are the most pertinent information. For the second-
generation clocks, if biomarkers were selected in a separate 
cohort, we also extracted information about that cohort. We 
extracted a number of social characteristics of participants that 
are important for understanding inequalities in health. The partic-
ipant characteristics we extracted, as characterized in the studies, 
pertained to age, biological specimen collection date, and birth 
cohort; sex or gender; racialized groups (including ‘race’, ‘ethnic-
ity’, and ‘ancestry’); nativity (whether an individual was born in 
the country of recruitment); country context (the country in which 
the participants were recruited, identifying the societal structures 
in which people live); socioeconomic position (e.g. as measured by 
income, social class); and education; as well as reported validation 
across social groups. Extracting the data, we use the terms used 
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in the original paper and note where terminology is problematic. 
Where age and either specimen collection date or birth cohort 
were reported, we calculated the missing value using the available 
data.

Data availability
All data used in this manuscript are available in the original 
papers that developed the 13 epigenetic clock methods (all ref-
erences are contained in Supplementary Table S2).

Supplementary data
Supplementary data are available at EnvEpig online.
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