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Abstract

Epigenetic clocks are increasingly being used as a tool to assess the impact of a wide variety of phenotypes and exposures on healthy
ageing, with a recent focus on social determinants of health. However, little attention has been paid to the sociodemographic charac-
teristics of participants on whom these clocks have been based. Participant characteristics are important because sociodemographic
and socioeconomic factors are known to be associated with both DNA methylation variation and healthy ageing. It is also well known
that machine learning algorithms have the potential to exacerbate health inequities through the use of unrepresentative samples —
prediction models may underperform in social groups that were poorly represented in the training data used to construct the model. To
address this gap in the literature, we conducted a review of the sociodemographic characteristics of the participants whose data were
used to construct 13 commonly used epigenetic clocks. We found that although some of the epigenetic clocks were created utilizing
data provided by individuals from different ages, sexes/genders, and racialized groups, sociodemographic characteristics are generally
poorly reported. Reported information is limited by inadequate conceptualization of the social dimensions and exposure implications
of gender and racialized inequality, and socioeconomic data are infrequently reported. It is important for future work to ensure clear
reporting of tangible data on the sociodemographic and socioeconomic characteristics of all the participants in the study to ensure that
other researchers can make informed judgements about the appropriateness of the model for their study population.
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Introduction

DNA methylation (DNAm) is an epigenetic modification to DNA
that is involved in a number of aspects of genome regulation.
DNAm is dynamic, changing as we age [1], in the course of dis-
ease [2] and in the presence of environmental exposures such as
smoking [3] and childhood adversity [4, 5]. Ageing is a particu-
larly well-established influence on DNAm, with changes occurring
at many DNAm sites across the genome as humans get older
[6]. These changes are so reliable that numerous research groups
have developed ‘epigenetic clocks’, mathematical models that
use DNAmM measurements to predict chronological age and other
age-related characteristics [7].

The first generation of epigenetic clock methods (e.g. Hor-
vath and Hannum [1, 8]) aimed simply to predict chronological

age as accurately as possible. It was observed early on that
errors in age prediction, subsequently known as ‘age acceler-
ation’ or ‘age deceleration’ (depending on the direction of the
error), were associated with a variety of exposures and dis-
eases as well as mortality risk [9]. These associations suggested
that, beyond chronological ageing, these clocks may actually
provide a measure of biological ageing (which refers to the pro-
gressive decline of the body’s physiological functions [10]). To
enhance this feature, a second generation of epigenetic clocks was
developed; these incorporated health biomarkers and phenotypes
alongside chronological age in the model. Increasing numbers of
studies are now considering how social determinants of health
might impact epigenetic ageing, with evidence indicating posi-
tive associations between accelerated epigenetic aging and social
adversity measured in relation to socioeconomic position [11],
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education [12], neighbourhood characteristics [13-15], and racial
discrimination [15].

Although the epigenetic clocks themselves have been quite
extensively reviewed [7, 16-18], relatively little attention has been
paid — in both these review articles and also the empirical stud-
ies that use these clocks - to the sociodemographic character-
istics of the individuals whose data have been used to develop
these clocks. This sociodemographic information is important
in order to assess the generalizability of the clocks to different
populations, given robust evidence that (i) variation in DNAm is
altered by genetic, social, and environmental factors [3, 19-24], (ii)
adverse social and biophysical exposures are socially patterned
and affect the risk of disease and also processes of healthy age-
ing [25-27], and (iii) study selection pressures (which may be
related to sociodemographic characteristics) can induce biased
study estimates [28-31], which could lead to problems with clock
generalizability. Our concern is that for these reasons an algo-
rithm developed to estimate ageing using DNAm in one population
may not translate to other populations with divergent sociodemo-
graphic or socioeconomic profiles. For example, a clock may miss
environmental impacts on the methylome that contribute to age-
ing in some populations if it is developed in a population with low
exposure to those impacts, e.g. pollution or social adversity [32].

Thisis not a new concern, as there is existing literature describ-
ing the potential for machine learning algorithms to exacerbate
health inequities through the use of unrepresentative samples —
this may happen when prediction models underperform in social
groups that were poorly represented in the training data used to
construct the model [33-35]. If prediction models underperform,
then estimates will be less accurate, which could bias associa-
tionsin either direction. Because of the nature of epigenetic clocks,
the direction of bias is likely to be quite complicated. Epigenetic
clocks are made up of many CpG sites (often hundreds) scattered
across the genome. The dynamic and regulatory nature of DNAm
therefore implies that clocks will integrate biological signals from
a wide variety of biological functions and pathways (which for the
most part are unknown). The responsive nature of DNAm implies
that they will capture variation due to a multitude of endogenous
biological factors and external exposures that differ between pop-
ulations. As such this bias may either over- or under-estimate the
effects, and we do not think it would be easy to predict which
direction the bias might go, even for specific studies.

The possibility of bias has already been described for PhenoAge,
one measure of epigenetic age [36]; it is a particular concern for
epigenetic data as two recent reviews show that, at least in regard
to racialized groups, epigenetic data are predominantly from indi-
viduals of ‘European’ heritage [37, 38] (although no such review
has been conducted for other sociodemographic characteristics).
Wide-spread inconsistencies in the literature about associations
with epigenetic age acceleration support this concern, as inconsis-
tencies are likely driven by differences in characteristics between
study populations. For example, inconsistent associations have
been reported with education [12, 15, 39-42], socioeconomic status
[15, 39,41, 43-50], and racialized group [51-54]; as well as inconsis-
tent associations between epigenetic age acceleration and health
and social outcomes when analyses are stratified by sociodemo-
graphic characteristics, such as education level [55], country of
birth [40], and racialized group [42, 55, 56]. One recent study
reported that when testing the association between epigenetic
clocks and healthspan-related characteristics, smaller effect sizes
were found for Black American participants in comparison to
white American participants [54], suggesting it is possible that
associations could be biased towards the null in some study pop-
ulations. These inconsistencies may be due in part to some clocks

including loci known to be differentially methylated by country of
birth [40] and racialized group (36, 45].

Whatever the reason for these inconsistencies, it is clear that
any interpretation of associations with epigenetic age acceleration
should take into account any differences between the populations
in which the epigenetic clock was derived and the populations
where the associations were observed. To assist in these compar-
isons, we collate for the first time the basic social characteristics
of the participants utilized in the development of 13 commonly
used epigenetic clocks.

Results

Table 1 contains extracted information from each of the clock
papers. Supplementary Table S1 reproduces Table 1 along with
additional details of the conceptualization of racialized groups
and genders. Supplementary Table S2 provides details of how each
clock was constructed and the specific datasets used by each

paper.

Age, Biological Specimen Collection Date, and
Birth Cohort

Eleven of the 13 papers report the chronological age of all their
training and test dataset participants. Of these, three models
included children in their training and test datasets: two included
participants from birth to adulthood, with no information as to
the biological specimen collection dates or birth cohorts of partic-
ipants (aged 0-100years [1]; aged 0-78 years [57]), and one model
included participants aged 2-104 years old, with 1/14 cohorts born
in 1936 and one in 1921 [58]. Four papers reporting the chronologi-
cal age of all their participants report using only adult participants
(aged between 16 and 101 years) without reporting specimen col-
lection date or birth cohort [8, 59-61]. One paper reported using
only adult participants (ages 31- 82years) and reported speci-
men collection date (2000-08) and birth cohort (1924-75) for all of
their participants [62]. One paper reported age for all participants
(adults, aged 20-91years) and reported the specimen collection
date (1988-2014) and birth cohort (1907-94) for the majority of
their participants (4/5 datasets) [63]. Two papers reported using
adult participants (aged 21-93years), with information on spec-
imen collection date (1998-2007) and birth cohort (1906-86) for
some of their participants [55, 64].

One paper reported age for their training data plus 81% of their
test data, plus biological specimen collection date for all partici-
pants (1998-2013) and birth cohort for the majority of participants
(1917-95) [65]. One paper did not report age but included it as the
Y-axis on plots, illustrating that participants were ~20-90years
old, with no information on biological specimen collection date or
birth cohort [66].

Sex or Gender

Biological sex or gender were the most frequently reported char-
acteristics, with seven out of 13 clock papers reporting data for
all participants, and three out of 13 reporting partial data. Of the
seven reporting full data, four report ‘sex’ using the biological sex
terms ‘males’ and ‘females’. These papers included between 48%
and 83% females in their training and test datasets [55, 62, 64, 65].
One paper reports ‘gender’ using the gendered terms ‘women’ and
‘men’, including 52% women [8], and two report using the terms
‘female’ and ‘male’ without specifying sex or gender, including
between 0% and 58% female participants [1, 60]. Of the three stud-
ies reporting partial data on sex/gender, one reported on one of
eight datasets (100% women, with no use of the terms sex or gen-
der) [61]; one reported on two of five test datasets (46% women, no
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use of the terms sex or gender) [63]; and one paper reports ‘gender’
using the terms ‘female’ and ‘male’, including 81% female partic-
ipants in the training data, with no reporting for the test datasets
[57]. Three studies use ‘sex’ and one used ‘gender’ as a covariate in
the age estimation model, but none conceptualize the reason for
this [8, 55, 59, 62].

None of the papers defined what they meant by the terms sex
or gender beyond three studies identifying it as a ‘covariate’ or
‘confounder’, so where terminology is mixed it is unclear which
specific characteristic is being reported. Being specific about the
characteristic that is reported is important because biological sex
and gender identity have independent and interacting effects on
health [67-70].

Racialized Groups and Country Context

Only two papers report data on racialized group membership for
all the participants in their study, using descriptive terms per-
taining to ‘race’, ‘ethnicity’, and ‘ancestry’ (but without defining
what these terms mean, whether these data were self-reported by
participants or obtained from medical records, and with limited
reporting of country context). The paper developing the Hannum
clock [8] was developed using a training dataset including ‘426
Caucasian and 230 Hispanic individuals’, with no country context
reported. We note that there is scientific recognition that the ori-
gins of the term ‘Caucasian’ mean its use should be discontinued -
thisis because the term was derived from a scientifically fallacious
typology that presumed humanity originated in the Caucuses
and was ‘white’, with other ‘racial’ groups framed as ‘degener-
ate’ lineages that branched off of the ‘Caucasian’ trunk [71-73].
The paper developing the DNAmMTL clock [64] utilized training
and test datasets; the training dataset comprised a total of 2256
individuals from two datasets, of whom 81% were categorized as
being ‘African ancestry’ in the text and ‘African American’ in the
tables; and 19% as ‘European ancestry’ in the text and ‘European’
in the tables. The country context was provided for one of these
datasets (one was based in the US), so it is not possible to fully
contextualize the reported racialized groups based on information
reported in the paper. Their first test data comprised 1078 indi-
viduals from three datasets (Test and Training 1 comprise unique
sets of individuals from two datasets). They report that 86% were
categorized as being ‘European ancestry’ in the text and ‘Euro-
pean’ in the tables, and 14% as ‘African ancestry’ in the text and
‘African American’ in the tables. The country context was provided
for 2/3 of these datasets (two were based in the USA), so again
it is not possible to fully contextualize the groups. A second test
dataset comprised 9359 individuals from five additional datasets,
of whom 77% were categorized as ‘European ancestry’ in the text
and ‘European’ in the tables, 15% as ‘African ancestry’ in the text
and ‘African American’ in the tables, and 8% as ‘Hispanic ancestry’
in the text and ‘Hispanic’ in the tables. The country context was
reported for all five datasets: one in the UK, two in Scotland, one
in the USA, and one in Italy.

Five papers that developed an epigenetic clock reported par-
tial data on racialized group membership but did not report clear
numbers for all participants in the paper. The paper develop-
ing the Horvath clock [1] reported racialized group membership
for 5/39 training datasets — participants from four datasets (four
brain regions from the same individuals) were categorized as ‘non-
Hispanic Caucasian ethnicity’ (country context not reported), and
participants from one dataset were categorized as ‘Taiwanese’
(country context not reported). Racialized group membership data
was reported for 1/32 test datasets, where participants were cat-
egorized as ‘Gambian’ (country context not reported). The paper

developing the DunedinPoAm clock [65] reported that 93% of
their training dataset participants, all born and residing in New
Zealand, were ‘white’ but did not explicitly report data on racial-
ized groups for the remainder of their training data participants.
They state that test dataset participants were ‘mostly of white
European descent’, reporting that 77% of participants in one of the
four test datasets were ‘white’ with no country context; the coun-
try context was reported for the other three test datasets with no
information on racialized groups (one recruited in the USA and
two in the UK). The paper developing the GrimAge clock [55] did
not report the racialized group memberships of their US-derived
biomarker selection and training dataset (70% of the Framing-
ham Heart Study offspring cohort). Among individuals in their five
test datasets, 50% were categorized as ‘European ancestry (Cau-
casians)’, 40% as ‘African American’, and 10% as ‘Hispanic’; the
country context was not integrated, with 2/5 of the test datasets
based in the USA and 1/5 in Italy. The paper developing the Phe-
noAge clock [63] did not report the racialized group membership
of the participants in which the biomarkers were selected the
National Health and Nutrition Examination Survey III and IV,
both are US national datasets), or in whom the DNAm predictor
was trained (InChianti, for which they do not report the country
context); they reported the racialized group membership of partic-
ipants in four of the five test datasets, all of which were based in
the USA, comprising 72% of test participants, of whom 18% were
categorized as being ‘Black’, 26% as ‘African American’, 41% as
‘White’, and 11% as ‘Hispanic'. No data on racialized group mem-
bership was provided for the remaining 36% of test participants
from two other datasets. Finally, Zhang’s et al. paper develop-
ing an elastic net predictor [58] reported data on racialized group
membership for one of 14 datasets, where they state that the 695
participants from the motor neuron disease (MND) cohort dataset
were ‘Chinese’ but did not provide further information or country
context.

One study reports only the country context of training and
test datasets (both based in Germany) [62]. Another reported only
country context for 1/2 training datasets and 1/2 test datasets
(both based in Germany) [57]. The remaining four studies [59-61,
66] report no information about the racialized group membership
or country context of their participants. None of the papers that
did report data categorized by ‘racial’ or ‘ethnic’ terms that they
employed explicitly explained or justified their conceptualization
or usage of racialized groups, beyond three studies conceptual-
izing use as a ‘covariate’ or ‘confounder’. One study [8] includes
‘ethnicity’ as a covariate in the age estimation model but does not
conceptualize the reasons for this.

Nativity

Only one study explicitly reported the nativity status of their train-
ing dataset participants — 100% of the Dunedin PoAm [65] training
dataset study participants were born in New Zealand (with no
report as to the nativity status of the test dataset).

Economic Measures

Only the Dunedin PoAm study [65] included data for some partici-
pants on economic status in the paper. For the biomarker selection
and training dataset, they state that ‘The cohort represents the full
range of socioeconomic status on NZ’s South Island’, but they do
not provide descriptive statistics that might enable comparison
across datasets. For one of four of their test datasets (41% of test
participants), they provide neighbourhood-level socioeconomic
data alongside national statistics, illustrating that the sample is
broadly representative of the UK in terms of neighbourhood SES.
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Education

Two papers developing epigenetic clocks included data on educa-
tional attainment for some of their participants. The first paper,
developing the GrimAge clock [55], reported education data for
41.7% of their test dataset participants; they were generally highly
educated, with a quarter (24.2%) having a college degree or higher,
and only 8.8% having less than high school education (14.8% had
a high school degree, and 52% had some college education). The
second paper, developing the DNAmMTL clock [64], reported edu-
cation data for 54.9% of their test dataset participants. A higher
proportion had less than high school education (16.6%), with the
remainder of the sample generally highly educated: 16.7% had a
high school degree, 33.6% had some college education, and 33.2%
had a college degree or higher. Neither paper reported information
on the education level of their training dataset, which is critical to
the transportability of the predictor.

Validation across Social Groups

Eight of the 13 papers reporting epigenetic clock methods report
some form of validation of their model in their test data stratified
by one or more sociodemographic characteristics. One (developing
the DNAMTL clock) compared model performance between men
and women in the two test datasets, and additionally between
racialized groups in one of these test datasets, by correlating the
clock estimate with chronological age [64]. In the first test dataset,
they found a lower correlation for women even though the train-
ing data comprised 75% women. In the second test dataset, they
found a higher correlation for women. We suggest this shows
the importance of the need to consider multiple participant char-
acteristics when validating predictive algorithms. There was no
difference in clock correlation with chronological age between
the two racialized groups (‘black’ and ‘white’ participants). The
paper developing Zhanget al.’s mortality clock [62] stratified down-
stream analyses by sex/gender; in their test dataset, they found
stronger associations in men despite a slightly higher proportion
of women in the training data. The paper reporting the Bock-
landt clock [60] used 100% ‘males’ in their training data and tested
clock performance in males and females in their test dataset.
They found a lower correlation between chronological and pre-
dicted age for females compared to males, as well as a higher
error between predicted and chronological age for females, sug-
gesting reduced accuracy of the clock. The paper developing the
PhenoAge clock [63] looked at the correlation between the age esti-
mator and chronological age stratified by the racialized group -
they found slightly higher correlations in ‘Hispanic’ participants,
with similar correlations for ‘black’ and ‘white’ participants. The
paper developing the GrimAge clock [55] stratified all analyses
in the main text by the racialized group, conceptualizing this
as testing whether the ageing predictor applied to each group;
no conclusions from this were presented in the paper, but in a
supplementary analysis shows higher standard deviations of the
age estimator for ‘Black’ participants and lower standard devia-
tions for ‘Hispanic’ participants, with ‘white’ participants having
standard deviations in the middle of these groups. However, racial-
ized group membership was not reported for the training dataset
participants. Additionally, in the supplement they stratify model
predictions by educational attainment and find that the model
performed for participants of all education levels (although the
lowest hazard ratio was found for less than high school educa-
tion). One paper compared the difference between predicted and
chronological age for participants with differing numbers of years
in education, showing no difference at P=0.05 [57] and presented
plots comparing clock performance in ‘males’ and ‘females’ but

did not provide statistics or elaborate on the comparison in the
text. One paper developing an epigenetic clock stated that no
difference was observed in clock performance between genders
but did not present data [61]. One paper presented plots compar-
ing clock performance in ‘males/men’ and ‘females/women’ but
did not provide statistics or elaborate on the comparison in the
text [65]. One paper compared the ageing rate between men and
women but only in the test dataset (which we did not consider to
be validation) [8].

Discussion

The basic sociodemographic characteristics of participants are
generally poorly reported in the 13 papers which developed the
most popular epigenetic clocks. This makes it challenging for
researchers to judge whether the clock is likely to accurately
transport to the population they want to study, where the esti-
mation of epigenetic age may be inaccurate in populations with
different characteristics, introducing uncertainty to the relation-
ship between epigenetic age and health and social outcomes,
therefore biasing estimates in uncertain directions. This is impor-
tant because different populations are likely to have different
socially patterned social, economic, and biophysical exposures
that affect their methylomes, and so clocks developed in a socially
homogeneous population may not transport well to a population
with different social characteristics and different exposures and
experiences.

Chronological age was reported for all study participants in
11 of 13 papers. Of these, three include infants and children in
model development, meaning that researchers should be cautious
about the application of other models to data from children. The
majority of other studies included a wide range of adult ages.
However, only six of the papers report the biological specimen
collection dates, some with information reported on birth cohort
(although birth cohort can be derived easily from age and speci-
men collection date). Biological specimen collection date and birth
cohort are important because this means researchers can ascer-
tain whether participants lived through events or situations that
might have had impacts on health and health equity. To properly
analyse issues related to health equity, it is crucial to combine
this with data on place and other sociodemographic characteris-
tics. Participants in the six epigenetic clock models where birth
cohort could be derived were born from as long ago as 1906 to as
recent as 1995, meaning a range of historical and social events
(such as war, economic crisis, and changes in social environment)
may have been experienced by participants, depending on their
other characteristics.

Where gender or sex was reported, with one exception clocks
were trained on both male and female/women and men partic-
ipants; however, gender or sex was not reported for all partici-
pants in five of the 13 studies, and none included any discussion
of differences between the influences of sex-related biology and
societal gender, or their potential interaction. The two clocks
reporting data on the racialized group membership of all partic-
ipants in their training dataset did not provide country context
for all of their participants. Each included individuals from two
racialized groups: one included participants predominantly cat-
egorized as being ‘Caucasian’ (with no country context) and the
other included participants predominantly categorized as being
of ‘African ancestry’ or ‘African American’ (with at least some
of these participants living in the USA). Only two studies (the
papers developing DNAmMTL and GrimAge) reported the racialized
group membership of all participants in their test dataset (this
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information is not as pertinent as the training dataset); neither
fully integrated country context, with one study including persons
located in the USA, the UK, Scotland, and Italy, as well as some
participants from unspecified countries, who were categorized
as being ‘European’ or ‘European ancestry’, ‘African American’ or
‘African ancestry’, and ‘Hispanic’ or ‘Hispanic ancestry’; the other
study included persons living in the USA and Italy, as well as
unspecified countries, who were categorized as being ‘European
ancestry (Caucasians)’, ‘African American’, and ‘Hispanic’. Both
of these studies included a majority of participants categorized
as being ‘European’ or ‘European ancestry’, some of whom were
located in Europe, some in the USA, and for some participants,
there was no country context. Only one paper reported the nativity
of their participants alongside the country context.

We note that none of the papers that we reviewed explicitly
explained or justified their conceptualization or usage of racial-
ized groups, even when they reported data on these character-
istics, utilizing them as covariates in the model in one case, or
stratified their analysis according to categories they employed
for ‘race’, ‘ethnicity’, or ‘ancestry’. This mirrors the findings of a
recent systematic review examining how a large number of epige-
netic studies poorly incorporate data on social groups and social
determinants of health [74]. The inclusion of sociodemographic
characteristics as features in models such as epigenetic clocks
needs to be thoroughly conceptualized and justified because the
inclusion of these characteristics could exacerbate inequities by
adjusting away inequalities experienced by individuals with these
characteristics [75, 76], meaning inequalities in biological age
would be masked by the inclusion in the clock algorithm.

Crucially, only three of the papers we reviewed presented tan-
gible data pertaining to the socioeconomic circumstances of their
participants. Two reported education levels for 41.7% and 54.9%
of their test dataset participants, where participants were gen-
erally highly educated (with the majority having at least some
college education). One reported neighbourhood-level economic
data for 41% of test dataset participants alongside national figures,
illustrating that the sample was broadly representative of the
UK. However, none of these papers reported education or eco-
nomic data for their training data, which are the critical dataset to
report. This information is essential to assess the transportability
of these clocks to other datasets; itis also important to ensure that
health inequalities are not masked or perpetuated in epigenetic
research (this may happen when prediction models underperform
in social groups that are poorly represented in their training data).
The lack of reporting that we find is likely to be due to at least
in part the absence of social characteristics in publicly available
datasets such as those on GEO; biological data repositories have
previously been criticized for a lack of social characteristics of
their participants because this prevents the investigation of health
inequities that exist between social groups [77]. We would like
to reiterate this need for socioeconomic data in the context of
epigenetic datasets, as well as the importance of obtaining and
reporting these data from cohort studies that have epigenetic
data.

Eight of the epigenetic clock models make efforts to validate
their models in participants stratified by one or more sociodemo-
graphic characteristics, including sex/gender, racialized groups,
and education level. Some suggested that there may be little dif-
ference between the groups tested, whereas some suggested lower
accuracy in groups dissimilar in some way to the training popu-
lation. However, we suggest that validation methods ought to be
improved beyond simple testing of correlation between the clock
model and chronological age, or testing downstream associations

and that papers should consider multiple sociodemographic char-
acteristics in these validation analyses and ensure to give them
due consideration as an important part of the manuscript. None
of the eight papers followed up any differences they found in the
discussion, or relate differences they find to the characteristics of
their training dataset, missing important opportunities to delve
into whom these clocks may and may not apply to.

In conclusion, we find that although some of the epigenetic
clocks were created utilizing data from datasets including indi-
viduals from different sexes/genders and racialized groups, this
information is limited by inadequate conceptualization of the
social dimensions and exposure implications of gender and racial-
ized inequality, the absence of any socioeconomic data, or any
consideration of interactive effects involving these social groups,
along with a frequent failure to be clear on the countries from
which the data were obtained and also the nativity of the partic-
ipants. As a result, it is difficult to conclude how transportable
the epigenetic clocks with poorly characterized sociodemographic
data may be and which social groups they might apply to. Future
epigenetic research should ensure to report these important par-
ticipant characteristics, in combination, to contextualize their
work; to properly investigate health inequities, we recommend
that at a minimum researchers should collect and report both
individual-level and structural-level data as one of our authors
has previously suggested [78]. Researchers working with existing
methods should ensure they check (where possible) the charac-
teristics of the participants used to generate the clocks against
their own population of study. They should also be mindful of the
possibility of inaccurate prediction if the population the clock was
developed in does differ (or is unknown), and ensure to report this
as part of any published work. With the increasing use of epige-
netic clocks to conduct work into social determinants of health, an
important piece of future work would be to obtain primary data
study (where available) to ascertain a more complete picture of
the populations in which these epigenetic clocks were developed
and what impacts this may have had on the conclusions of sub-
sequent studies using the clocks. This is particularly important to
enable studies to address inequalities in health.

Methods

We included the 13 epigenetic clocks discussed in a recent review
that either provide the CpG sites used to construct the clock or
provide the means to calculate it [7] - this includes all clocks com-
monly used in the literature. We extracted participant sociode-
mographic and socioeconomic characteristics, as reported in the
original clock papers and all associated Supplementary mate-
rial. Where applicable, we extracted information separately for
training and test data, as the DNAm data in which the clocks
were trained are the most pertinent information. For the second-
generation clocks, if biomarkers were selected in a separate
cohort, we also extracted information about that cohort. We
extracted a number of social characteristics of participants that
areimportant for understandinginequalities in health. The partic-
ipant characteristics we extracted, as characterized in the studies,
pertained to age, biological specimen collection date, and birth
cohort; sex or gender; racialized groups (including ‘race’, ‘ethnic-
ity’, and ‘ancestry’); nativity (whether an individual was born in
the country of recruitment); country context (the country in which
the participants were recruited, identifying the societal structures
in which people live); socioeconomic position (e.g. as measured by
income, social class); and education; as well as reported validation
across social groups. Extracting the data, we use the terms used
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in the original paper and note where terminology is problematic.
Where age and either specimen collection date or birth cohort
were reported, we calculated the missing value using the available
data.

Data availability

All data used in this manuscript are available in the original
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