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Abstract: Radiation sensor interfaces for battery-powered mobile dosimeters must consume low
power to monitor the amount of radiation exposure over a long period. This paper proposes a
power-efficient radiation sensor interface using a peak-triggered sampling scheme. Since the peak of
the analog-to-digital converter’s (ADC’s) input represents radiation energy, our ADC only operates
around the peak value thanks to the proposed sampling scheme. Although our ADC operates with a
high sampling frequency, this proposed sampling scheme reduces the power consumption of the
sensor interface because of the reduced operation time of the ADC. Our sensor interface does not
have signal distortion caused by a conventional shaper because the interface quantizes the peak
value using the high sampling frequency instead of the shaper. When the radiation input occurs once
every 10 µs, the power consumption of the ADC with the proposed sampling scheme is only about
21.5% of the ADC’s power consumption when the ADC continuously operates. In this worst case,
the fabricated radiation sensor interface in a 0.18-µm complementary metal-oxide-semiconductor
(CMOS) process consumes only 1.11 mW.

Keywords: radiation sensor interface; silicon photomultiplier (SiPM); mobile dosimeter;
analog-to-digital converter (ADC)

1. Introduction

Nuclear power plants have been the basis of modern industrial development because these
plants produce large amounts of highly efficient electricity. However, since the recent Fukushima
nuclear accidents, concerns about the safety of nuclear power plants have been raised more than
before. The radiation exposure over a certain level may cause biologically harmful effects, such as
carcinogenesis [1–3]. As a result, not only the nuclear power plant workers managed by competent
agents, but also the ordinary people in daily life are at increased risk of radiation exposure [4].

If people in daily life can easily use mobile dosimeters, they will be able to promptly address
harmful situations. Figure 1 shows a block diagram of a mobile dosimeter, which consists of a radiation
detector, a sensor interface, a data extraction module, and a power management circuit. Because
the required bias voltage of silicon photo-multipliers (SiPMs) is lower than that of other radiation
detectors [5], SiPMs are currently being used as radiation detectors. The sensor interface converts the
output of the radiation detector to digital outputs, and the data extraction module processes these
digital outputs appropriately for transmitting data to data servers or other mobile devices. The power
management circuit generates supply voltages of the mobile dosimeter from a small battery for users
to make these dosimeters portable in daily life. In such a battery-powered system, it is important
to implement each subsystem in a power-efficient manner for a long time of operation. We propose

Sensors 2020, 20, 3255; doi:10.3390/s20113255 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-2580-8543
http://dx.doi.org/10.3390/s20113255
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/11/3255?type=check_update&version=2


Sensors 2020, 20, 3255 2 of 10

a power-efficient radiation sensor interface because prior ones consume high power in handling
high-speed radiation signals.
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Figure 2. Architecture and operation of prior radiation sensor interfaces. 

The CSA integrates the charge spike into the feedback capacitor to generate the voltage signal, 
which has enough amplitude for the ADC to handle [6,7,11]. Since the parasitic capacitance (Cp) of 
the radiation detector is much larger than the feedback capacitance (Cfb), the voltage loop gain of the 
CSA is close to zero, and the integration is performed through the open-loop bandwidth of the operational 
amplifier (OP-AMP). As a result, the conversion from charge to voltage through this type of CSA is 
much more power-efficient than the conversion through closed-loop amplifiers. In this CSA, the 
feedback capacitor must be periodically reset through a complementary metal-oxide-semiconductor 
(CMOS) switch and other digital logic elements to recover the original DC bias point of OP-AMP 
before integrating the newly generated charge spike.  

Figure 1. Block diagram of a mobile dosimeter.

2. Prior Radiation Sensor Interface

Figure 2 shows the architecture and operation of prior radiation sensor interfaces [6–11]. It consists
of a charge-sensitive amplifier (CSA), a shaper, and an analog-to-digital converter (ADC). The radiation
detector converts radiation energy (hν) into charge signals. When radiation particles are injected
into the radiation detector, charges are generated in the form of spikes, which have a short period.
The accumulated charge amount is proportional to the radiation energy.
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Figure 2. Architecture and operation of prior radiation sensor interfaces.

The CSA integrates the charge spike into the feedback capacitor to generate the voltage signal,
which has enough amplitude for the ADC to handle [6,7,11]. Since the parasitic capacitance (Cp) of
the radiation detector is much larger than the feedback capacitance (Cfb), the voltage loop gain of
the CSA is close to zero, and the integration is performed through the open-loop bandwidth of the
operational amplifier (OP-AMP). As a result, the conversion from charge to voltage through this type
of CSA is much more power-efficient than the conversion through closed-loop amplifiers. In this CSA,
the feedback capacitor must be periodically reset through a complementary metal-oxide-semiconductor
(CMOS) switch and other digital logic elements to recover the original DC bias point of OP-AMP
before integrating the newly generated charge spike.

As shown in Figure 2, since the peak of the CSA’s output represents radiation energy, the ADC
must quantize the peak value of the CSA’s output. When the CSA’s output is directly quantized by the
ADC, the ADC needs a very high sampling frequency (fs) due to the short period of the charge spike.
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In order to reduce f s, the shaper is introduced to stretch the period of the CSA’s output. When the
ADC quantizes the shaper’s output rather than the CSA’s output, the ADC can quantize the peak
value of the CSA’s output with a lower fs. This results in reducing the power consumption of the ADC.
However, the shaper, which has a bandpass characteristic, causes signal distortion because the charge
spike itself has a wideband characteristic inherently.

3. Proposed Radiation Sensor Interface

We propose a peak-triggered sampling scheme that minimizes the power consumption of the
ADC and quantizes the peak without the shaper. Figure 3 shows a block diagram of the proposed
radiation sensor interface for the mobile dosimeter. The sensor interface consists of a CSA, a proposed
peak-triggered signal generator (PTSG), and a successive approximation register (SAR) ADC with a
voltage buffer (BUF). The CSA converts charge spikes to voltage signals, and the SAR ADC quantizes
the CSA’s output using a sampling clock signal (CLKPTS), which is generated by the PTSG. Since this
CLKPTS has logic transitions only around the peak of the CSA’s output (Vout), the PTSG reduces the
operation time of the ADC. The BUF is adopted to precisely sample Vout on a large sampling capacitor
of the SAR ADC. A more detailed description of operation is as follows.
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Our sensor interface supports a radiation detector based on SiPM with a series resistor and a DC 
blocking capacitor. The DC blocking capacitor with a capacitance of 1 μF is used to decouple the DC 
bias points of the SiPM output and the CSA input. We also adopt the open-loop CSA used in [6,7] to 
convert the charge spike to voltage signals with low power consumption. Instead of the reset switch 
in Figure 2, our CSA maintains DC operating point through a feedback resistor (Rfb) not to miss charge 
spikes without any complicated digital logic elements [12]. 

The proposed PTSG, which consists of a comparator (CMP) and an edge detection logic, 
generates CLKPTS from an external clock signal (CLKEXT). The CMP compares Vout and a pre-defined 
DC reference voltage (VREF). When Vout is lower than VREF, the CMP’s output equals the supply voltage. 
In contrast, the CMP’s output equals ground when Vout is higher than VREF. The edge detection logic 
passes CLKEXT only when the CMP’s output equals the supply voltage. As a result, since the SAR 
ADC only performs sampling and conversion when radiation particles are injected and Vout is near 
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Our sensor interface supports a radiation detector based on SiPM with a series resistor and a DC
blocking capacitor. The DC blocking capacitor with a capacitance of 1 µF is used to decouple the DC
bias points of the SiPM output and the CSA input. We also adopt the open-loop CSA used in [6,7] to
convert the charge spike to voltage signals with low power consumption. Instead of the reset switch in
Figure 2, our CSA maintains DC operating point through a feedback resistor (Rfb) not to miss charge
spikes without any complicated digital logic elements [12].

The proposed PTSG, which consists of a comparator (CMP) and an edge detection logic, generates
CLKPTS from an external clock signal (CLKEXT). The CMP compares Vout and a pre-defined DC
reference voltage (VREF). When Vout is lower than VREF, the CMP’s output equals the supply voltage.
In contrast, the CMP’s output equals ground when Vout is higher than VREF. The edge detection logic
passes CLKEXT only when the CMP’s output equals the supply voltage. As a result, since the SAR
ADC only performs sampling and conversion when radiation particles are injected and Vout is near
the peak value, the PTSG drastically reduces the averaging power consumption of the SAR ADC by
reducing the operation time of the ADC. In addition, the PTSG reduces the power consumption of the
data extraction module because our sensor interface does not generate unnecessary data to process
and transmit.
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When the maximum power consumption of the sensor interface is limited in a mobile dosimeter
by battery size, our sensor interface can use a higher fs than previous sensor interfaces because the
operation time of the ADC is reduced. As a result, our sensor interface quantizes the peak value of
Vout through high f s instead of the shaper, which causes distortion.

Commercial SiPM has various problems to be considered when actually using it [13]. Therefore,
it is important to set VREF in our sensor interface for optimizing the power consumption and accuracy.
VREF can be determined after monitoring Vout or the ADC’s outputs (Dout) with radiation check sources,
which are harmless to the human body. In addition, the dark current (or count in [13]) should be
considered to ensure more accurate operation. The dark current is the main noise source of a SiPM,
which is caused by thermal electrons generated in the active volume [13]. Since this dark current is
smaller than the spike generated by radiation particles, to prevent waste of the power by the dark
current, VREF can be determined by monitoring Dout without the check source. That is, when the
radiation energy is not changed, VREF should be decreased until there is no sudden change in the Dout.
Since this dark current is a function of the active area and varies from device to device [13], initial
calibration is required for each mobile dosimeter.

Figure 4 shows the simulated power consumption of the SAR ADC with the peak-triggered
sampling scheme. The power consumption of the SAR ADC is the product of the average current
that flows to the circuit and the driving voltage. It can be seen that as the interval of radiation spike
increases, it decreases drastically. The DC bias and the peak value of the CSA’s output are about 1 V
and 200 mV, respectively. VREF used in this simulation is 0.6 V, and fs is 4 MHz. When the interval
between radiation spikes is 10 µs, the power consumption of the ADC with the proposed sampling
scheme is about 0.11 mW, which is about 21.5% of the ADC’s power consumption when the ADC
continuously operates. The power consumption of the ADC decreases as the interval of the radiation
spikes increases. When the interval is 100 µs, the power consumption of the ADC with the proposed
sampling scheme is reduced to about 0.01 mW.
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Figure 4. Simulated power consumption of the analog-to-digital converter (ADC) with the  
peak-triggered sampling scheme according to the interval of radiation spikes. 
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The OP-AMPs of the CSA and BUF are implemented based on the conventional two-stage
OP-AMP structure [14], as shown in Figure 5. Each OP-AMP of the CSA and BUF achieves a simulated
open-loop bandwidth of 50 MHz with a 5-pF load and a DC gain of 60 dB while consuming only 0.5 mW.
These simulated results confirm good enough performances to satisfy the specifications required for
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the CSA to interface with the SiPM thanks to the open-loop structure of the CSA as well as for the BUF
to drive the large sampling capacitor of the following SAR ADC.
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Figure 5. Circuit diagram of the 2-stage operational amplifier (OP-AMP) used in the charge-sensitive
amplifier (CSA) and voltage buffer (BUF).

The CMP of the proposed PTSG has to operate to detect the time moment when the Vout reaches
the same value as the VREF. As shown in Figure 6, the CMP is designed using the cross-coupled
hysteresis comparator structure, which is suitable for high-speed operation [15]. Our designed CMP
achieves a simulated delay of 10 ns with only 10-µW power consumption. This delay is sufficiently
short compared to the time for the CSA’s output to reach the peak value. Furthermore, since the power
consumption of the CMP is much smaller than other analog circuits, the power consumption of the
overall sensor interface can be minimized.
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4. Measurement Results

Figure 7 shows the measured output waveforms of the proposed radiation sensor interface.
We generate the input charge spike mimicking the condition that SiPM injects 15 fC of charge into the
CSA during a sufficiently short time of about 1 µs. When this charge spike is injected, Vout reaches
the peak value after 1 µs and recovers to the original DC bias point by Rfb. When Vout is lower than a
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VREF of 0.6 V, CLKPTS exhibits logic transitions with fs = 4.096 MHz. In contrast, CLKPTS does not have
transitions, and the ADC does not perform sampling and conversion when Vout is higher than a VREF
of 0.6 V. As a result, as shown in Figure 7, the ADC performs sampling and conversion only when a
radiation spike is injected and Vout is lower than VREF. The peak value of Dout shows good agreement
with a peak value of Vout.
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Figure 8 presents the measured performances of the 10 bit SAR ADC in order to show how
accurately Vout is converted to Dout when fs = 4.096 MHz. Figure 8a shows the measured output
spectrum when a 165.625-kHz sine wave is applied to the SAR ADC. The SAR ADC achieves a
signal-to-noise and distortion ratio (SNDR) of 53.9 dB and an effective number of bits (ENOB) of 8.65,
which means that the ADC has a resolution of 1.8 V/28.65 = 4.44 mV. In addition, as shown in Figure 8b,
the differential nonlinearity (DNL) and integral nonlinearity (INL) are measured below 0.5 least
significant bit (LSB). That is, this SAR ADC has sufficiently good linearity. As a result, this designed
ADC achieves high resolution and obtains reliable data even at high fs.

Figure 9 shows a die photograph of the proposed radiation sensor interface integrated circuit (IC).
The proposed sensor interface is implemented in a 180-nm standard CMOS, and the fabricated IC
occupies a small area of 0.715 mm2. In particular, the proposed PTSG occupies a much smaller area
than the SAR ADC, which occupies a dominant portion of the total area.

A comparison of the performance of the proposed sensor interface with prior interfaces is shown
in Table 1. The proposed interface for mobile dosimeters includes an ADC, unlike prior interfaces,
and its performance is also described. When the ADC continuously operates, the ADC consumes
0.51 mW. However, when the peak-triggered sampling scheme is used, the power consumption of the
ADC is 0.11 mW and 0.01 mW for intervals of 10 µs and 100 µs, respectively. The CSA and BUF are
implemented with relatively low power consumption.
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Table 1. Performance summary and comparison.

Parameters [6] [7] This Work

Process (nm) 500 350 180
Structure CSA + Shaper CSA + Shaper CSA + BUF + ADC

Area/Ch (mm2) 1 N/A 0.715

Power/Ch (mW) 6 1 1 (CSA+BUF)
< 0.11 (ADC)

fs (MHz) N/A N/A 4.096
SNDR (dB) N/A N/A 53.9
SFDR (dB) N/A N/A 67.4

ENOB (bits) N/A N/A 8.65
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5. Conclusions

We presented a radiation sensor interface using a peak-triggered sampling scheme. The proposed
sampling scheme drastically reduces the power consumption of the ADC because the operation time
of the ADC is reduced significantly. In addition, when the maximum allowable power consumption is
limited, our sensor interface can use a higher f s than conventional ones. Therefore, our sensor interface
accurately quantizes the peak value of the CSA’s output without a shaper, which causes distortion.
As a result, our proposed radiation sensor interface that achieves low power consumption and high
accuracy is suitable for mobile dosimeters.
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