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Beyond the wide use of tamoxifen in breast cancer chemotherapy due to its estrogen
receptor antagonist activity, this drug is being assayed in repurposing strategies against a
number of microbial infections. We conducted a literature search on the evidence related
with tamoxifen activity in macrophages, since these immune cells participate as a first line-
defense against pathogen invasion. Consistent data indicate the existence of estrogen
receptor-independent targets of tamoxifen in macrophages that include lipid mediators
and signaling pathways, such as NRF2 and caspase-1, which allow these cells to undergo
phenotypic adaptation and potentiate the inflammatory response, without the induction of
cell death. Thus, these lines of evidence suggest that the widespread antimicrobial activity
of this drug can be ascribed, at least in part, to the potentiation of the host innate immunity.
This widens our understanding of the pharmacological activity of tamoxifen with relevant
therapeutic implications for infections and other clinical indications that may benefit from
the immunomodulatory effects of this drug.
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INTRODUCTION

Tamoxifen is widely used in the treatment of breast cancer for its anti-proliferative activity mediated by
the inhibition of estrogen signaling (Patel and Bihani 2018). The decades-long clinical experience along
with a favorable pharmacokinetic profile lead to tamoxifen exploitation against other proliferation-related
pathologies, such as estrogen-unrelated cancer and microbial infections (Martinez de Dueñas et al., 2014;
Montoya and Krysan 2018; Clifford et al., 2020; Su et al., 2021). These off-target indications pertain
repurposing strategies that make use of drugs already on themarket for other clinical indications, in order
to meet the urgent need of novel therapeutics without the expensive and long lasting process of drug
discovery (Gil-Gil et al., 2019; Rana et al., 2019; Sharma et al., 2020); of interest to this review is the use of
tamoxifen to overcome antimicrobial drug resistance and fight against new infectious diseases.

Beyond estrogen interference and antiproliferative activity, mounting evidence highlight molecular and
cellular responses that implicate the involvement of host immune cells. Sincemacrophages are key immune
cells in the fight against cancer and pathogen invasion (Sica et al., 2015), using “tamoxifen” AND
“macrophages”, “immunity”, “off-target effects”, “infections”, “repurposing” as keywords, we conducted a
systematic search through the PubMed electronic database of all types of studies and collected evidence,
according to scientific impact and clinical relevance, on the immunomodulatory activity of tamoxifen in
macrophages and infections.
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MOLECULAR AND CELLULAR
MECHANISMS OF TAMOXIFEN ACTION

On and Off-Targets
Orally administered tamoxifen undergoes hepatic conversion
into active metabolites, such as 4-hydroxytamoxifen (4HT),
that compete with the endogenous sex steroid hormones,
estrogens, for binding to intracellular receptors, estrogen
receptor alpha (ERα) and beta (ERβ). In fact, 4HT interacts
with ERs with a similar binding affinity as the endogenous
estrogen, 17β-estradiol (E2), whereas the prodrug shows a 100-
fold lower affinity than 4HT (Rich et al., 2002). ERs are
transcription factors that undergo conformational
modifications, upon estrogen binding, that induce the receptor
to interact with DNA elements within target gene promoters and
transcriptional coregulators. Rapid cytoplasmic responses may
also be induced by ERs or by estrogen binding to a membrane
associated receptor, the G protein-coupled estrogen receptor
(GPER), to which 4HT binds with a 1.000-fold lower affinity
than ERs (Prossnitz and Arterburn 2015).

Tamoxifen and other ER ligands are defined as selective
estrogen receptor modulators (SERMs), in that they induce
tissue-selective ER agonist or antagonist effects depending on
the interaction with tissue-selective transcriptional coregulators
that are recruited by each ligand-specific receptor conformation
(McDonnell et al., 2021). As a result, tamoxifen is clinically used
in ERα-positive breast cancers as an antagonist of estrogen
signaling in mammary epithelial cells, yet it provides
secondary ERα-agonist effects in bone, preventing osteoporosis
(Rachner et al., 2018), and in endometrium, leading to an
increased risk of endometrial cancer (Braun, Overbeek-Wager,
and Grumbo 2016).

Importantly, compelling evidence points to “off-target”
responses to the prodrug, tamoxifen, which are mediated by
ERα-unrelated, low-affinity effectors described in various cell
lineages and physio-pathological conditions. Candidate
mediators include PKC (protein kinase C), the transcription
factors PPARγ (peroxisome proliferator-activated receptor

gamma), GR (glucocorticoid receptor), STAT1 (signal
transducer and activator of transcription 1) and NRF2
(nuclear factor erythroid 2-related factor 2) as well as other
undefined targets that regulate calcium homeostasis or lipid
and sphingolipid metabolism (Mésange et al., 2002; Kim et al.,
2008; Matsuoka et al., 2009; Jiang et al., 2013; Bekele et al., 2016;
Feng et al., 2017; Hasegawa et al., 2018; Govindarajah et al., 2019;
Clifford et al., 2020).

In clinical practice, the existence of on and off-biological
targets translates into distinct tamoxifen therapeutic regimens
according to the clinical indication (Figure 1). In the case of ERα-
positive breast cancer, tamoxifen is prescribed at the daily dose of
20–40 mg/die for years-long treatments. On the other hand,
250–500 mg/die and short-term therapies are prescribed in
ERα-independent conditions, such as microbial infections or
other ERα-negative oncological or fibrotic diseases (Skapek
et al., 2013; Odia et al., 2015; Quast et al., 2016; Ngan et al.,
2019). Thus, micromolar concentrations of tamoxifen are
reached within the tumour mass, as consequence of drug
accumulation in the mammary adipose tissue with chronic
low-dose regimens, and in the blood of patients undergoing
short-term tamoxifen therapy for ERα-independent conditions
(Trump et al., 1992; Kisanga et al., 2004; MacCallum et al., 2000).
In other words, both chronic and acute pharmacological settings
provide high tamoxifen concentrations that supposedly engage
low-affinity molecular targets to accomplish the overall
therapeutic success.

Antiproliferative and Oxidative Stress
Responses
Cell toxicity induced by high tamoxifen concentrations was
originally observed in epithelial cells and associated with
inhibition of cell proliferation and induction of apoptosis by
estrogen-independent mechanisms, later extended also to non-
epithelial cells, such as hepatocytes, fibroblasts and retinal cells
(Cho et al., 2012; Yokoyama et al., 2018). These observations led
to exploit tamoxifen-induced cytotoxicity in ERα-negative cancers,

FIGURE 1 | Tamoxifen therapeutic regimen according to on- or off-target indications. Tamoxifen is administered at different concentrations and timings according
to on-target, ERα-dependent or off-target, ERα-unrelated indications and may reach micromolar drug concentrations in patient plasma or tissues.
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as well as in infections, envisioning a direct pathogen-killing effect of
the drug, and fibrosis, for tamoxifen inhibitory effect on proliferation
and activity of renal and peritoneal fibroblasts (Vaglio et al., 2006;
Dellê et al., 2012; Ma et al., 2015; Wang et al., 2018).

The mechanism of action of tamoxifen cytotoxicity when used
at concentrations above the nanomolar range has been linked to

the induction of oxidative stress, through the engagement of ERα-
unrelated, undefined mediators that activate oxidative enzymes
or modulate Ca2+ homeostasis, increasing the intracellular levels
of reactive oxygen species (ROS) or oxidized molecules (Lee et al.,
2000; Nazarewicz et al., 2007). Recent molecular studies ascribed
tamoxifen responses to the activation of the redox sensitive

TABLE 1 | Antimicrobial activity of Tamoxifen.

Type of
Study

Pathogen Experimental Model Tamoxifen
Dosage

Tamoxifen Activity References

In vitro L. amazonensis Peritoneal macrophages 5–20 µM Alkalinization of intracellular vacuoles and
suppression of parasite infection

Miguel et al.
(2007)

HCV Huh-7 cells 1 µM Suppression of viral genome replication Watashi et al.
(2007)

Candida
C. neoformans Yeast cells 32–64 μg/ml

Disruption of calmodulin-related processes and cell
integrity

Dolan et al.
(2009)

S. cerevisiae
L. braziliensis
L. chagasi

BMDMs 1–9 µM Abrogation of intracellular infection Miguel et al.
(2009)

EBOV VERO E6, HepG2 cells 1–10 µM Potent inhibition of viral infection Johansen et al.
(2013)

HCV Huh-7 cells 0,1–10 µM Inhibition of multiple steps of viral life cycle Murakami et al.
(2013)

C. neoformans J774 macrophage-like cells 8 μg/ml Reduced viability within macrophages Butts et al. (2014)
MERS-CoV VERO E6 cells 0,1–100 µM Antiviral effect observed by drug screening Dyall et al. (2014)
SARS-CoV
M. tubercolosis RAW 264.7 3–12 μg/ml Reduced viability within macrophages Jang et al. (2015)
EBOV HepG2, Hela, HEK293T cells 1–15 µM Cholesterol and Ca2+ accumulation, cellular

sphingosine reduction and viral infection inhibition
Fan et al. (2017)

P. falciparum Parasite culture 10 µM Substantial changes in sphingolipid biosynthesis Piňero et al.
(2018)

C. neoformans
C. gattii

Fungal isolates 2–16 μg/ml
Anti-cryptococcal effect alone and in combination
with amphotericin

Hai et al. (2019)

EBOV-like virus Hela cells 0,1–100 µM Interference with viral infection through Ca2+ channel
blockade

Penny et al.
(2019)

EBOV
ASFV VERO E6 cells 10 µM

Inhibition of Ca2+ channels, accumulation of
cholesterol and inhibition of viral infection

Galindo et al.
(2021)SARS-CoV-2

SARS-CoV-2 VERO E6 cells 10 µM Inhibitory effect on viral infection Imamura et al.
(2021)

SARS-CoV-2 VERO E6, Caco-2 cells 1–10 µM Reduction of S protein production Zu et al. (2021)

In vivo Candida Mouse 200 mg/kg/day,
7 days, o.g

Decrease of kidney fungal burden Dolan et al.
(2009)

Leishmania Mouse, hamster 20 mg/kg/day,
15 days, i.p

Reduction of parasite burden Miguel et al.
(2009)

C. neoformans Mouse 200 mg/kg/day,
3 days, o.g

Improvement of fluconazole anti-cryptococcal activity Butts et al.
(2014)

SARS-CoV-2 Mouse 60 mg/kg/day,
3 days, i.p

Inhibition of viral RNA loads and inflammatory
response

Zu et al. (2021)

Clinical
studies

L. braziliensis Patients with cutaneous
leishmaniasis

40 mg/day, orally Improvement of cure rates in combination with
standard treatment for leishmaniasis

Machado et al.
(2018)0.1% cream,

topic use
20 days

C. neoformans Patients treated with fluconazole
and amphotericin B

300 mg/day, orally Potential synergistic effect with classic antifungal
drugs

Ngan et al.
(2019)

Summary of evidence on tamoxifen efficacy against a wide spectrum of pathogens.Legend: L. amazonensis/braziliensis/chagasi, Leishmania; HCV, Hepatitis C Virus; C. neoformans/gattii,
Cryptococcus; S. cerevisae, Saccharomyces; BMDMs, Bone Marrow-derived Macrophages; EBOV, Ebola Virus; MERS-CoV, Middle East Respiratory Syndrome Coronavirus; SARS-
CoV(-2), Severe Acute Respiratory Syndrome Coronavirus (2); P. falciparum, Plasmodium; ASFV, African Swine Fever Virus; o.g., oral gavage; i.p., intraperitoneally.
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molecule NRF2, a transcription factor that regulates the
expression of antioxidant proteins and promotes cell survival,
with interesting implications for antineoplastic drug resistance
mechanisms (Itoh et al., 1999; Kim et al., 2008; Bekele et al., 2016).
Consistent evidence also indicates activation of inflammasomes
and caspases as toxic responses to tamoxifen mediated by
oxidative damage and subsequent activation of autophagy and
cell apoptosis (Bowie et al., 2004; Cho et al., 2012).

THE ANTIMICROBIAL ACTIVITY OF
TAMOXIFEN

Tamoxifen is effective against a broad range of life-threatening
infections. As reported in Table 1, compelling evidence shows
that tamoxifen counteracts the proliferation of bacterial species, a
wide spectrum of fungal pathogens, human parasites and viruses,
including the recently emerged species like Ebola, SARS-CoV,
MERS-CoV and SARS-CoV-2 viruses (Dyall et al., 2014; Fan
et al., 2017; Montoya and Krysan 2018; Imamura et al., 2021; Zu
et al., 2021; Allegretti et al., 2022).

Importantly, specific pharmacological features of tamoxifen,
mainly its safety profile associated with only mild side effects, oral
bioavailability and wide tissue distribution, make a short-term
administration of tamoxifen more desirable as opposed to
classical anti-infective agents, such as the antifungal
fluconazole and amphotericin B, endowed with scarce
diffusion and a high degree of toxicity (Butts et al., 2014; Hai
et al., 2019; Ngan et al., 2019).

Some pathogen-specific targets have been proposed for
tamoxifen antimicrobial activity, such as the calmodulin-
dependent signaling pathway in yeast and bacterial cells, the
sphingolipid biosynthesis in parasites or viral life cycle proteins
(Watashi et al., 2007; Dolan et al., 2009; Murakami et al., 2013;
Butts et al., 2014; Piñero et al., 2018). Yet, the wide spectrum of
antimicrobial activity of this drug hints to a host-mediated
protective system able to kill microbial cells, namely innate
immunity. Surprisingly, the activity of tamoxifen has been
scarcely investigated in innate immune cells, like macrophages,
despite the clinical and pharmacological implications of this
mechanism of action.

Tamoxifen Action Against Enveloped
Viruses
Studies on enveloped viruses provided clear evidence for host-
mediated, anti-infective actions of tamoxifen and insights into the
molecular mechanisms that might also pertain a wider spectrum
of anti-microbial activities. Enveloped viruses are endowed with a
lipid coating, made of virus-encoded proteins and host-derived
lipid membranes. These viral proteins allow the interaction with
specific plasma membrane receptors and viral entry within host
cells, where viruses are processed from early to late endosomal
and, eventually, lysosomal pathways. However, in productive
infections, the concerted action of endolysosomal enzymes, ion
channels and sphingolipids metabolism increases the outflow of
calcium ions and the redistribution of cholesterol, inducing

structural changes in the viral and host endolysosomal
membranes that merge to form a pore through which the viral
genome can access to the cellular sites where replication begins
(Mercer et al., 2020).

Tamoxifen and other SERMs are able to inhibit the infections
of epithelial cells driven by enveloped viruses, such as Ebola and
Hepatitis C virus, without affecting viral entry or endolysosome
acidification, but interfering with steps of the viral life cycle that
occur after binding and internalization (Johansen et al., 2013;
Murakami et al., 2013). Drug responses were shown to be
independent from ERs, yet the underlying mechanism of
action is still unclear. It is known that SERMs act similarly to
other drugs, called cationic amphiphilic drugs (CADs). Due to
their lipophilic structures, CADs insert in phospholipid bilayers,
particularly endolysosomal membranes where their hydrophilic
heads become increasingly protonated by the low endosomal pH.
As ionized forms, CADs cannot leave endolysosomes and
accumulate up to levels that disturb the metabolism and
transport of lipids and proteins (Breiden and Sandhoff 2019).
Endosomal ceramide metabolism plays a key role in viral
infections, with sphingosine formation that increases calcium
efflux and induces the fusion of viral-host membranes. Ceramide
metabolism takes place within endosomal lipid rafts, which are
microdomains enriched with proteins that regulate signal
transduction and other cellular functions, that may also
represent druggable targets. Accumulation and interactions of
CADs within lipid rafts cause the reduction of cellular
sphingosine and increase in endo-lysosomal calcium and
cholesterol levels, hindering viral genome exit. Therefore,
CADs have been proposed as promising drugs for inhibiting
viral infections (Salata et al., 2017). Importantly, tamoxifen
activity against viral infections, such as Ebola or SARS-CoV-2
infections, has been associated with inhibition of sphingolipid
metabolism and alterations in endosomal calcium and cholesterol
traffic (Fan et al., 2017; Penny et al., 2019; Galindo et al., 2021).
The increase in ceramide formation and reduction of sphingosine
levels by tamoxifen has been also widely described in cancer cells
(Furlong, Mader, and Hoskin 2006; Chapman et al., 2010; Morad
et al., 2013). The underlying mechanism, although still poorly
defined, has been reconciled with inhibition of the acid
ceramidase enzyme, by cathepsin-mediated proteolysis, and
prevention of ceramide glycosylation (Morad and Cabot 2015).

MACROPHAGES AS CELLULAR TARGETS
OF TAMOXIFEN

The immune activity of tamoxifen has received little attention so
far, although the changes in abundance and function of immune
cells, reported in clinical studies with tamoxifen, could participate
in drug efficacy (Behjati and Frank 2009).

Macrophages are immune cells mainly committed to the
orchestration of inflammation and immune responses. By
recognizing a limitless number of physio-pathological signals,
macrophages rapidly acquire distinct immune phenotypes
defined within two activation states, the classical, pro-
inflammatory M1 and the alternative, anti-inflammatory M2
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phenotypes. These represent two hypothetical and simplistic
extremes of a broad spectrum of intermediate phenotypes
acquired by these cells, under the influence of the
microenvironment (Locati, Curtale, and Mantovani 2020). M1
activation, as induced by viral and bacterial infections, is
characterized by the production of ROS and proinflammatory
mediators, such as IL-1β (interleukin one beta), TNF-α (tumor
necrosis factor alpha) and IL-6 (interleukin 6), which provide a
robust microbe-killing activity (Shapouri-Moghaddam et al.,
2018). Anti-inflammatory M2 macrophages are activated by
Th2 cytokines, produce signals that promote tissue repair, and
actively suppress inflammation (Mantovani and Locati 2013).

Macrophage On and Off-Targets and
Responses
It has been shown that GPER and ERβ do not mediate the off-target
macrophage responses to tamoxifen, since macrophages do not
express ERβ and GPER-selective activation elicits different
responses as those induced by tamoxifen. Instead, the ERα-
mediated effects of E2 were inhibited by tamoxifen when assayed
at 100-fold higher concentrations than nanomolar levels of the
physiologic ligand, providing evidence for being an estrogen
antagonist in innate immune cells (Pepe et al., 2018, 2021).
Importantly, also ERα-independent responses were identified
when using micromolar concentrations of tamoxifen. The
molecular mechanism of tamoxifen activity in macrophages was
initially associated with the activation of PKC and transcription
factors, such as GR, PPARy and STAT1 (Komi et al., 2001; Jiang
et al., 2013). More recently, the PI3K (phosphatidylinositol 3-
kinase)/AKT pathway and NRF2 activation have also been
proposed as additional immune targets of tamoxifen, increasing
the expression of NRF2 target genes, such as Hmox-1 (heme
oxygenase 1), or Vegf-a (vascular endothelial growth factor A)
and inhibiting other immune polarization markers such as Il-1b
or Arg-1 (arginase 1) (Feng et al., 2018; Pepe et al., 2021). This
finding is particularly interesting, considering that NRF2 activation
in macrophages prompts protective responses against infections
through phagocytosis and autophagy of bacterial or viral
particles, induction of intracellular detoxification reactions and
potentiation of the inflammatory response (Hai et al., 2011;
Harvey et al., 2011; Mornata et al., 2020; Furuya et al., 2016;
Bewley et al., 2018; Zhao et al., 2014).

Differently from cytotoxicity in epithelial or hepatic cells, off-
target effects of tamoxifen do not induce macrophage cell death.
Earlier studies reported the influence of tamoxifen on cholesterol
homeostasis and lipid metabolism of macrophages, supporting
the beneficial consequences of this drug against foam cells
formation and atherosclerosis (Dong et al., 2011; Fernández-
Suárez et al., 2016; Jiang et al., 2013; Yu et al., 2016). Notably, drug
activity in macrophages has been recently extended to immune-
metabolic responses. In fact, tamoxifen was shown to potentiate
the M1 phenotype, increase phagocytosis and induce active
caspase-1 formation (Pepe et al., 2021). Transformation of
caspase-1 precursor into the active enzyme promotes IL-1β
maturation and secretion by macrophages, thus controlling
pathogen infections (Man, Karki, and Kanneganti 2017).

Caspase-1 activation may eventually associate with cell death
programs; however, IL-1β secretion can occur also independently
from cell lysis (Evavold et al., 2018). This latter mechanism has
been observed for tamoxifen, which induces active caspase-1
formation in macrophages without affecting cell viability (Pepe
et al., 2021). A summary of the possible targets proposed by
molecular and cellular studies for tamoxifen activity in
macrophages is reported in Figure 2. Whether this
immunoregulatory activity underlies the widespread
antimicrobial effects of tamoxifen is still unknown. Some data
report the efficacy of this drug against the growth of pathogens
that, interestingly, proliferate inside macrophages, as in the case
of Salmonella, Mycobacteria spp and Cryptococcus neoformans
(Miguel et al., 2009; Butts et al., 2014; Jang et al., 2015; Lim et al.,
2018; Hai et al., 2019; Ngan et al., 2019). Tamoxifen was shown to
modify the pH on intracellular vacuoles in infected macrophages,
with a beneficial effect in controlling the infection by intracellular
parasites such as Leishmania. (Miguel et al., 2007). This suggests
that the immunomodulatory effects of this drug in macrophages
may provide antimicrobial effects in parallel with a direct
antiproliferative activity in microbes.

CONCLUSION AND FUTURE DIRECTIONS

Available data in the literature suggest that tamoxifen increases
the ability of macrophages to activate an inflammatory response

FIGURE 2 | Tamoxifen off-target effects in macrophages. Tamoxifen
regulates macrophage activation by inducing PI3K-NRF2 pathway, caspase-
1 formation and by modulating lipid metabolism and calcium homeostasis, as
well as other possible targets identified in other cell types, such as PKC
and oxidative stress. These molecular mediators and cell responses may
represent a host-mediated mechanism that contributes to the beneficial
activity of tamoxifen against pathogen and viral infections.
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and generate a hostile environment for invading microbes.
Although still preliminary, these cellular and molecular
responses are triggered by concentrations of tamoxifen that
are ensured in the clinical practice by therapeutic regimens
that use higher, yet safe and well tolerated, dosages than those
used in breast cancer (Skapek et al., 2013; Odia et al., 2015; Ngan
et al., 2019). These data strongly support the hypothesis that the
immune-mediated effects of tamoxifen contribute to the efficacy
of this drug against a wide spectrum of pathogen infections and
sustain tamoxifen repurposing in infectious diseases, alone or in
combination with standard treatments (Machado et al., 2018;
Ngan et al., 2019; Ribeiro et al., 2021).

Importantly, some specific mediators of the off-target effects
of tamoxifen have been identified, such as NRF2 signaling,
caspase-1 activation and cholesterol redistribution. These
pathways are known to control macrophage
immunometabolism and inflammatory responses, thus being
essential in containing infections. Moreover, tamoxifen was
shown to induce neuroprotective effects by regulating
microglia activation, further expanding the tissue distribution
of drug immune activity (Barreto, Santos-Galindo, and Garcia-
Segura 2014; Wu et al., 2021). Therefore, further studies are
needed not only to upraise the clinical relevance of tamoxifen
activity in macrophages but also to advance target identification
and drug development in order to improve therapeutic options.

Indeed, the wide availability of drugs like tamoxifen that easily
permeate host immune cells, where they trigger beneficial
responses, represents a therapeutic advantage for an extensive
spectrum of infections, particularly against multidrug-resistant
pathogens, where classical therapeutic agents fail, or when
infections are driven by intracellular microbes that survive
within macrophages. Finally, beyond anti-infective strategies in
which tamoxifen repurposing has already proved its efficacy,
exploitation of host-mediated responses to tamoxifen will
possibly lead to substantial advancement in therapeutic
approaches of other proliferation-related pathologies, such as
oncological or fibrotic diseases.
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