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Abstract 

Clinical Element Models (CEMs) were developed to provide a normalized form for the exchange of clinical data.  
The CEM specification is quite complex and specialized knowledge is required to understand and implement the 
models, which presents a significant barrier to investigators and study designers.  To encourage the adoption of 
CEMs at the time of data collection and reduce the need for retrospective normalization efforts, we developed an 
approach that provides a simplified view of CEMs for non-experts while retaining the full semantic detail of the 
underlying logical models.  This allows investigators to approach CEMs through generalized representations that 
are intended to be more intuitive than the native models, and it permits them to think conceptually about their data 
elements without worrying about details related to the CEM logical models and syntax.  We demonstrate our 
approach using data elements from the Pharmacogenomics Research Network (PGRN). 

Introduction 

Data normalization requires transforming information into a common semantic and syntactic representation.  
Normalization projects are often conducted within a defined community, consortia, or network in an effort to 
improve data interoperability among members.  These efforts are often conducted retrospectively and include a 
review of data dictionaries to identify groups of data elements that share common semantic meaning1,2.  Once 
sufficiently similar data elements have been identified a new data element is proposed as a local "standard" for use 
within the defined research context.  While local standards may facilitate the collection and analysis of data for a 
given purpose or project, the narrow scope in which they were defined often prevents their reuse in other contexts, 
thereby leading to the development of additional context-specific standards.  The proliferation of local data 
standards does not address barriers to interoperability on a larger scale3,4.  Even in cases where local standards are 
utilized, data sets generated by a research study often remain in a standalone data repository that is not integrated 
with other clinical systems because of difficulties aligning the data elements to a given EMR data model.  If the data 
is not integrated and accessible, researchers will have limited ability to discover, mine, and reuse the data. 

These issues may be addressed by Clinical Element Models (CEMs), which are hierarchical, logical models of 
clinical data that can be readily aligned to EMR data models5,6.  Our previous work2 demonstrated the use of CEMs 
to standardize pharmacogenomics data elements collected from the Pharmacogenomics Research Network (PGRN)7.  
In parallel, the SHARPn project demonstrated how CEMs can be used as an implementation-independent means for 
exchanging clinical data8,9.  Together, these projects illustrated how CEMs can be used to avoid the creation of local 
data standards and to decompose precoordinated data elements into forms that better fit EMR data models. 

The CEM standard is quite complex, however, and specialized knowledge and training is required to implement the 
models appropriately.  Therefore, the same complexity that makes the standard a robust and valuable resource 
becomes a barrier to investigators that lack the knowledge to adopt it.  The goal of this project was to address that 
limitation by developing a system that would enable investigators to utilize the CEM standard for standardized data 
representation without first requiring them to acquire specialized knowledge about the specification. 

To accomplish this goal we introduced a layer of abstraction over the CEMs that allows investigators to think 
conceptually about their data elements without getting bogged down in implementation details.  This layer of 
abstraction, termed "Patterns", also illustrates how "primitive" data elements within CEMs can be used to construct 
more complex, semantically precoordinated data elements.  We demonstrate our approach using use cases from the 
Pharmacogenomics Research Network (PGRN), but this method is also applicable to other data standards and 
scientific domains3. 

Materials and Methods 

The "Pattern" is at the center of our proposed approach.  Patterns group together the CEM attributes that are 
necessary to represent a given abstract data element, which eliminates the need for an investigator to examine the 
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underlying models and determine themselves how to utilize the standard.  The 
Pattern meta-model, the creation of patterns for the PGRN, and the evaluation 
of this approach are described below. 

Clinical Element Models (CEMs) 

GE and Intermountain Healthcare developed a large library of CEMs, which 
are hierarchical, logical models of clinical data.  CEMs are defined using the 
Constraint Definition Language (CDL)5 and are available through the CEM 
Browser4 in both CDL and XSD format.  The CEMs that were used for this 
project were loaded into a local database to support aggregation and mapping 
at the attribute level.  Figure 1 shows a portion of the SHARPn "Patient" CEM.  
The hierarchical model includes composite attributes (e.g., PersonName) that 
contain atomic attributes (e.g., FamilyName) and HL7 V3 datatypes (e.g., ST).  
Each attribute has a "key" (e.g., PersonName_KEY_ECID), a coded term that 
provides semantic meaning for the attribute, and cardinality (e.g., 1..M). 

Pattern Meta-Model 

Patterns group all of the attributes that are necessary to represent a given 
abstract data element into a single container, thereby eliminating the need for 
an investigator to examine the underlying CEMs and try to determine 
themselves how to represent their data using the standard models.  A 
conceptual diagram of the Pattern meta-model is shown in Figure 2. 

A Pattern has a name and description, and is composed of one or more 
Sections.  Sections are logical groupings of one or more related CEM 
attributes.  Sections have a name, definition, and an ordered list of 
attributes.  Each attribute in a Section has a display name, datatype, 
and description.  Sections can contain attributes from different CEMs 
or from different branches within a CEM hierarchy. 

The ability to group attributes from structured, logical models into 
arbitrary sections enables the creation of conceptual abstract data 
elements, which can then be instantiated as study-specific data 
elements.  It is important to note that none of the semantics of the 
underlying models are altered.  Detailed mappings are maintained between the elements used in a Pattern and their 
respective source models.  These mappings, as well as the source models themselves, can be hidden to simplify the 
information that is presented to the consumer. 

Pattern Creation 

The creation of a Pattern by a knowledge engineer includes three steps: the identification of an abstract data element, 
the identification of CEM attributes that capture the semantics of the data element, and the definition of the Pattern 
itself.  This process helps to transform study-specific data elements into standardized representations that are more 
likely to be EMR-compliant and usable for secondary purposes. 

The first step in creating a reusable abstract data element is to identify study-specific elements that can be 
generalized.  It is common for investigators to define data elements based on a hypothesis or data analysis plan, as it 
is convenient to think about data in terms of how it will be used.  Unfortunately, this often leads to the generation of 
study-specific, non-reusable data that is difficult to enter into an EMR due to excessive semantic pre-coordination. 
For example, it is common to collect age-based data in clinical trials.  In previous studies we observed data elements 
derived from questions such as "how old was the patient when diagnosed with diabetes" and "at what age did you 
first experience palpitations"1,2.  The answer to each of these questions, representing the age of the patient in years, is 
captured as a single integer.  Both of these data elements can be generalized as the abstract data element "age at 
diagnosis of disease", where the specific disease is not specified until the data element is instantiated. 

Once an abstract data element has been identified it must be decomposed into atomic concepts that are represented 
as attributes in CEMs.  In our experience, this almost always results in the expansion of the number of data elements 
that need to be captured because data elements used in research tend to have some degree of semantic pre-
coordination.  For example, the abstract data element "age at diagnosis of disease" requires several attributes from 

Figure 1:  A portion of the 
SHARPn "Patient" CEM 

Figure 2:  A conceptual diagram of the 
CEM Pattern meta-model.  Not all 
components are shown (see text). 
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two different CEMs.  The concept of "disease" is represented by a term from a controlled terminology (e.g., ICD, 
SNOMED-CT), and is captured in an attribute from the Disease/Disorder CEM.  The concept of "age at diagnosis" 
is the result of a calculation that computes the difference between the date of diagnosis (from the Disease/Disorder 
model) and the patient's date of birth (from the Patient model) (Figure 3).  Therefore, a minimum of three attributes 
are required for this abstract data element:  disease code, date of diagnosis, and patient date of birth. 

A Pattern can be created once attributes have been identified.  Since Patterns are intended to be intuitive, conceptual 
representations it may be necessary to provide user-friendly names or definitions instead of using the formal, 
technical ones that are part of the underlying logical model.  It is important to note that the semantic meanings of the 
attributes are not changed and that a precise mapping is maintained between a CEM attribute and its representation 
within a Pattern.  

Additional attributes can be added to increase the applicability of the Pattern to other, semantically similar data 
elements.  This is consistent with the notion of creating a representation of a generalized, abstract data element.  For 
example, the abstract data element "age at remission of disease" is closely related to "age at diagnosis of disease".  
The only difference between the two is whether the start date (for diagnosis) or end date (for remission) of the 
disease is used in the calculation of age.  Therefore, it is reasonable to add this attribute to the pattern, further 
abstracting the pattern to simply "age at disease" (Figure 3).  Note that not all attributes within a Pattern need to be 
used for a specific implementation, so instantiating a data element that captures age at diagnosis would not require 
the disease end date to be populated. 

After a Pattern has been created, documentation is added to explain the purpose of the Pattern, the logical model(s) it 
was derived from, and how it should be instantiated for a particular implementation or research project.  

User Interface 

A web-based graphical user interface was developed to facilitate pattern creation (Figure 4).  The figure illustrates 
the workflow for creating a Pattern with the web-based user interface.  A new pattern is given a name and 
introductory text (which may include HTML tags).  One or more sections are then created, which are populated with 
attributes that represent the semantics of the abstract data element.  Attributes are selected from one or more CEMs 
that are stored in a local database.  Attributes can be given a user-friendly display name, description, and order, 
which is displayed when the user views the completed pattern detail screen. 

Figure 3:  Identification of attributes for a Pattern.  Attributes are selected from the Disease/Disorder 
model (left) and the Patient model (right) for the “Age at Disease” Pattern.  See text for details. 
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Application and Evaluation 

We evaluated this approach by extending our previous work on the semantic harmonization of data dictionaries from 
the Pharmacogenomics Research Network (PGRN)7.  Due to the large size of the data set, RRF and QZ grouped 
PGRN data elements into arbitrarily-defined categories2 to facilitate review and pattern identification.  The data 
elements in each category were carefully reviewed and candidate patterns were identified, created, and documented 
using the process described above for each group of semantically similar data elements.  This process was repeated 
until the majority of the PGRN data elements were mapped to a Pattern and a variety of Patterns were created. 

The ability to use Patterns to capture the semantics represented by the PGRN data elements was evaluated by 
reviewing the mappings between each data element and its respective Pattern. In particular, QZ and RRF determined 
how each attribute would be used, and how they might be combined, to represent a given PGRN data element.  The 
results were recorded as instructions for how the Pattern could be used to represent a given data element.  If the 
initial definition of a Pattern could not fully represent a PGRN data element, the Pattern was extended as needed. 

Results 

The Pattern approach developed by this project was intended to provide an intuitive way for investigators to use 
standardized but highly complex CEMs for data collection without first acquiring specialized knowledge.  To 
determine whether this approach could successfully represent the semantics of data elements used by research 
studies while still maintaining a link to the underlying formal models, which is necessary to enable transformation of 
the data into CEM syntax, we performed two evaluations.  First, the mappings of 2,089 PGRN data elements that 
were previously mapped directly to CEMs were examined to verify that the semantics were retained when the data 
elements were mapped to one of the 16 Patterns created for this study (Table 1).  All mappings were found to be 
semantically complete.  Second, to demonstrate that the Pattern approach significantly reduced the complexity of the 
models by retaining only those attributes that were required to express the semantics of the data elements, the 
reduction in the number of attributes was quantified for each Pattern (Table 1).  All Patterns reduced the number of 
attributes that an adopter would have to consider by >90%. 

Figure 4:  User interface for Pattern creation.  The figure illustrates the workflow for creating 
a Pattern with the web-based user interface.  The "age at disease" pattern is shown as an example. 
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  Number of Attributes 
Pattern Source CEMs Source CEMs Pattern Difference (%) 
Address Patient 96 8 -88 (-92%) 

Person Identifier Patient 96 10 -86 (-90%) 
Telecom Patient 96 6 -90 (-94%) 

Demographics Patient, 
Primary Cause of Death 100 8 -92 (-92%) 

Age at Disease Disease/Disorder, Patient 221 4 -217 (-98%) 
Disease Disease/Disorder 125 12 -113 (-90%) 

Disease History Disease/Disorder 125 4 -121 (-97%) 

Family History of Disease Disease/Disorder, Personal 
Relationship Type 125* 6 -119 (-95%) 

Drug Administration Noted Drug 113 17 -96 (-85%) 
Drug Admin. History Noted Drug 113 5 -108 (-96%) 

Laboratory Observation 
(Coded Result) Lab Observation Coded 187 6 -181 (-97%) 

Laboratory Observation 
(Quantitative Result) Lab Observation Quantitative 190 6 -184 (-97%) 

Blood Pressure Systolic BP Meas., Diastolic 
BP Meas. 115 3 -112 (-97%) 

Mean Arterial Pressure Mean Arterial Pressure Meas. 115 2 -113 (-98%) 
Heart Rate Heart Rate Meas. 33 3 -30 (-91%) 

Height Weight 
Measurement 

Height Meas., 
Body Weight Meas., Body 

Mass Index Meas. 
76 4 -72 (-95%) 

Table 1:  Patterns created for this study.  The count of attributes from source models included the CEM elements 
of type item, modifier, qualifier, and attribution.  Meas = Measurement.  *The Personal Relationship Type model 
was not finished at the time of writing and therefore was excluded from the count. 
 

Discussion and Conclusion 

While CEMs provide a robust framework for the semantic representation and exchange of clinical data, their 
complexity can be a barrier to adoption. To facilitate the use of CEMs by investigators we sought to develop an 
approach that would present CEM content in a way that is more intuitive to non-informaticians while still retaining 
the full semantics of the underlying model. The Pattern approach permitted the creation of simplified, conceptual 
representations by hiding the complexity of the underlying CEMs that was not necessary for capturing the semantics 
of the data elements.  Furthermore, the process of identifying generalized abstract data elements from groups of 
semantically similar, study-specific data elements resulted in the creation of relatively few Patterns, indicating that 
this approach is likely to scale well for all but the most highly-specialized data elements. 

Current limitations of this approach include difficulty capturing highly qualified data elements (such as recording 
episodes of a disease that are associated with a specified condition) and modeling transformations that lead to 
derived values (e.g., logarithm), both of which are also limitations of the underlying CEM specification.  These were 
addressed by using existing CEM attributes where possible (e.g., exacerbating factor) and by representing the pre-
calculated value, respectively.  Discussions with the model owners were required to establish consistent practices for 
representing complex concepts (e.g., pedigrees) and to extend the CEMs when needed, which may limit scalability.  
These issues could be mitigated by improved CEM documentation and tooling that supports community authoring. 

To use CEMs directly, specialized knowledge is required to understand both the technical specification and how to 
interpret and implement the models themselves.  The Pattern approach developed in this study eliminates those 
requirements for investigators by prespecifying, through hidden mappings to the underlying models, which attributes 
should be used to capture each aspect of a precoordinated, study-specific data element.  The highly simplified 
models and intuitive instructions provided by Patterns lower the barrier for investigators to use standardized CEMs 
for data collection.  The mappings between Pattern and CEM attributes permit the transformation of data into CEM 
syntax, which can then be used for data exchange or integration into an EMR.  This approach may encourage the 
adoption of CEMs for data collection, thereby reducing the need for retrospective data normalization efforts. 
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