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Background. Detecting and identifying vulnerable plaque, which is prone to rupture, is still a challenge for cardiologist. Such lipid
core-containing plaque is still not identifiable by everyday angiography, thus triggering the need to develop a new tool where
NIRS-IVUS can visualize plaque characterization in terms of its chemical and morphologic characteristic. The new tool can lead
to the development of new methods of interpreting the newly obtained data. In this study, the algorithm to fully automated
lipid pool detection on NIRS images is proposed. Method. Designed algorithm is divided into four stages: preprocessing (image
enhancement), segmentation of artifacts, detection of lipid areas, and calculation of Lipid Core Burden Index. Results. A total of 31
NIRS chemograms were analyzed by two methods. The metrics, total LCBI, maximal LCBI in 4 mm blocks, and maximal LCBI in
2 mm blocks, were calculated to compare presented algorithm with commercial available system. Both intraclass correlation (ICC)
and Bland-Altman plots showed good agreement and correlation between used methods. Conclusions. Proposed algorithm is fully
automated lipid pool detection on near infrared spectroscopy images. It is a tool developed for offline data analysis, which could

be easily augmented for newer functions and projects.

1. Introduction

LI Clinical Importance and Motivation. Data from autopsy
studies showed that plaque rupture of a coronary artery
is a leading cause of myocardial infarction [1]. Identifica-
tion of atherosclerotic plaques prone to rupture, commonly
known as vulnerable plaques, is still a challenge for modern
cardiology. Vulnerable plaques characterized as “positive
vessel remodeling” have a lipid core and a fibrous cap less
than 65 ym thick. These features define them as a thin-cap
fibroatheroma (TCFA) [2-5]. If a TCFA ruptures, it exposes
the plaque’s core to platelets, and the thrombosis of coronary
arteries occurs [6]. Previous in vivo observations showed that
the presence of TCFA is an independent risk factor of major
adverse cardiac events (MACE) [7].

Conventional angiography is limited regarding the identi-
fication of lipid core plaque (LCP) [8] because it only presents
vessel’s lumen without insight into the vessel’s wall (Figure 1).
It leads to the underestimation of the atherosclerosis burden,
as the positive vessel remodeling allows for the maintenance
of “normal” lumen size, despite the considerable plaque.

These limitations may be overcome by the use of
intracoronary imaging (Figure 2): intravascular ultrasound
(IVUS) [7, 9] and optical coherence tomography (OCT)
(10, 11]. They provide quantitative and qualitative analysis of
the plaque, detect plaque rupture, present thrombosis, and
guide PCI [12]. IVUS presents the plaque burden and vessel
remodeling but is limited regarding the analysis of tissue
composition. On the other hand, OCT describes the chemical
composition of the plaque and detects TCFA, but, due to its
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FIGURE I: (a) shows the angiographic image of right coronary artery before stenting with visible stenosis in proximal and mid segment. (b)
shows the same vessel after stenting.
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FIGURE 2: (a) shows a cross-sectional IVUS image with visible calcification and bifurcation. (b) shows the same location but now acquired by
OCT. (c) and (d) show the normal vessel in IVUS and OCT, respectively.
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FIGURE 3: Proposed method for the lipid core plaque detection on NIRS images.

limited penetration into the vessel wall, the assessment of
plaque burden and vessel’'s remodeling is hampered.

During the recent years, we witnessed a sort of competi-
tion at the field of MACE risk stratification between available
intravascular imaging but still a final word has not been said.

1.2. State of the Art. Intracoronary imaging techniques have
been intensively developed over the last two decades to
get the perfect tool. The ideal imaging modality should
be able to obtain information about the plaque burden,
vessel remodeling, and lumen stenosis and should detect
calcifications, lipids, plaque rupture, and TCFA and help
optimize PCI results. Recently a novel intravascular imaging
modality has been introduced, which makes us closer to
receive the universal imaging tool. It is a fusion of two
techniques: IVUS and near infrared spectroscopy (NIRS)
(TVC imaging system, Infraredx company). NIRS alone is
oriented to the detection of lipids within the vessel wall but
coregistered with IVUS images provides information about
the plaque composition and its burden simultaneously. As
it was previously presented, NIRS-IVUS poses the ability to
detect vulnerable plaques [1, 2, 13-16].

With the advent of such a new intravascular imag-
ing modality, there is still a need for new methodologies,
computer-assisted quantitative and qualitative tools to eval-
uate and interpret the obtained data. Such tools should help
in the real time data acquisition and assessment, which
may be achieved by its integration with the IT systems of
catheterization laboratories. In addition, such tools should
also help in offline data analysis and should allow for more
demanding analysis.

The purpose of this study is to demonstrate a new fully
automated estimation of lipid burden by the analysis of data
from NIRS. Such a new tool should be enriched with new
functions and be universal regarding NIRS data analysis.

This paper is organized in 5 sections as follows: Section 1
presents the motivation of our work and the review of the
state of the art in the area of NIRS’s images. Section 2
specifies the overview of the implemented algorithm, includ-
ing chemogram preprocessing, artifact detection, lipids core
plaque segmentation, and calculation of basic features. In
Sections 3 and 4, the conducted statistical analysis tests
and results are described. Section 5 closes the paper with
conclusions and highlights future directions.

2. Methods and Materials

We would like to present our algorithmic solutions to solve
the problem of lipid core plaque detection on NIRS images.
The first part presents in detail the technical and medical
aspects of chemograms. Images used in this study were
acquired via TVC Imaging System™ and TVC Insight™
Catheters, from 31 patients. In the second part, we concen-
trate on the implemented diagnostic system with its particu-
lar steps. The flowchart of the proposed system is illustrated
in Figure 3. The implemented application is divided into four
stages: preprocessing (image enhancement), segmentation of
artifacts, detection of lipid areas, and calculation of medically
important features.

2.1. NIRS Images. The TVC Imaging System (Infraredx) is
the intravascular imaging system with the ability to assess
vessel composition and its structure. The system is com-
posed of a mobile console with an automated pullback and
rotation device and dual-modality TVC Insight Catheter for
simultaneous, coregistered acquisition of NIRS lipid core
plaque (LCP) and grayscale IVUS. By obtaining views of
plaque composition in terms of both its chemical (by NIRS)
and its morphologic (by IVUS) characteristics [17], scanning
with automated rotational pullback is performed at a speed
of 0.5mm/s. The system performs approximately 32,000
chemical measurements per 100 mm of artery scanned. After
near infrared light emission, a detector measures the amount
of near infrared light reflected at different wavelengths to
determine tissue composition [17]. A predictive algorithm
calculates the probability that LCP is present at each inter-
rogated location in the artery and, after pullback, NIRS lipid
core data are immediately and automatically displayed in a
two-dimensional map of the vessel called a “chemogram”
(Figure 4).

The x-axis of the chemogram represents mm of pullback
in the artery and the y-axis represents degrees of rotation;
a colour scale from red to yellow indicates increases of
lipids. The “block chemograms” (Figure 4) provides a semi-
quantitative summary metric of the results for each 2mm
section of artery. The numerical value of each block in the
block chemogram represents the 90th percentile of all pixel
values in the corresponding 2 mm chemogram segment. The
block chemograms are mapped to the same colour scale
as the chemogram, and the display is grouped into four
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FIGURE 4: (a) shows exemplary chemogram and (b) shows corresponding block chemogram. (c) shows cross-sectional IVUS image with

corresponding NIRS data.

discrete colours to aid in visually interpreting the algorithm
probability that a LCP is present in that 2mm block (red:
p < 0.57; orange: 0.57 < p < 0.84; tan: 0.84 < p < 0.98;
yellow: p > 0.98) [17]. Additionally, the NIRS data is mapped
and paired with corresponding IVUS frames, as a ring around
the IVUS image (Figure 4).

While the chemogram helps in visual interpretation,
the Lipid Core Burden Index (LCBI) is a semiquantitative
summary metric of the total LCP, detected in the scanned
segment, and it is computed as the fraction of valid pixels
within the scanned region that exceed a LCP probability of
0.6 multiplied by 1,000 [17].

The accuracy of the NIRS system in detecting LCPs was
confirmed in an autopsy study, where the block chemogram
produced by NIRS was compared with histology of 2mm
segments (AUC = 0.80, 95% CI: 0.77-0.97) [8, 14].

2.2. NIRS Image Preprocessing. The main goal of the pre-
processing step is to improve the image quality by reducing
or even removing the unrelated and/or surplus parts in the
NIRS images [18]. In Figure 5, we present an exemplary
chemogram, where red pixels indicate the arterial wall and
yellow pixels the presence of lipid regions and black regions
(artifacts) and the presence of calcifications or the guide wire.
If a pixel does not contain enough data, it appears black [19],

FIGURE 5: Chemogram of a stented area with visible artifacts (dark
areas) and lipid core plaque (yellow areas).

where a contiguous black region could be caused by guide-
wire shadowing. Also, the ability of near infrared light to
penetrate through calcium could cause “shadowing” on lipid
pools, which are covered by calcium [14]. In cases where
most of chemograms include black regions, it could be easily
suggested that there was a problem with NIRS-IVUS probe
during signal acquisition.

The aim of this research is to detect not only the lipid
regions, which are clearly visible, but also those hidden
under artifacts. To achieve this, we propose to preprocess and
analyze each of the RGB image channels. An RGB image,
which is 24 bits, has three 8-bit channels: red, green, and blue.
Figure 6 presents particular channels after converting them to
grayscale for the chemogram presented in Figure 5.
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FIGURE 6: RGB channels converted to grayscale for NIRS image: (a) red channel, where artifacts become clear and visible, (b) green channel,

where lipid areas are more perceptible, and (c) blue channel.

The analysis of the red channel gives the opportunity to
detect the artifacts very precisely, while the processing of the
green channel allows detection of lipid structures, which are
not covered by the artifacts. The preprocessing step for each
of the channels includes an image intensity adjustment. This
step maps the intensity values in grayscale image I to new val-
ues in J, such that 1% of data is saturated at low and high inten-
sities of I. This increases the contrast of the output image J.

2.3. Detection of Artifacts. 'The segmentation of artifacts is the
next step of the proposed algorithm. The detection of these
regions is important in terms of segmenting lipid regions
that lie under the artifacts. Segmentation of specific regions
within an image involves separating an image into regions
(or their contours) corresponding to different objects. The
regions are segmented by identifying common properties
or contours by distinguishing differences between regions
(edges). The simplest property that pixels in a region can
share is intensity. Therefore, a natural way to segment such
regions is through thresholding, the separation of light and
dark regions. Seeing that the intensity difference between the
artifacts and the background as well as lipid regions is high
enough, we propose to use the Otsu thresholding method.
Otsu’s method, named after Nobuyuki Otsu, is used to
automatically perform clustering-based image thresholding,
which means the reduction of a gray level image to a binary
image. Thresholding is one of the widely used methods for
image segmentation. It is useful in discriminating foreground
from the background. By selecting an adequate threshold
value T, the gray level image can be converted to binary
image. The algorithm assumes that the image contains two
classes of pixels following bimodal histogram (foreground
pixels and background pixels). It then calculates the optimum
threshold separating the two classes so that their combined
spread (intraclass variance) is minimal or equivalent (because
the sum of pair-wise squared distances is constant), so
that their interclass variance is maximal [20]. This step is
performed on images gained from the red channel after
the intensity adjustment step. Figure 7 shows an exemplary
histogram and several results of the segmented areas.

2.4. Segmentation of Lipid Core Plaque. The detection of lipid
regions consists of two steps including segmentation of visible
regions and those lying under the artifacts. For the detection
of clearly visible regions, we use the Otsu algorithm described
in previous section. The outcome of this step can be seen
in Figure 8(a). The detection of lipid regions hidden under
artifacts is performed by the analysis of the intensity changes
in these regions. Firstly, we compute a histogram for the
segmented regions. The highest peak informs us about the
intensity of the analyzed region (background of the artifact
region). Secondly, based on the value of the background we
study the whole region looking for intensity changes. If the
difference between the background intensity is higher than
the experimental threshold, the region is marked as a lipid
area (Figure 8(b)).

Figure 8 presents the outlined segmented areas of the lipid
core plaques.

2.5. Calculation of Medically Important Features. From the
clinical point of view in our study, the most important
parts of the chemogram are those that lie in the stented
segment. During the automatic analysis of the NIRS image,
the physician can determine the region of interest. LCBI is
helpful in assessing the risk of plaque rupture and the use of
preventative strategies during PCI. Plaque with large LCP and
identified by NIRS maxLCBI, ., .. of >500 suggested high risk
plaque [2, 15, 21].

Within the region, the following parameters are calcu-
lated:

LCBI,: pixels assigned to the lipid plaque regions were
divided by all viable pixels to generate the Lipid Core Burden
Index,

4mm

Area (Lipid Core Plaque)

LCBI =
total = Area (Stented/Selected)

% 1000. (1)

maxLCBI, . . is the maximal LCBI in any 2 mm-long
segment.

maxLCBI
segment.

4mm 18 the maximal LCBI in any 4 mm-long
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FIGURE 7: Detection of artifacts in the NIRS images. (a) Histogram which serves to show the sense of applying the Otsu algorithm. (b) Original

NIRS images. (c) Marked artifacts areas.

3. Statistical Analysis

Continuous parameters were reported as a median with
the first and the third quartiles (Ql: 25%, Q3: 75%). The
Wilcoxon signed-rank test (paired Wilcoxon test) was used
for comparison between two related samples. In cases where
p value is greater than 0.05, test informed us that there is
no reason to treat measurements as significantly different,
but it is still not enough to prove that outcomes from our
method are similar to the second method. To check if the
measurements from both methods are similar, the intraclass

correlation (ICC) was computed. The higher the ICC, the
higher the relation between lipid detection methods. Addi-
tionally, Bland-Altman plots were presented. Analyses were
performed in R, language and environment for statistical
computing (R Core Team 2014, Vienna, Austria).

4. Results and Discussion

For the validation of the proposed fully automated detection
of lipid regions method, we used NIRS images acquired from
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TABLE 1: Statistical comparison of parameters.
Paired 1cc
Method 1 Method 2 Difference Relative difference Wilcoxon p  1CC (95% CI) value
value P
23.00 22.60 —-0.61%
Total LCBI - - 1(1-1
ota (9.00.9700) (8.40-0650) 000 (-080-100) oo m 0.8822 (1-1) <0.0001
95.00 94.20 -1.55%
MaxLCBI - - - 0.97 (0.93-0.98
ALCBLmm 000-245.00)  (23.00-242.00) 120 (F10:00-120) 1000 5 s106) 0.1265 ( ) <0.0001
— 0,
MaxLCBI 162.00 163.10 0.00 (~5.00-1.20) 0.28% 0.4645 1(0.99-1) <0.0001

Zmm(43,00-385.00)  (45.00-384.00)

(—2.46%-1.62%)

FIGURE 8: Segmentation of the lipid core plaque areas: (a) detection of the visible regions and (b) detection of lipid regions covered with

artifacts.

31 patients. The data were provided by the Medical University
of Silesia.

4.1. Database Specification. In order to validate the pro-
posed method, we compared the two methods: method 1,
commercial available system; method 2, our algorithm. 31
chemograms were analyzed in terms of lipid pool detection
and automated calculations of LCBI total (maximum LCBI in
4 mm blocks and maximum LCBI in 2 mm blocks) in stented
segment.

4.2. Validation of Automated Lipid Detection. The obtained
results are collected in Table 1. For all measured parameters,
total LCBI, maxLCBL, ,, and maxLCBI, .., the ICC is very
close to value of 1 showing that the parameters calculated by
our method (method 2) are similar to obtained results from
commercially available system. Also, the Bland-Altman plots

(Figure 9) indicate a good agreement between used methods.
Most points plotted are between the solid line (mean diff.)
and the dashed line (mean + 2 * standard deviation).

4.3. Discussion. In this paper, a fully automated detection
of lipid method, for detecting lipid pools and automated
calculation of LCBI in NIRS images, is presented. The method
detects automatically the lipid region border even if they are
covered by “a shadowing” artifact. Also, there is possibility
to calculate LCBI in chosen region and maximal value of
LCBI in different size of blocks to better match assessed
region with IVUS data. Additionally, our algorithm has a tool
to automated detection of maximal lipid arc in an assessed
block.

We noticed that our algorithm has 100% lipid detection;
maximum LCBI in 4 mm and in 2mm blocks are different
between our method and method presented by commercially



Bland-Altman plot for total LCBI

Computational and Mathematical Methods in Medicine

Bland-Altman plot for maxLCBI, .,
300

250 4
200
150 -
100 === ==-====—="—"—"————"—"—~————~—~ -~~~ — -~
50
04 B RRTRRRPOO FOUTRRTRRRR

—50 4
—100 -

Method 2 — method 1

=150 A
—200
—250

-300 T T T T T T T
-100 O 100 200 300 400 500 600
(Method 2 + method 1)/2

700

—— Mean difference
--- Mean + 2 % SD

20
15
(0
e}
£ 51
kot
E .
(\|] 0 [ \‘.. .................................................................
el
2 s
L
=
B T T S e ittt
~15 4
720 T T T T T T T
-50 0 50 100 150 200 250 300
(Method 2 + method 1)/2
—— Mean difference
--- Mean + 2 * SD
...... 0
80
60
40 A
-]
£ 201
[
=
I 0
~
=]
2 -20
kot
=
—40 4
~60 -
_80 T T T T
-100 0

100 200 300 400 500 600 700 800 90

(Method 2 + method 1)/2

—— Mean difference
--- Mean +2 % SD

FIGURE 9: Bland-Altman plot for total LCBI, maxLCBI, ., and maxLCBI, . calculated by two methods.

available system. Taking into account that p value calculated
by the Wilcoxon signed-rank test is insignificantly different,
the p value is not as high as that in total LCBI. Probably, it is
a result of the region being divided into blocks of 4 mm and
not analyzed while moving a window with a width of 4 mm.

5. Conclusion and Future Plans

Characterization of the atherosclerotic plaque and detecting
and identifying lipid core are very important for diagnosing
and treating coronary artery disease. Development of a
NIRS-IVUS tool to detect lipid-rich plaque confirmed that

lipid-rich plaques play a major role in stenting complications
and adverse events. Nevertheless, there is still the need to
develop better and more accurate methods, tools which
will be easily available not only for clinicians in cath labs
but also for researchers and investigators, to obtain more
accurate information from intracoronary images. Next steps
in furthering our study will be improving our algorithm for a
more precise calculation of maximal LCBI. The development
of functions for 3D vessel reconstruction, based on OCT and
IVUS, with a wrapped NIRS chemogram, will enable better
visualization of lipid localization on the vessel wall.
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