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A B S T R A C T

Imatinib is the first-line targeted therapy for gastrointestinal stromal tumor (GIST), but resistance 
frequently occurs during treatment, limiting its efficacy and clinical application. We performed 
high-throughput sequencing of tissue specimens from imatinib-resistant GIST patients, and 
identified significantly high expression of polymeric immunoglobulin receptor (PIGR) in 
imatinib-resistant cell lines. Further investigation revealed that PIGR binds specifically to 
LINC00870. The findings from in vitro cell functional experiments provide evidence of a strong 
association between LINC00870 and PIGR and the processes of proliferation and metastasis in 
GIST. Overexpression of LINC00870 in GIST significantly inhibits the glycosylation modification 
and secretion of the extracellular region of PIGR, leading to immune dysregulation. The inhibition 
of PIGR or LINC00870 effectively surmounts imatinib resistance. Our study identified PIGR as a 
critical molecule in regulating GIST imatinib resistance and elucidated the mechanism by which 
PIGR promotes imatinib resistance through LINC00870 inhibition of PIGR glycosylation modifi-
cations. These findings provide a new theoretical basis for blocking drug resistance and improving 
prognosis in GIST.

1. Introduction

Gastrointestinal stromal tumor (GIST) is a malignant gastrointestinal tract tumor originating from mesenchymal cells, often in the 
stomach and small intestine [1]. Unfortunately, GIST is typically resistant to conventional chemotherapy and radiotherapy, leading to 
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a 5-year survival rate lower than 35 %, as well as a high risk of recurrence and metastasis [2,3]. Imatinib, a molecularly targeted drug 
that effectively inhibits all types of ABL tyrosine kinase activity, has achieved a breakthrough in GIST treatment, significantly 
improving patient survival [4]. However, the development of drug resistance during imatinib therapy is a major cause of treatment 
failure and relapse. Thus, it is crucial to investigate the molecular mechanisms underlying imatinib resistance in GIST patients for 
better treatment and prognosis.

The development of drug resistance in tumor patients arises from intricate interactions among genetic and environmental factors. 
Several studies have confirmed a strong association between the development of drug resistance and immune dysregulation in 
oncology patients [5]. PIGR exhibits expression in diverse epithelial cell types and can be induced by inflammatory factors in response 
to viral or bacterial infections, thereby enabling PIGR to function as an intermediary between innate and adaptive immunity [6–8]. 
Recent investigations have further revealed an upregulation of PIGR expression during the malignant transformation of epithelial cells, 
suggesting a plausible association between tumor drug resistance and immune dysregulation [6–8]. Nevertheless, the precise rami-
fications of aberrant PIGR expression on the surface of tumor cells in GIST patients remain elusive, warranting further elucidation.

In recent years, research on long-stranded non-coding RNA (lncRNA) has advanced significantly, shedding light on their crucial 
regulatory roles in tumorigenesis and progression. These roles encompass various aspects, including: (1) participation in epigenetic 
regulation as molecular scaffolds or decoy molecules, broadly influencing DNA methylation and thereby contributing to tumorigenesis 
[9]; (2) involvement in gene expression regulation by serving as enhancer RNAs that activate or directly pair with DNA in the promoter 
region to modulate transcription factor activity and influence transcription initiation [10]; (3) engagement in post-transcriptional 
regulation processes [11]; (4) influence on diverse biological behaviors, such as tumorigenesis, development, invasion, and metas-
tasis [12–14]. Recent investigations suggest that targeting lncRNA may hold promise as a strategy for anti-cancer therapy and has the 
potential to modulate the responsiveness of tumor patients to existing anti-cancer drugs [15–18]. However, the precise role of lncRNA 
in GIST patients, particularly in the context of drug resistance, still needs to be more adequately understood.

In this study, we identify PIGR as a critical molecule of resistance to imatinib in GIST patients. Additionally, we have investigated 
the biological functions of both PIGR and LINC00870 in GIST. Our study elucidates the underlying mechanism through which PIGR 
mediates imatinib resistance in GIST patients. These findings significantly contribute to our understanding of the specific mechanisms 
of imatinib resistance in GIST patients, and provide a novel theoretical foundation for developing innovative treatment regimens 
involving targeted therapy, immunotherapy, and molecular therapy.

2. Materials and methods

2.1. Clinical sample collection

Imatinib treatment-resistant GIST patient samples (cancer and paracancerous tissues) and GIST patient samples (cancer and 
paracancerous tissues) were obtained from Fudan University Zhongshan Hospital, Shanghai, China (Table S1). This study was 
approved by the Clinical Research Ethics Committee of Fudan University Zhongshan Hospital.

2.2. Animal and cell lines

Nude mice and NSG mice, female, specific-pathogen-free (SPF) grade, aged 6–8 weeks, weighing 20±2g, were procured from the 
Experimental Animal Center of Shanghai Cancer Institute (Shanghai, China). The GIST cell lines GIST-T1 and GIST-882 were obtained 
from the American Type Culture Collection (ATCC, Manassas, VA, USA).

2.3. Animal model construction

Logarithmic growth phase cells were harvested and adjusted to a concentration of 1 × 10̂6/ml in serum-free culture medium. 
Subsequently, each nude mouse was intravenously inoculated with 0.2 ml of the cell suspension. Regular observation of the mice was 
conducted, and approximately 8–12 weeks post-inoculation, organs were excised, fixed, embedded, and subjected to hematoxylin and 
eosin (HE) staining. Tumor liver and lung metastases were then assessed under a microscope, and the number of metastatic lesions was 
quantified.

For the subcutaneous tumor model, logarithmic phase tumor cells GIST-882, GIST-882_PIGR_KO, or GIST-882_LINC0087_KO were 
collected and adjusted to a concentration of 1 × 107/ml. Each NSG mouse was subcutaneously inoculated with 0.2 ml of the cell 
suspension. Tumor measurements were conducted every three days, and tumor volume was calculated using formula V = (L × W2)/2, 
where V represents volume, L denotes length, and W signifies width.

2.4. RT-qPCR

After total RNA was extracted from tumor tissues and cells, reverse transcription and relative quantitative PCR were performed 
following protocol from Vazyme. Primers were obtained from Primerbank. The nucleus and cytoplasmic RNA were isolated by nuclear- 
cytoplasmic separation experiment using Paris Kit (Thermo) in GIST cell lines.
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2.5. Western blotting

Proteins were isolated from cells and tissues using RIPA lysate (Beyotime) and quantified by a BCA working kit (Biosharp). The 
protein was separated by SDS-PAGE gel and electro-transferred. Seal each membrane for 1.5h with 5 % skim milk. After being 
combined and incubated with the specific antibody, the Immune response band was detected by a secondary antibody and visualized 
using ECL luminescent solution (Servicebio).

2.6. RNA-fluorescence in situ hybridization and RNA scope

Cells were fixed in 4 % PFA for 15min and permeabilized with 0.5 % TritonX-100 for 15min at 4 ◦C. Digoxigenin-labeled probes or 
control probes were mixed and cells were incubated at 55 ◦C for 4h. The cells were washed 3 times and the specific antibodies were 
incubated. DAPI was used to counterstain nuclear. Images were observed using a microscope.

2.7. Drug-resistant stable strain establishment

The GIST-882 cell line was selected for drug resistance screening, and the concentrations were set to five experimental groups of 
DMSO (negative control), 5 μl mol, 10 μl mol, 20 μl mol, and 40 μl mol. When the cells grew to 70%–80 % confluence, the tumor cells in 
the rhythmic growth phase were placed in a medium containing different concentration of drugs, washed twice with PBS, replaced 
with a drug-free medium, and cultured routinely until the cells resumed growth. After the cells grew stably and entered the logarithmic 
growth phase, they were passaged twice. Then the screened enclosures were continued to be cultured in the medium with different 
concentrations of drugs and the time of action was changed accordingly. After a total of 10 action times (1h, 2h, 3h, 6h, 12h, 24h, 36h, 
48h, 60h, 72h) and about 6 months of culture, the cells were able to grow continuously and stably in a specific concentration of drug 
medium and pass-through generations. Then the cells’ biological characteristics and drug resistance indexes were detected after 1 
month of discontinuation of drug culture. SDHB was used as an indicator of drug resistance success.

2.8. Construction of knockdown and overexpression vectors and CRISPR-Cas9/dead Cas9 stable strains

Design sgRNAs against the promoter region or first exon start and last exon termination of the target genes (PIGR and LINC00870). 
The sgRNA sequences with high scores were selected according to the online website (http://crispr.mit.edu/). The sgRNA forward and 
reverse primers were annealed to form stable double-stranded DNA and ligated to the enzymatically cleaved CRISPR-Cas9/dead Cas9 
system vector and verified by sequencing. Transfect 293T cells using Lipofectamine 2000, and replace the medium with fresh medium 
after 6h. Check the transfection efficiency using the fluorescence microscope after 48h of transfection, and collect the supernatant after 
72h. The GIST-882 or GIST-T1 cells were added with the corresponding volume of polybrene 0.5h before the addition of virus 
infection. The cells were replaced after 12h of infection, after 48h the infection efficiency was observed under a fluorescence 
microscope.

2.9. Cell migration/invasion assays

The bottom of the Trans-well chambers (BD) was evenly spread with substrate gel and placed in an incubator at 37 ◦C for 0.5h to 
allow solidification. After cell counting, the cells were mixed with serum-free DMEM and added directly to the chambers, and the 
appropriate volume of complete medium was added outside the chambers. The cells were fixed with methanol, stained crystal violet, 
and photographed under a microscope. The average of five random fields of view per chamber was taken to compare each group’s 
migration and invasion ability. In this experiment, 3–5 replicate wells were set up to test various cells.

2.10. CCK-8 viability assays

The viability of cells was measured in vitro using the CCK-8 kit. 2 × 103 cells per well were inoculated in a 96-well plate and 
incubated for 48h. The 10 % CCK-8 solution was added to each well and incubated for approximately 2h. The absorbance of each well 
was measured at 450 nm.

2.11. Clone formation experiments

For cell digestion and counting, the suspension was added to a six-well plate for incubation with 1 × 103 cells per well. Clones were 
observed after 9–14 days. Wash twice with PBS, add 1 ml of methanol to each well for fixation, and leave for 10min at room tem-
perature. Stain with 0.1 mg/ml crystal violet and leave for 10min at room temperature. Dry and count at room temperature.

2.12. RIP-seq experiments

Cell membrane components were isolated from GIST-882 cells of imatinib-resistant strain and tissues of GIST-resistant patients 
(Beyotime Membrane Extraction Kit and Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit). Total RNA and cell membrane 
RNA were extracted with TRIZOL reagent, and PIGR endogenous antibody for RIP-Seq experiments. Validation was performed using 
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RIP-RT-PCR.

2.13. 3′RACE, 5′RACE and northern-blot assays

3′ RACE and 5′ RACE experiments were performed using kits from SMARTer RACE cDNA Amplification Kit (Clontech). Northern- 
blot assays were performed using the Northern Max® Kit from Thermo Fisher Scientific.

2.14. Protein interaction prediction and protein-coding ability prediction

The online website STRING (https://cn.string-db.org/) was used to predict proteins with potential interactions with PIGR. Based on 
the Coding Potential Calculator (CPC, http://cpc.cbi.pku.edu.cn/), the Coding-Potential Assessment Tool (CPAT, http://cpc.cbi.pku. 
edu.cn/), and Phylogenetic Codon Substitution Frequencies (PhyloCSF score), the LINC00870 sequence was analyzed for protein- 
coding ability.

2.15. Data collection, RNA-seq data processing, and analysis

The original data of Sarcoma second-generation sequencing were collected from the TCGA database. All statistical analyses of 
bioinformatics were performed with Rstudio software (version 4.0.2; http://www.rstudio.com/products/rstudio). The Limma package 

Fig. 1. PIGR as a candidate gene for the study. 
(A–B) Hot-map showed the expression profiles of apparently differential genes. (C) The analysis of the signaling pathways that regulate PIGR using 
GSEA. (D–E) The online website STRING was used to predict proteins with potential interactions with PIGR and these proteins were analyzed for 
relevance at the mRNA level using bioinformatics.
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was used to analyze the differences in gene expression between tumor samples and healthy samples, and a volcano map and heat map 
were drawn. R package clusterProfiler (https://guangchuangyu.github.io/software/clusterProfiler) was used to process the GSEA 
analysis. The correlation analysis and visualization of the gene expression result were processed using ggplot2 in R software.

2.16. Statistical analyses

Statistical analyses were performed using GraphPad Prism 9 (GraphPad, San Diego, California). Statistical analysis was done using 
the paired Student’s t-test, the Pearson correlation, or the Log-rank survival analysis. The p-values less than 0.05 were considered 
statistically different.

3. Results

3.1. PIGR is significantly correlated with imatinib resistance in GIST

In this study, we performed RNA sequencing analysis on five GIST patients (cancer and paracancerous tissues) who were resistant to 
imatinib therapy. We combined these results with RNA sequencing data obtained from 263 TCGA-Sarcoma tumor tissues and two 
normal tissues. Using filtering conditions of log2Fold change (Tumor/Normal) > 4 and Pearson correlation coefficient (P < 0.001), we 
identified three genes (PIGR, AKR7A3, PLS1) that were highly expressed in GIST patients who were resistant to imatinib therapy 
(Fig. S1 A-C).

The differential gene expression profiles analysis between the two data sets indicated that the PIGR gene was significantly highly 
expressed in GIST imatinib-resistant patients (Fig. 1A and B). Further analysis of the signaling pathways closely regulated by PIGR 
using Gene Set Enrichment Analysis (GSEA) showed that PIGR played an inhibitory role in multiple immune activation pathways, such 
as immune receptor activation and organ- or tissue-specific immune responses (Fig. 1C). We utilized the STRING online prediction tool 
to identify potential molecular targets of PIGR and examined their correlation at the mRNA level. Our analysis revealed a significant 
association between PIGR and VNN1 as well as CEACAM6 (Fig. 1D and E). Vanin-1 (VNN1) has pantetheinase activity and plays a 
crucial role in tumorigenesis and immune regulation [19–23]. CEACAM6, a carcinoembryonic antigen immunoglobulin family 
member, is a cell surface adhesion factor that plays a vital role in tumorigenesis, proliferation and metastasis [24]. Based on the results 
obtained in this study, it is reasonable to infer that PIGR may have a pivotal role in regulating immune responses and promoting tumor 
progression.

3.2. PIGR expression levels were significantly elevated in GIST and correlated with prognosis

In light of the crucial role of PIGR in GIST imatinib resistance, we investigated the expression levels of PIGR in imatinib non- 
resistant cancer samples and their corresponding paracancerous controls, as well as in imatinib-resistant cancer samples and their 
paracancerous controls. The results revealed significantly higher mRNA levels of PIGR in GIST tumor samples compared to their 
paracancerous controls (Fig. 2A, P < 0.001). Moreover, the mRNA levels of PIGR were markedly higher in imatinib-resistant GIST 
samples than in non-resistant samples (Fig. 2A, P < 0.001). We further categorized the GIST patients into two groups based on PIGR 
expression levels and examined the correlation between PIGR expression and overall survival time. The data showed that patients with 
high PIGR expression levels had a poorer prognosis (Fig. 2B). Taken together, these results suggest that PIGR is significantly 

Fig. 2. Expression and prognosis of PIGR in GIST tissues and imatinib-resistant tissues. 
(A) The mRNA expression of PIGR in different tissues of GIST. (B) Using the log-rank test, the figure on the left shows the survival analysis of PIGR 
expression differences in GIST patients. The figure on the right shows GIST patients divided into positive and negative groups of PIGR expression by 
RNA-FISH. ***P < 0.001.
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upregulated in imatinib-resistant GIST patients, and higher PIGR expression levels are associated with poorer prognosis.

3.3. PIGR functions as an oncogene in GIST

PIGR plays a crucial role in bridging innate and adaptive immunity, suggesting a potential link between imatinib resistance and 
immune dysregulation [6–8]. To further investigate the specific function of PIGR in GIST, we designed sgRNAs against PIGR sequences 
and performed endogenous interference using CRISPRdCas9 in GIST-T1 and GIST-882 cell lines, followed by relevant cell function 
experiments. Our results showed that interfering with PIGR significantly suppressed cell invasion capability, while overexpression 
significantly promoted it in vitro (Fig. 3A and B). Furthermore, in vivo experiments showed that overexpression of PIGR significantly 
promoted lung colonization and liver metastasis of GIST cells (Fig. 3C and D). These findings suggest that PIGR acts as an oncogene that 
promotes the malignant phenotype of GIST.

3.4. Specific binding of LINC00870 to PIGR

To facilitate subsequent investigations, we established an imatinib-resistant cell line, GIST-882 (IR-GIST-882), selected based on 
the SDHB marker as imatinib-resistant [25]. Our results confirmed the successful construction of the stable resistant cell line (Figs. S2A 
and B). To investigate the molecular mechanisms underlying the role of PIGR in drug-resistant GIST, we extracted RNA from cell 
membrane fractions of tissues from drug-resistant patients, as well as from cells of drug-resistant strains, for RIP-seq analysis. This 
analysis aimed to identify RNA molecules specifically bound to PIGR (Fig. 4A). Our study revealed a specific interaction between PIGR 
and LINC00870 (Fig. 4B), indicating that PIGR may mediate imatinib resistance in GIST through this interaction.

3.5. LINC00870 promotes GIST imatinib resistance via inhibiting PIGR glycosylation modifications

To clarify the transcript sequence information of LINC00870 in GIST cells, we conducted RACE assay and Northern-blot assay, 
which led us to determine the primary transcript length of 2700bp (Fig. 5A and B). Furthermore, we isolated nucleus and cytoplasmic 

Fig. 3. PIGR functions as an oncogene in GIST. 
(A–B) The effect of interfering or overexpressing PIGR on the migration and invasion ability of GIST-T1 and GIST-882 cells. (C–D) The effect of PIGR 
overexpression on the invasive ability of GIST-T1 and GIST-882 cells was analyzed via the tail vein model (C) and GIST in situ model (D). Mean ±
SEM of 3 independent experiments. ***P < 0.001 versus control.
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RNA using extraction kits and discovered that LINC00870 was predominantly localized in the cytoplasmic region (Fig. 5C). Using 
bioinformatics tools such as CPC, CPAT, and phyloCSF sites, we predicted that LINC00870 is a non-coding RNA (Fig. 5D). To confirm 
the non-coding nature of LINC00870, we assessed overexpressing LINC00870 cells at both RNA and protein levels. Agarose gel 
electrophoresis confirmed effective RNA expression for both sense and antisense strands of LINC00870 (Fig. 5E). However, Western 
blot analysis revealed no protein expression, indicating that LINC00870 RNA does not encode proteins (Fig. 5F).

Since lncRNA has been shown to play a crucial role in tumorigenesis and progression [11–14], we constructed LINC00870 
knockdown and overexpression stable cell lines in GIST-T1 and GIST-882 cells to explore its function (Fig. 5G). We observed a 
reduction in cell invasion, migration, and clone formation after LINC00870 knockdown, and an enhancement of these cellular pro-
cesses after LINC00870 overexpression (Fig. 5H–K). These results suggest that LINC00870 functions as an oncogene in GIST.

We selected two independent cohorts to explore the correlation between PIGR and LINC00870 in GIST imatinib-resistant patient 
samples to validate our findings. We found a significant positive correlation between PIGR and LINC00870 in two cohorts (Fig. 6A, P <
0.0001). Previous studies have shown that PIGR is a transmembrane glycoprotein whose N-terminal glycosylation promotes hydrolysis 
and secretion in the extracellular compartment, a critical step in the cellular response to the immune response [26]. We investigated 
the effect of LINC00870 on PIGR by overexpressing it in GIST cells and found a significant decrease in the secretory component content 
released extracellularly by PIGR (Fig. 6B). This result was consistent with the effect of tunicamycin treatment, which disrupts the 
extracellular glycan chain of PIGR (Fig. 6C). Our findings suggest that LINC00870 may cause imatinib treatment resistance in GIST by 
inhibiting the N-terminal glycosylation of PIGR, preventing its extracellular SC region from being released typically and thereby 
hindering the immune response.

3.6. Inhibition of PIGR or LINC0087 effectively overcomes imatinib resistance

In our final analysis, we demonstrated that inhibition of PIGR or LINC0087 effectively overcomes imatinib resistance. Subcu-
taneous tumor models were established in BALB/c-nu nude mice using GIST-882 or GIST-882_PIGR_KO resistant cells. Our results 
indicate that knockout of PIGR in resistant cell lines effectively inhibits tumor growth (Fig. 7A and B). Similarly, knockout of LINC0087 
in resistant cells also significantly suppresses tumor growth (Fig. 7C and D). These findings collectively suggest that inhibition of PIGR 
or LINC0087 represents a promising strategy for overcoming imatinib resistance.

4. Discussion

GIST is the most common type of gastrointestinal mesenchymal tumors. Their pathogenesis is primarily driven by gain-of-function 
mutations in the KIT gene (accounting for 75–80 %) and mutations in the platelet-derived growth factor receptor alpha (PDGFRA) 
(<10 %). Additionally, abnormalities in genes such as SDH, NF1, KRAS, and HRAS have been implicated in GIST development. GIST 

Fig. 4. Exploration of specific mechanisms for PIGR. 
(A) The RIP-seq workflow. (B) The RNA molecules interacting with PIGR were verified using RIP-PCR. The workflow was created with 
BioRender.com.
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Fig. 5. Basic characteristics and biological functions of LINC00870. 
(A) LINC00870 sequence information and length were analyzed using 3′RACE and 5′RACE experiments. The uncropped gel image can be found in 
Supplementary Figure 3. (B) The number and length of LINC00870 transcripts in GIST cell lines and tissues were determined by a Northern blot 
assay. The uncropped Northern blot image can be found in Supplementary Figure 4. (C) The distribution of LINC00870 in GIST cell lines. (D) The 
sequence protein-coding ability of LINC00870 was predicted using the prediction website. (E) Agarose gel electrophoresis was utilized to determine 
the length of LINC00870 in GIST-882 cells overexpressing either the sense or antisense strands. The uncropped gel image can be found in Sup-
plementary Figure 5. (F) Western blot analysis was performed to evaluate the protein-coding potential of LINC00870 in GIST-882 cells over-
expressing either the sense or antisense strands, with a luciferase plasmid used as the control. The uncropped Western blot image can be found in 
Supplementary Figure 6. (G) The identification of LINC00870 interference and overexpression efficiency. (H–I) The effect of interfering (H) or 
overexpressing (I) LINC00870 on GIST cells’ invasive and migratory capacity. (J–K) The effect of interfering (J) or overexpressing (K) LINC00870 
on the ability of GIST clone formation. Mean ± SEM of 3 independent experiments. ***P < 0.001 versus control.
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cells originate from interstitial cells of Cajal or their precursor cells and their survival is dependent on the expression of KIT [27,28]. 
KIT mutations predominantly occur in the juxtamembrane (JM) domain (encoded by exon 11) and in the extracellular domain near the 
membrane (encoded by exons 8 or 9), with approximately 85–90 % of KIT-mutant GIST exhibiting these characteristics. These mu-
tations confer oncogenic properties to the KIT gene, promoting tumor formation primarily through the PI3K-AKT, JAK-STAT, and 
RAS-RAF-MEK-ERK (MAPK) signaling pathways [29–33].

Currently, imatinib remains the first-line targeted therapy for progressive or unresectable GIST. Nevertheless, both primary and 
secondary drug resistance frequently arise, leading to diminished therapeutic efficacy, increased tumor recurrence, metastasis, and 
elevated mortality rates. Thus, elucidating the molecular mechanisms underlying drug resistance in GIST is essential for enhancing 
therapeutic strategies and prognostic outcomes. Approximately 90 % of GIST cases are driven by activating mutations in receptor 
tyrosine kinases, primarily KIT or PDGFRA [34]. Research on imatinib resistance has highlighted several key factors: KIT mutations 
result in sustained protein activation, which impacts the genomic context and activates alternative signaling pathways [35,36]. Pa-
tients with the PDGFRA-D842V mutation exhibit primary resistance to imatinib [36,37]. For BRAF/KRAS mutations, while imatinib 
inhibits the mutated KIT receptor, it does not affect the downstream RAS-RAF signaling pathways associated with BRAF/KRAS mu-
tations [38,39]. Additionally, inhibiting KIT signaling can lead to the release of FGF-2, further worsening tumor malignancy [40]. In 
terms of metabolism, succinate dehydrogenase (SDH) deficiency results in the stabilization and accumulation of HIF1-α under nor-
moxic conditions, promoting angiogenesis and glycolysis, thereby facilitating tumor growth [41,42]. Given the extremely limited 
treatment options for imatinib resistance, there is an urgent need to investigate new mechanisms to combat this challenge.

Our high-throughput sequencing of tissue specimens from imatinib-resistant GIST patients identified PIGR as a significantly 
differentially expressed gene. While PIGR has been found to exhibit differential expression in various cancers, there is no conclusive 
evidence regarding its role in the prognosis of tumor patients [43–50]. Our study discovered that PIGR is remarkably highly expressed 
in GIST tumor tissues. The role of PIGR in tumors remains controversial, possibly owing to tumor heterogeneity or different action 
mechanisms. Studies in colorectal cancer revealed that PIGR could act as a prognostic marker and inhibit tumorigenesis through 
LAMB3-AKT-FOXO3/4 signaling [51]. Transcriptome sequencing analysis revealed that PIGR was downregulated in breast cancer, and 
overexpression of PIGR in breast cancer cells inhibited their adhesion and proliferation [52]. PIGR controlled tumor progression in 
lung cancer by downregulating the differentiation suppressor gene NOTCH3 [53]. In hepatocellular carcinoma, extracellular vesicles 
carrying PIGR activated the AKT/GSK3β/β-linked protein signaling cascade response, promoting cancer stemness, tumorigenesis, and 
metastasis [54]. Other studies have revealed that PIGR promoted hepatocellular carcinoma by activating Smad and Yes-MEK/ERK 

Fig. 6. Correlation and mechanism study of PIGR and LINC0087. 
(A) The correlation analysis between PIGR and LINC00870 at the mRNA level in GIST imatinib-resistant patients. The unadjusted original results 
can be found in Supplementary Figure 7. (B) The expression content of PIGR extracellular secretory structure SC in cell supernatants after over-
expression of LINC00870. (C) The expression content of PIGR extracellular secretory structure SC in cell supernatants after treatment of cells with 
tunicamycin. Mean ± SEM of 3 independent experiments. ***P < 0.001 versus control.
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signaling pathways [55,56]. Ohkuma et al. found that PIGR overexpression was associated with poor prognosis after surgical resection 
in patients with pancreatic cancer [46]. Our study found that GIST patients with high PIGR expression had a poor prognosis, and 
overexpression of PIGR significantly promoted GIST cell invasion, lung colonization, and liver metastasis, suggesting that PIGR 
functions as an oncogene in GIST. Our animal experiments also confirmed that interfering with PIGR expression in imatinib-resistant 
cell lines helps inhibit tumor growth, suggesting that the application of PIGR inhibitors in clinical settings may improve survival in 
imatinib-resistant patients. However, PIGR plays a critical role in mediating the transcytosis of polymeric IgA and IgM from the 
basolateral surface to the apical surface of epithelial cells, subsequently secreting these immunoglobulins into the mucosal fluid 
[57–59]. Therefore, the sole use of PIGR inhibitors could potentially disrupt normal mucosal immunity. If it is possible to specifically 
interfere with PIGR at tumor sites, for example, through the use of antibody-drug conjugates (ADCs), it may achieve better therapeutic 
outcomes while reducing side effects for patients [60,61]. Of course, these conclusions are based solely on animal models, and further 
challenges must be addressed before clinical application.

Our findings suggest that PIGR plays a crucial role in imatinib resistance in GIST, as evidenced by the significantly higher mRNA 
expression of PIGR in imatinib-resistant GIST samples than in non-resistant samples. Furthermore, we identified a specific binding 
between PIGR and LINC00870 through the RIP-seq assay. In recent years, there has been increasing research interest in the regulatory 
role of lncRNA in tumor development and progression [11–14]. The significance of lncRNA in various pathological and physiological 
processes is well established [62], although no studies have reported on the regulatory mechanisms of LINC00870 in GIST drug 
resistance and immunity. We established an imatinib-resistant cell line, IR-GIST-882, through a high-dose gap-action approach, which 
provided an effective tool for studying imatinib resistance. Furthermore, by overexpressing LINC00870 in GIST-882 and GIST-T1 cell 
lines, we observed increased invasion, migration, and cladogenesis of GIST cells, suggesting that LINC00870 functions as an oncogene 
in GIST. LncRNAs are pivotal as regulatory and predictive factors in cancer treatment resistance and can be used as adjunctive 
therapeutic agents to enhance the efficacy of existing therapies, such as chemotherapy, radiotherapy, immune checkpoint inhibitors, 

Fig. 7. Inhibition of PIGR or LINC0087 effectively overcomes imatinib resistance. 
(A–B) Subcutaneous tumor models were established in BALB/c-nu nude mice using GIST-882 or GIST-882_PIGR_KO resistant cells, and tumor 
growth was monitored (A). Tumor weight was measured at the end of the experiment (B). (C–D) Subcutaneous tumor models were established in 
BALB/c-nu nude mice using GIST-882 or GIST-882_LINC0087_KO resistant cells, and tumor growth was monitored (C). Tumor weight was measured 
at the end of the experiment (D). Mean ± SEM of 3 independent experiments. ***P < 0.001 versus control.
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and targeted therapy [63,64]. Their substantial dysregulation across various cancer types, coupled with their heterogeneous 
expression, positions them as ideal biomarkers and therapeutic targets for personalized medicine [65]. Despite their potential, the 
clinical application of LncRNAs-based therapies faces challenges, including issues of tolerance, toxicity, and off-target effects, which 
necessitate further investigation.

The cell lines and drug-resistant variants used in our study are derived from human sources. However, due to interspecies dif-
ferences, in vivo studies often utilize immunodeficient mouse models, which have significant limitations, particularly the absence of 
immune cells that may influence assessments of immune dysregulation. Current cellular models in tumor immunology include human 
peripheral blood mononuclear cell (Hu-PBMC) and human CD34 (Hu-CD34) humanized mouse models, which effectively reconstruct 
the immune system within immunodeficient mice, thereby enabling the examination of tumor dynamics within an immune-enriched 
microenvironment [66,67]. To investigate the roles of LINC00870 and PIGR within the immune cell microenvironment, employing 
humanized mouse models would provide more reliable results. While this study proposes a potential strategy to overcome imatinib 
resistance through the inhibition of PIGR or LINC00870, it is essential to draw insights from other research to further validate its 
feasibility and safety in clinical settings [68–70]. Additionally, the pharmacokinetics and pharmacodynamics of these strategies should 
be investigated to optimize dosing regimens, enhance therapeutic efficacy, and minimize side effects [71,72]. We hope that the 
GIST-imatinib resistance-related targets identified in this study will provide valuable references and assistance for the treatment of 
GIST patients with imatinib resistance.

In summary, our study investigated the mechanisms underlying resistance to targeted therapies in GIST patients and identified the 
PIGR-LINC00870 complex as a potential key factor in inducing drug resistance. These findings suggest that targeting this complex 
could offer a promising approach to the comprehensive treatment of GIST by combining targeted therapy, immunotherapy, and 
molecular therapy. This study provides valuable insights into the clinical management of GIST and offers potential clinical applications 
for improving patient outcomes. Further studies are warranted to validate the clinical significance of this complex and explore its 
potential as a therapeutic target for GIST.
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