
Gene expression

Audit logs to enforce document integrity in Skyline and

Panorama

Tobias Rohde1, Rita Chupalov1, Nicholas Shulman1, Vagisha Sharma1, Josh Eckels2,

Brian S. Pratt1, Michael J. MacCoss1 and Brendan X. MacLean1,*

1Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA and 2LabKey, San Diego, CA 92101, USA

*To whom correspondence should be addressed.

Associate Editor: Pier Luigi Martelli

Received on December 10, 2019; revised on April 27, 2020; editorial decision on May 22, 2020; accepted on May 24, 2020

Abstract

Summary: Skyline is a Windows application for targeted mass spectrometry method creation and quantitative data ana-
lysis. Like most graphical user interface (GUI) tools, it has a complex user interface with many ways for users to edit their
files which makes the task of logging user actions challenging and is the reason why audit logging of every change is not
common in GUI tools. We present an object comparison-based approach to audit logging for Skyline that is extensible to
other GUI tools. The new audit logging system keeps track of all document modifications made through the GUI or the
command line and displays them in an interactive grid. The audit log can also be uploaded and viewed in Panorama, a
web repository for Skyline documents that can be configured to only accept documents with a valid audit log, based on
embedded hashes to protect log integrity. This makes workflows involving Skyline and Panorama more reproducible.

Availability and implementation: Skyline is freely available at https://skyline.ms.

Contact: brendanx@uw.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the Skyline software for targeted mass spectrometry (Maclean
et al., 2010), users create and work on documents, which contain
settings, targets and processed data. With over 10 000 users in doz-
ens of countries, Skyline is increasingly being used in collaboration
by researchers. Skyline documents are shared across the world and
published as supplementary information through the Panorama
Public data repository (Sharma et al., 2014). Prior to the introduc-
tion of audit logging, it was nearly impossible to know how a
Skyline document and its data were processed without detailed notes
kept during creation and processing of the document. This could
make reproducing and validating the experimental results challeng-
ing. There has also been demand from pharmaceutical companies to
use Skyline in regulated environments for purposes such as drug de-
velopment. Regulated environments have strict requirements for
software use such as Title 21 Part 11 of CFR by the FDA, which
requires the use of ‘secure, computer-generated, time-stamped audit
trails’. These issues motivated the implementation of audit logging
in Skyline to track all changes made to a Skyline document. The
audit log contains hashes of its contents and the corresponding
document to discourage users from modifying the log or making un-
tracked changes to the document. This ensures data integrity and
prevents the average user from tampering with the audit log, though
it would not prevent a determined adversary from writing code to

do so, which will require future work to prevent. Logging is very
common in command-line applications because it is easy to imple-
ment. One can simply record the commands run by the command-
prompt and their output, ideally with a time stamp. Conversely,
audit logging is much less common in graphical user interface (GUI)
tools, since user actions are more complex and difficult to describe
in text and architectural forethought is required to ensure all docu-
ment changes get logged. The Skyline audit log was designed to
make it easy to navigate through the GUI by following entries in the
audit log and thereby reproducing the exact state of a document,
given only the audit log and the original data. The audit log was not
designed to allow for automatic reproduction of a document state.
The audit log is displayed to the user in a grid like the Skyline docu-
ment grid and can be uploaded and viewed in the web database
Panorama, which can be configured to reject documents with a miss-
ing or invalid log file. Even modifications made through the Skyline
command-line interface are tracked in the audit log and can be
reviewed in the audit log grid or Panorama.

2 Design and implementation

Skyline is written in C# and uses the .NET Framework and
Windows Forms. Our audit logging implementation is built into
Skyline and therefore written in C#. The audit log is displayed to the

VC The Author(s) 2020. Published by Oxford University Press. 4366

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 36(15), 2020, 4366–4368

doi: 10.1093/bioinformatics/btaa547

Advance Access Publication Date: 28 May 2020

Applications Note

https://skyline.ms
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa547#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa547#supplementary-data
https://academic.oup.com/


user in a grid with customizable columns, which provides the user
with an interactive and easy to use view of the audit log entries
(Section 2.1). Logging is based on object comparison (Section 2.2).
The audit log is stored as a separate human readable, language inde-
pendent XML file (Section 2.3), like the Skyline document it accom-
panies, and the two are linked by hash codes to ensure consistency
(Section 2.4).

2.1 Audit log entry structure and grid
The Skyline audit log is displayed in a grid based on the Skyline
document grid (Fig. 1a). Audit logging is enabled by default but can
be disabled through a checkbox in the top right corner of the audit
log grid. The basic unit of the audit log is an audit log entry, which
represents a single GUI transaction and can consist of multiple prop-

erty modifications made to the document. For instance, a user can
change multiple settings in a single dialog box and all changes
applied when the OK button is clicked will be recorded as a single
audit log entry with multiple detailed sub-messages representing the
individual property changes. In the audit log grid, each line with a
dark gray background corresponds to a single audit log entry and
user action. If the action cannot be described in a single message, it
contains several detail messages shown with a lighter gray back-
ground below. Aligned right of the main log messages, are clickable
arrows, allowing the user to undo a change and all changes that
came after it. However, this is only possible for changes made in the
current document session. Audit logging and undo-redo are tightly

connected in the Skyline architecture with both being recorded in
the same function and sharing change summary text. Some changes
have extra information associated with them, such as text when
pasting from the clipboard. This extra information can be accessed
by clicking on the magnifying glass right of the log message text.

Each audit log entry contains a Time Stamp, an Undo-Redo

Message, a Summary Message, a set of All Info Messages, a
Username, an optional Reason entered by the user and optional
extra information (see Supplementary Material for detailed descrip-
tions of the columns). Since the audit log grid is based on the docu-
ment grid, it can be customized in the same way as the document
grid to show any combination of the above columns using the
Reports drop down in the top left corner of the audit log grid
window.

2.2 Implementation
Skyline uses an immutable tree data structure to model the concep-
tual document. Every property of a Skyline document is part of this
tree. Each time a user performs an action that modifies the docu-
ment, the ModifyDocument method is invoked. The method applies
an action in the form of a lambda function that creates new immut-
able elements, which reference the existing immutable tree. A new
root object is created, and it becomes the current document, pushing
the previous document root object onto the undo stack. A naı̈ve im-
plementation would be to pass a log message describing the user ac-
tion as a parameter to ModifyDocument. However, this is
redundant and difficult to maintain, since each of the several hun-
dred actions in Skyline would require their own hardcoded log mes-
sages. Instead, we compare the old and the new documents at the
property level. Each feature in Skyline that is tracked by the audit
log has a backing object in the document tree and the object struc-
ture resembles the structure of the feature as it is presented in the
GUI. The audit logging system uses C# reflection to retrieve proper-
ties from the old and new objects and compare them. If differences
are found, the same algorithm is recursively invoked on the sub
properties, until it finds the root of the change. During this recursive
traversal, a ‘diff tree’ is created that encodes the differences between
the two documents and is later used to create log messages. The im-
mutable tree allows whole branches to be ignored when a parent
node is found to be a reference equal to the previous node. While re-
flection is an expensive operation, the implementation is efficient
and has no noticeable impact on performance. Figure 1b is an ex-
ample of the diff tree generated after changing various transition set-
tings. The tree is used to construct a single line description of the
change and a set of detailed descriptions. The log messages gener-
ated from this tree are shown in part of Figure 1a. For more details
on the nodes see Supplementary Material.

2.3 Storage and XML format
The audit log is stored in its own file as language independent,
human readable XML and linked to the document through a hash
of the document. The audit log does not serialize objects to disk.
Instead, it stores textual descriptions of the changes made to those
objects. The audit log can be seamlessly transferred between differ-
ent systems. The time stamp is stored in standard ISO 8601 format,
comprised the local time and an offset to UTC, which is

Fig. 1. (a) The Audit logging grid window displaying several audit log entries with time stamps and log messages. (b) The Diff tree generated after modifying several transition

settings. A single line summary is constructed by traversing the tree from the root to the first node with multiple children and detailed messages are built by traversing from

root to leaf nodes. Two nodes have arrows indicating their corresponding log message in the audit log grid

Audit logs to enforce document integrity in Skyline and Panorama 4367

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa547#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa547#supplementary-data


automatically converted to the local time zone of the running
Skyline instance. The log messages do not contain any language spe-
cific information, but rather language invariant identifiers, which
are used to look up localized strings at runtime. This allows Skyline
to display the audit log in different languages (currently English,
Chinese and Japanese). The audit log also contains a fully expanded
English version of each log message to simplify integration into
Panorama and to make the XML more human readable. For a
detailed description of the XML format see Supplementary
Material.

2.4 Hashing
All hashes in the audit log are SHA-1 hashes. The audit log contains
a hash of the document, which is used by Skyline and Panorama to
establish correspondence between the Skyline document and the
audit log file that is stored separately from the document. The audit
log also contains a root hash of all audit log entry hashes. This hash
is used to discourage modification of the audit log outside of Skyline
and detect corruption of the audit log. Finally, each entry has its
own hash, allowing Skyline to pinpoint an exact entry that was
modified if someone tries to edit the text outside Skyline. Panorama
also makes use of the hashes to validate the audit log and can be
configured to reject modified audit logs. For a description of how
hashes are created avoiding negative performance impact and how
the audit log is validated in Skyline and Panorama, see
Supplementary Material.

3 Summary and future direction

With the addition of audit logging to Skyline and Panorama, users
will be able to collaborate more efficiently by having a detailed re-
cord of how a document was processed. Reproducibility of pub-
lished results will be greatly improved, since the audit log was

designed for users to be able to reach the same state of a document
given only the original data and the audit log. Our use of hashing
improves data integrity and protects against tampering from the
average user. The implementation of audit logging brings Skyline
closer to complying with requirements for usage in regulated envi-
ronments and in the future more work will be devoted to achieving
this goal. Having a complete audit logging system in a GUI tool is
novel and far less common than audit logging for command-line
tools. The approach described in this paper is flexible, easy to main-
tain and applicable to other existing GUI tools. In the future, we ex-
pect to use encryption and electronic signatures to enforce document
and audit log integrity more strictly in both Skyline and Panorama
and to fully protect the audit log from adversaries.

Financial Support

This work was supported by Skyline Targeted Proteomics
Environment [R01 GM103551], Library of Integrated Network-
Based Cellular Signatures [U54 HG008097], The Chorus Project: A
Sustainable Cloud Solution for Mass Spectrometry Data [R01
GM121696] and Quantifying Proteins in Plasma to Democratize
Personalized Medicine for Patients with Type 1 Diabetes
[1U01DK121289-01].

Conflict of Interest: none declared.

References

MacLean,B. et al. (2010) Skyline: an open source document editor for creating

and analyzing targeted proteomics experiments. Bioinformatics, 26,

966–968.

Sharma,V. et al. (2014) Panorama: a targeted proteomics knowledge base. J.

Proteome Res., 13, 4205–4210.

4368 T.Rohde et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa547#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa547#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa547#supplementary-data

