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Abstract 

As one of the most common structural birth defects, orofacial clefts (OFCs) have been studied 

for decades, and recent studies have demonstrated that there are genetic differences between 

the different phenotypic presentations of OFCs. However, the contribution of rare genetic 

variation genome-wide to different subtypes of OFCs has been understudied, with most studies 

focusing on common genetic variation or rare variation within targeted regions of the genome. 

Therefore, we used whole-genome sequencing data from the Gabriella Miller Kids First 

Pediatric Research Program to conduct a gene-based burden analysis to test for genetic 

modifiers of cleft lip (CL) vs cleft lip and palate (CLP). We found that there was a significantly 

increased burden of rare variants in SEC24D in CL cases compared to CLP cases (p=6.86�10
-7

). 

Of the 15 variants within SEC24D, 53.3% were synonymous, but overlapped a known 

craniofacial enhancer. We then tested whether these variants could alter predicted 

transcription factor binding sites (TFBS), and found that the rare alleles destroyed binding sites 

for 9 transcription factors (TFs), including Pax1 (p=0.0009), and created binding sites for 23 TFs, 

including Pax6 (p=6.12�10
-5

) and Pax9 (p=
 
0.0001), which are known to be involved in normal 

craniofacial development, suggesting a potential mechanism by which these synonymous 

variants could have a functional impact. Overall, this study demonstrates that rare genetic 

variation contributes to the phenotypic heterogeneity of OFCs and suggests that regulatory 

variation may also contribute and warrant further investigation in future studies of genetic 

variants controlling risk to OFC.   

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 27, 2023. ; https://doi.org/10.1101/2023.03.24.23287714doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.03.24.23287714
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

2

Introduction: 

Orofacial clefts (OFCs) are one of the most common structural birth defects, affecting 1 

in 700 births (Ciminello et al. 2009; Dixon et al. 2011; Gundlach and Maus 2006; Mossey et al. 

2009; Mossey and Modell 2012; Sabbagh et al. 2012). OFCs require multiple surgeries early in 

life, and affected individuals can experience speech, hearing, and psychosocial problems 

throughout life (Hameed et al. 2019; Lancaster et al. 2020; Wehby and Cassell 2010; Wehby et 

al. 2006). A majority (~50-70%) of OFCs cases are classified as nonsyndromic and most of these 

nonsyndromic cases are hypothesized to be caused by complex or multifactorial etiologies 

(Leslie and Marazita 2013), having both environmental (Bell et al. 2014; Candotto et al. 2019; 

DeRoo et al. 2016; Jamilian et al. 2017; Li et al. 2010; Martelli et al. 2015; Yin et al. 2019) and 

genetic risk factors (Birnbaum et al. 2009a; Birnbaum et al. 2009b; Bishop et al. 2020; Duan et 

al. 2020; Hao et al. 2018; Leslie et al. 2017a; Leslie et al. 2017b; Leslie et al. 2016; Leslie and 

Marazita 2013; Li et al. 2020; Li et al. 2017; Ludwig et al. 2016; Ludwig et al. 2017; Mangold et 

al. 2010; Mukhopadhyay et al. 2020; Shaffer et al. 2019).  

OFCs are also phenotypically heterogeneous and can be classified as a cleft of the lip 

(CL), cleft of the palate (CP), or a cleft of both the lip and the palate (CLP). A majority of the 

previous epidemiological and genetic studies have grouped types of OFCs together for 

increased statistical power under a hypothesis of shared biology (Ciminello et al. 2009; Dixon et 

al. 2011; Leslie et al. 2016; Leslie and Marazita 2013). CL and CLP are most commonly grouped 

together because of a shared 2:1 male-to-female sex bias and the fact that formation of the lip 

precedes the formation of the palate during embryonic development (Amidei et al. 1994; 

Marazita 2012; Urbanova et al. 2013). However, while genetic studies have successfully 

identified loci that contribute to both CL and CLP (Beaty et al. 2010; Birnbaum et al. 2009a; 

Birnbaum et al. 2009b; Leslie et al. 2016; Mukhopadhyay et al. 2020), recent studies indicate 

that CL and CLP can also have distinct genetic risk factors (Carlson et al. 2019; Carlson et al. 

2017a; Carlson et al. 2017b; Curtis et al. 2021a; Curtis et al. 2021b; Huang et al. 2019), or 

genetic modifiers, that predispose for the formation of one cleft type over another. We 

previously performed a targeted sequencing study of known OFC-associated regions and found 

evidence that common variants near 9q22, 17p22, and 20q12 are associated with the formation 

of CL or CLP and rare variants in 7 genes are associated with cleft type (Carlson et al. 2017b). 

Additional targeted studies have shown that some genotyped SNPs in IRF6 have a stronger 

effect in CL compared to CLP (Carlson et al. 2019). Genome-wide, subtype specific effects have 

been found for CL (Huang et al. 2019), and we also showed in a genome-wide modifier analysis 

that common variants in 16q21 are more strongly associated with the formation of a CL over a 

CLP, as are low-frequency variants in C8orf34, TMEM246, and CDC42EP3 (Carlson et al. 2017a).  

These studies indicate that common and low-frequency genetic variants are associated 

with the phenotypic variability among OFCs. However less is known about the contribution of 

rare variants genome-wide to the phenotypic heterogeneity of OFCs given the relatively limited 

scope of previous studies of rare variants (Carlson et al. 2017b). Therefore, we set out to test 

whether any genes had a burden of rare variants using whole genome sequencing data from 

the Gabriella Kids First Pediatric Research Program, focusing on CL vs CLP cases.  

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 27, 2023. ; https://doi.org/10.1101/2023.03.24.23287714doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.24.23287714
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

3

Methods: 

 

Cohort Description  

This study used affected probands with cleft lip (CL) or cleft lip and palate (CLP) and their 

parents that were sequenced as part of the Gabriella Miller Kids First Pediatric Research 

Program (GMKF). Participants were recruited from the United States, Argentina, Turkey, 

Hungary, Spain, Colombia, and Taiwan. Participant recruitment was done at regional treatment 

or research centers after review and approval by each site’s institutional review board (IRB) and 

the IRB of the affiliated US institutions (e.g., the University of Iowa, the University of Pittsburgh, 

and Johns Hopkins University). Because we were interested in genetic differences in CL vs CLP 

cases and 93.5% of the CL cases were in the samples with European ancestry, only the subset of 

samples with European ancestry were retained for analysis. For subtype-specific analyses 

(described below), 76 trios with isolated CL and 225 with CLP were used. The 20 trios 

(representing 6.6% of the dataset) with affected parents were retained in this analysis, but trios 

from families with both CL and CLP were excluded. For the modifier analysis (described below), 

we randomly selected a subset of unrelated individuals, with 100 having CL and 269 having CLP. 

For both analyses, the proportion of male and female probands were similar: 67% male, 33% 

female for the subtype-specific analysis and 66%, 34% female for the modifier analysis (Table 

S1).  

 

Variant calling and QC 

The whole-genome sequencing and quality control methodology for these cohorts has been 

described in detail previously  (Bishop et al. 2020; Mukhopadhyay et al. 2020). Briefly, DNA 

from either blood or saliva samples were sequenced (depending on availability) at either the 

McDonnell Genome Institute (MGI), Washington University School of Medicine in St. Louis or 

the Broad Institute. Variants were called and aligned to the GRCh38/hg38 reference genome 

using the GATK pipeline (Conrad et al. 2011; McKenna et al. 2010; Van der Auwera et al. 2013) 

at the GMKF Data Resource Center. The details of how these datasets were aligned and 

genotyped and harmonized has been previously published (Bishop et al. 2020; Mukhopadhyay 

et al. 2020). For sample-level QC, individuals with missingness or Mendelian error rare, or 

average read depth outside of three standard deviations from the mean were removed, as 

were individuals with a transition/transversion ratio (Ts/Tv), exonic Ts/Tv, silent/replacement 

ratio, or heterozygosity/homozygosity ratio outside expectation (Bishop et al. 2020). PLINK 

(v1.9) (Chang et al. 2015) was used to calculate identity-by-descent (IBD) to confirm all family 

relationships and X chromosome heterozygosity to confirm the sex of all participants. For 

variant-level QC, non-passing variants, variants with more than 2 Mendelian errors, variants 

with >5% missingness in individuals, variants with a Hardy-Weinberg equilibrium p-value < 

1x10
-7

 in unaffected parents, and variants with a quality by depth (QD) score of <4 were 

removed. Additionally, calls with a genotype quality (GQ)<20 or a depth (DP)<10 were set to 

missing and only biallelic variants were retained using VCFTools (Danecek et al. 2011).  
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Annotation and filtering 

All variants were annotated to publicly available databases using ANNOVAR (v201707) (Wang et 

al. 2010) and Variant Effect Predictor (VEP) (McLaren et al. 2016). Variants were defined as rare 

if their minor allele frequency (MAF) was less than 1% or 0.1% in all populations in gnomAD 

(v3.1.2) (Karczewski et al. 2020), and the allele count (AC) in this population was <42 (for MAF 

1%) and <8 (for MAF 0.1%). Any coding (protein-altering or synonymous) variant was retained 

for analysis. 

 

Statistical analyses 

Subtype-specific analyses were performed by testing for a burden of rare variants genome-wide 

using a rare variant extension of the transmission disequilibrium test (RV-TDT) (He et al. 2014) 

in trios with just CL (N = 76) and trios with just CLP (N = 225) separately. Variants were 

collapsed by RefSeq-defined gene region, and each gene with 2 or more variants was tested. 

Any variant that was coding and had a MAF < 1% in gnomAD (v3.1.2) was included in the 

analysis. We used a Bonferroni threshold correcting for the number of genes tested to 

determine statistical significance (CL analysis: p < 3.83�10
-6

; CLP analysis: p < 2.86�10
-6

). The -

log10 of the p-values from the two analyses were compared with a Pearson’s correlation.  

 

A modifier analysis for CL vs CLP was performed using RVTESTS (Zhan et al. 2016). This 

approach has higher power to identify genetic risk factors that differ between two subtypes, 

but no power to find factors important in both groups. We directly compared an unrelated 

subset of CL (N = 100) and CLP (N = 269) cases. Rare variants were collapsed across genes, and 

the association was tested using the Combined and Multivariate Collapsing method (CMC), 

which calculates the cumulative burden of rare variants within a region and is designed to find 

sets of rare variants with the same direction of effect. Any variant that was coding and had a 

MAF < 1% in gnomAD (v3.1.2) was included in the analysis. A Bonferroni threshold to correct 

for the number of genes tested was used to determine statistical significance (0.05/19,208 

genes; p < 2.60�10
-6

). Additionally, we considered p-value < 1�10
-5

 to be suggestive and 

performed additional analyses to localize the signal. These analyses included restricting variants 

to those that were rarer (MAF <0.1%), only protein-altering, or including coding and non-coding 

variants in specific regions (enhancer region definitions defined below). Sex and the first 8 

principal components (PCs) were used as covariates. PCs were calculated using the GENESIS 

software package (Gogarten et al. 2019). 

 

Functional annotation of results  

Topologically-associated domains (TADs) were defined for significantly associated loci using the 

H1-ESC cell line in 3D Genome Browser (Wang et al. 2018). Regions with potential craniofacial 

enhancers were annotated using publicly available datasets derived from ChIP-seq data from 

human embryos at CS13, CS14, CS15, CS17, and CS20 (4.5-8 weeks post conception) (Attanasio 

et al. 2013; Wilderman et al. 2018), and enhancers that have been experimentally validated as 

part of the VISTA Enhancer Browser (Visel et al. 2007). Gene expression for the significant and 

suggestive genes from the analyses was assessed with RNA-seq data generated from human 

cranial neural crest cells (GEO: GSM1817212, GSM1817213, GSM1817214, GSM1817215, 

GSM1817216, and GSM1817217) (Edgar et al. 2002; Prescott et al. 2015), and throughout 
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craniofacial development (CS13-CS20) (Yankee et al. 2022). For any variants within a predicted 

enhancer region that was suggestive in the main analysis, transcription factor binding sites 

(TFBS) were predicted using TFBSTools (Tan and Lenhard 2016) and the JASPAR database (Khan 

et al. 2018). The 50 base pairs surrounding each variant within the region were extracted from 

the reference sequence, and the analysis was conducted using both the reference sequence 

and the alternate sequence. We then selected predicted TFBS that both overlapped with the 

position of the variant and differed between the reference and alternate sequence. TBFS were 

considered predicted if the p-value was significant after multiple test correction (p < 

0.05/Number of TFBS that overlapped the variant position). The TFBS were considered different

between reference and alternate sequence if the TFBS was significant in one sequence and not 

the other.  

 

Results 

We performed a subtype-specific genome-wide analysis to identify genes with a burden 

of rare variants by performing a RV-TDT analysis in trios with just cleft lip (CL) and trios with just

cleft lip and palate (CLP), separately. This type of analysis could detect variants associated with 

increased risk for an OFC in general, but could also identify variants that increase the risk for 

just one of the subtypes of OFCs. Overall, no gene was significant in either analysis (Figure S1-

S2, Table S2-S3), likely due to the small sample size. However, some of the top results were in 

genes known to be associated with OFCs in previous analyses of common variants (e.g., 

ARHGAP29: p = 0.002 in the CL analysis)(Beaty et al. 2010; Leslie et al. 2016; Yu et al. 2017). The

top results for CL and CLP were different and the p-values were not correlated (r = 0.005, p = 

0.56; Figure S3). Only one gene had a p-value < 0.01 in both the CL and CLP analysis (CYP2D7: p 

= 0.007 in CL, p = 0.005 in CLP), with 52 genes being p < 0.01 in CL alone and 108 genes being p 

< 0.01 in CLP alone. This result is consistent with the hypothesis that CL and CLP may have 

partially distinct genetic architectures.  

Figure 1: Manhattan plot of –log10(p-values) from the cleft lip vs. cleft lip and palate 

modifier analysis.  

5
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 Because of the differences between the burden results from CL and CLP, we next 

performed a modifier analysis by comparing CL cases directly to CLP cases. Because this is a 

case-to-case group comparison, this analysis would not be able to detect variants generally 

important for OFC risk, but would detect variants important for the formation of one subtype 

over the other subtype. In the modifier analysis, SEC24D was genome-wide significant (p = 

6.86 10
-7

), and SUPT4H1 was suggestive (p = 6.33 10
-6

, Figure 1, Figure S4, Table 1, Table S4), 

with both having a burden of rare variants in CL compared to CLP (Table S5-S6). Both genes 

were still significant if only rarer variants (MAF < 0.1%) were included in the analysis (SEC24D: p 

= 7.58 10
-5

; SUPT4H1: p = 0.001) and if only protein-altering variants were included (SEC24D: p 

= 0.003; SUPT4H1: p = 0.0008), indicating the result is robust to different filtering and variant 

classification strategies. 

 We next further investigated these genes to better understand their role in craniofacial 

development by analyzing their expression during relevant timepoints, where the rare variants 

fell within the genes (Figure 2A, Figure S5), and the predicted topological domain (TAD) for both

regions (Figure 2B, Figure S6). SEC24D and SUPT4H1 were highly expressed in an in vitro human 

cranial neural crest cell model and throughout human fetal development, being in the top 10
th

  

 
 

Figure 2: Rare variants within SEC24D fall within a predicted craniofacial super enhancer (A). 

The predicted topologically-associated domain (TAD) surrounding SEC24D (B). 

6
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Table 1. Top modifying genes for CL vs. CLP 

Gene Chromosome Start (hg38) End (hg38) 

Number 

of rare 

variants P-value 

SEC24D 4 118722823 118838683 16 6.86�10
-7

 

SUPT4H1 17 58345175 58353093 2 6.33�10
-6

 

C2orf16 2 27537386 27582721 49 3.30�10
-5

 

TXNL1 18 56597209 56651600 5 6.72�10
-5

 

C11orf94 11 45906513 45907272 9 6.74�10
-5

 

 

percentile of genes expressed in cranial neural crest cell lines and in the 20
th

 percentile of all 

genes expressed throughout development (Table S7), further indicating that these are both 

genes with a potential role for the formation of an OFC. Rare variants were distributed 

throughout SEC24D, including overlapping with a predicted craniofacial enhancer (Figure 2). 

Rare variants in SUPT4H1, however, were just in the beginning of the gene, and within a 

craniofacial enhancer that covered the entire gene (Supplemental Figure).  

 Because some of the variants overlapped predicted craniofacial enhancers, we next 

investigated whether the burden test was actually detecting a non-coding signal.  We tested the 

enhancers within the SEC24D region to see if there was a burden of either coding (Table S9) or 

any (Table S10) rare variants. A super enhancer had a burden of rare variants when considering 

both coding variants (p=0.02) and all variants (p=0.006), indicating that there may be a 

statistically significant role for non-coding variants, but to a lesser degree than coding variants 

in this region. We next tested whether any of the variants affected predicted transcription 

factor binding sites (TFBSs). For SEC24D, 9 binding sites for 9 transcription factors (TFs) were 

destroyed, including ones for PAX1, and 23 TFBS were created, including ones for Pax6 and 

PAX9 (Table 2, Table S8), suggesting a potential mechanism for a non-coding effect. Within the 

predicted TAD that contains SEC24D, SEC24D was the highest expressed gene, and thus the best 

candidate target gene for these enhancers, with the next highest expressed gene being SYNPO2 

(Table S7).  

For the enhancers that overlapped SUPT4H1, the super enhancer was significant with 

just the coding variants (p=6.33 x 10
-6

), but not when all variants were considered (p = 0.14). 

Two variants were predicted to create binding sites for 5 TFs and destroy the 9 TFBSs, including 

FOXP2, which is involved in craniofacial morphology and speech (Table S11) (Xu et al. 2018). Of 

the other genes in the predicted TAD containing this super enhancer, MTMR4 and TSPOAP1 

were also highly expressed throughout development (Table S7). Taken together, while it is 

possible that these rare variants could have non-coding effects, the association with the 

individual enhancers and expression of the nearby genes are not strongly associated with cleft 

subtypes.  
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Table 2: Transcription factor binding sites altered by SEC24D variants within enhancer regions 

Predicted Transcription Factor Binding Sites Destroyed 

Variant Transcription 

Factor 

Class P-value 

(Reference) 

P-value 

(Alternate) 

chr4:118738340:C:T RELA 

Rel homology 

region (RHR) factors 0.00035 NA 

chr4:118738340:C:T RELB 

Rel homology 

region (RHR) factors 6.18�10-05 NA 

rs146307367 EHF 

Tryptophan cluster 

factors 0.00026 NA 

rs146307367 ELF4 

Tryptophan cluster 

factors 0.00043 NA 

rs146307367 PAX1 Paired box factors 0.00098 NA 

rs146307367 RARA::RXRG 

Nuclear receptors 

with C4 zinc fingers 0.00068 NA 

rs146307367 SPI1 

Tryptophan cluster 

factors 0.00011 NA 

rs146307367 SPIC 

Tryptophan cluster 

factors 0.00091 NA 

rs201472807 SRF MADS box factors 0.00017 NA 

Predicted Transcription Factor Binding Sites Created 

Variant Transcription 

Factor 

Class P-value 

(Reference) 

P-value 

(Alternate) 

chr4:118738340:C:T HSF1 Heat shock factors NA 0.00026 

rs140046192 FOXB1 

Fork head / winged 

helix factors NA 0.00054 

rs140046192 Pax6 Paired box factors NA 6.12�10
-5

 

rs140046192 PAX9 Paired box factors NA 0.00012 

rs140046192 TP73 p53 domain factors NA 0.00046 

rs139422490 ATF7 

Basic leucine zipper 

factors (bZIP) NA 0.00023 

rs139422490 CREB1 

Basic leucine zipper 

factors (bZIP) NA 5.22�10
-5

 

rs139422490 FOS::JUN(var.2) 

Basic leucine zipper 

factors (bZIP) NA 6.15�10
-5

 

rs139422490 FOSB::JUN 

Basic leucine zipper 

factors (bZIP) NA 0.00022 

rs139422490 FOSB::JUNB(var.2) 

Basic leucine zipper 

factors (bZIP) NA 0.00029 

rs139422490 FOSL1::JUN(var.2) 

Basic leucine zipper 

factors (bZIP) NA 0.00032 

rs139422490 FOSL2::JUN(var.2) 

Basic leucine zipper 

factors (bZIP) NA 6.27�10
-5
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rs139422490 FOSL2::JUNB(var.2) 

Basic leucine zipper 

factors (bZIP) NA 0.00021 

rs139422490 FOSL2::JUND(var.2) 

Basic leucine zipper 

factors (bZIP) NA 0.00017 

rs139422490 JDP2(var.2) 

Basic leucine zipper 

factors (bZIP) NA 0.00028 

rs139422490 JUN::JUNB(var.2) 

Basic leucine zipper 

factors (bZIP) NA 5.51�10
-5

 

rs139422490 JUNB(var.2) 

Basic leucine zipper 

factors (bZIP) NA 0.00022 

rs139422490 NR2F2 

Nuclear receptors 

with C4 zinc fingers NA 0.00019 

rs139422490 PBX1 

Homeo domain 

factors NA 0.00016 

rs139422490 POU5F1 

Homeo domain 

factors NA 0.00034 

rs139422490 RORA 

Nuclear receptors 

with C4 zinc fingers NA 0.00029 

rs139422490 RXRG 

Nuclear receptors 

with C4 zinc fingers NA 0.00046 

rs146307367 NFATC2 

Rel homology 

region (RHR) factors NA 0.00097 

 

Discussion 

 

There have been many studies that have investigated the genetic architecture of OFCs 

but our understanding of the factors that contribute to formation of CL versus CLP is 

incomplete, especially for rare variants. We previously addressed this by performing modifier 

analyses using targeted sequencing data and in low frequency variants from genotyping array 

(Carlson et al. 2017a; Carlson et al. 2017b), but this is the first study to investigate rare genetic 

modifiers of CL and CLP genome-wide using whole genome sequence data. We found that there 

was a statistically significant burden of rare, coding variants in SEC24D in participants with CL 

compared to CLP, and that this association still held if we lowered the minor allele threshold or 

only included protein-altering variants. We also found from publicly available RNA-seq data that 

SEC24D is highly expressed in neural crest cells lines and during craniofacial development. 

SEC24D is involved in vesicle trafficking, as a member of Coat Protein Complex II (COPII) and is 

important for cargo selection, concentration, and shape of the vesicle (D'Arcangelo et al. 2013). 

In zebrafish, sec24d is required for the effective transportation of proteins to the extracellular 

matrix in cartilage and with embryos deficient for sec24d have a failure of chondroblast 

differentiation leading to severe craniofacial dysmorphology and malformed cartilage (Sarmah 

et al. 2010). Consistent with that, Sec24-null mice have early embryonic lethality (Baines et al. 

2013). SEC24D has also been implicated in bone morphology disorders in humans before, with 

homozygous or compound heterozygous truncating and missense mutations causing Cole-
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Carpenter Syndrome (MIM# 616294), a syndromic form of osteogenesis imperfecta that 

presents with disturbed ossification of the skull, leading to midface hypoplasia, macrocephaly, 

and micrognathia, as well as brittle bones that break easily (Garbes et al. 2015; Moosa et al. 

2016; Takeyari et al. 2018; Zhang et al. 2017). Collectively, this is strong evidence that SEC24D is 

involved in bone and cartilage morphology, especially during craniofacial development. 

Therefore, heterozygous coding variants that subtly alter this gene’s function or non-coding 

variants that alter its expression could modify craniofacial phenotypes, such as whether a cleft 

of just the lip forms compared to a cleft that also affect the bony palate. However, more work is 

warranted to investigate how this gene could specifically modify orofacial cleft phenotypes.   

Even though it did not meet the significance threshold for this study, we also had 

suggestive evidence for SUPT4H1 as a modifier of CL vs CLP.  SUPT4H1 is involved in mRNA 

processing and transcription elongation, and depletion of SUPT4H1 in cell lines leads to global 

reduction in RNA levels; mice lacking Supt4h1 do not survive to birth  (Cheng et al. 2015; Naguib 

et al. 2019). Although not previously associated with orofacial phenotypes, it is highly 

expressed during craniofacial development and overlaps regulatory regions for craniofacial 

tissue. Therefore, future studies either trying to replicate this result or investigating the role of 

SUPT4H1 in facial development or bone morphology are of interest. 

We also conducted a subtype specific RV-TDT, comparing the transmission of rare 

variants in CL and CLP separately. Nothing in that analysis approached genome-wide 

significance, likely due to the small sample size and that the subtype-specific analysis would 

have less statistical power to detect loci that differ between two subtypes than the modifier 

analysis. However, some of the top results in the subtype specific analyses, like ARHGAP29, had 

been previously associated with OFCs (Leslie et al. 2016), and as cohorts increase in size, we 

expect to identify more robust signals that will facilitate more precise subtype comparisons.  

We previously found a burden of low frequency genotyped SNPs in C8orf34, TMEM246, 

and CDC42EP3 (Carlson et al. 2017a), and burden of rare variants around the loci containing 

PAX7, ARHGAP29, 8q24, FOXE1, VAX1, NTN1, and NOG (Carlson et al. 2017b). None of these 

genes/regions were significant or suggestive in this analysis, but this could be due to several 

factors. For example, previous studies used much larger sample sizes. A larger sample size 

would be better powered to detect rare variants, and therefore there may be genetic modifiers 

that were previously identified that this study is not powered to detect. Additionally, this lack of 

replication also be due to heterogeneous effects of rare variants that are undetectable when 

using the CMC method. There are also ancestry differences between the studies, with this study 

only having samples with European ancestry and previous studies being predominantly non-

European; any modifier that differs by ancestry may not be detected in this study. Further 

studies of clefting modifiers and replication in larger, more diverse cohorts is warranted.  

 Although we initially focused on rare, coding variants we also found evidence that non-

coding variants are important in modifying OFC subtypes. The gene bodies of SEC24D and 

SUPT4H1 contained predicted craniofacial enhancers. The rare variants within these enhancers 

are predicted to alter TFBSs for many different TFs. Some, like Pax6 and PAX9, have been 

associated with orofacial clefts before (Peters et al. 1998; Rodrigo et al. 2003; Sull et al. 2009; 

Vaivads et al. 2021), and others, like PAX1, have been associated with both normal facial 

morphology and as laterality modifiers of orofacial clefts (Curtis et al. 2021a; Shaffer et al. 

2016). This is consistent with the hypothesis that genetic variation in regulatory regions may 
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have an effect by altering TFBSs and thus gene expression. However, for both genes in this 

study, the association with the coding variation within the gene was stronger than the 

association with all rare variants within the overlapping enhancer. Of the genes within their 

respective TADs, SEC24D and SUPT4H1 were among the highest expressed genes during 

craniofacial development, making them likely target genes of these potential regulatory 

regions. Thus, while there is evidence consistent with rare, regulatory variants impacting 

orofacial cleft phenotypes, this effect is likely in addition to the effect by coding variation, and 

the effect of rare, non-coding variation genome-wide needs further investigation.   

In summary, we conducted the first genome-wide scan of rare genetic modifiers in a 

case-case design for CL vs CLP and found that SEC24D and SUPTAH1 had a significant burden of 

rare, coding variants in CL cases compared to CLP cases. By using publicly available datasets, we 

were able to determine that both genes were highly expressed in developing craniofacial tissue 

and contained predicted craniofacial enhancers. Additionally, we found that variants in these 

enhancers created or destroyed predicted binding sites for transcription factors, including Pax9 

and Pax6, suggesting a mechanism through which coding and noncoding variants could lead to 

phenotypic heterogeneity. Overall, this study expands our understanding of the genetic 

architecture of CL vs CLP and suggests that regulatory variation may also contribute and 

warrants further investigation in future studies.  
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