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Abstract: Advancement in electronic and communication technologies bring us up to date, but it
causes electromagnetic interference (EMI) resulting in failure of building and infrastructure, hospital,
military base, nuclear plant, and sensitive electronics. Therefore, it is of the utmost importance to
prevent the failure of structures and electronic components from EMI using conducting coating.
In the present study, Cu, Cu-Zn, and Cu-Ni coating was deposited in different thicknesses and their
morphology, composition, conductivity, and EMI shielding effectiveness are assessed. The scanning
electron microscopy (SEM) results show that 100 µm coating possesses severe defects and porosity
but once the thickness is increased to 500 µm, the porosity and electrical conductivity is gradually
decreased and increased, respectively. Cu-Zn coating exhibited lowest in porosity, dense, and compact
morphology. As the thickness of coating is increased, the EMI shielding effectiveness is increased.
Moreover, 100 µm Cu-Zn coating shows 80 dB EMI shielding effectiveness at 1 GHz but Cu and Cu-Ni
are found to be 68 and 12 dB, respectively. EMI shielding effectiveness results reveal that 100 µm
Cu-Zn coating satisfy the minimum requirement for EMI shielding while Cu and Cu-Ni required
higher thickness.

Keywords: metallic coatings; arc thermal spray; scanning electron microscope; X-ray diffraction;
conductivity; EMI shielding

1. Introduction

The development of electronics and communication technologies cause us to advance but they
adversely affect the building and infrastructure, hospital, military base, nuclear plant, and sensitive
electronics owing to the augmentation in electromagnetic interference (EMI). The electronic science
and technology cause electromagnetic radiation, which is the fifth most prevalent pollution after
air, water, noise, and solid waste of the world [1]. It not only affects the aforementioned structures
but also human health [2–4]. Therefore, it is of the utmost importance to prevent the damages of
structures caused by electronic devices from the EMI. It can be achieved by shielding the surrounding
structure using mechanically and electrically conducting materials. The electrical conductivity of
the shielding materials can be obtained by mixing with carbon or highly conductive metals [5–9]
or materials [10]. The conductivity of the materials can be increased by incorporating graphene,
carbon foam, multi-walled carbon nano tubes, 2D metal carbide, etc., but these are complex and
energy-intensive, which caused difficulties in scaling them for high-volume manufacturing [11].

There is a typical process to assemble/fabricate the shielding structure by bolting or welding of
metal sheets and panels. However, they show a lower degree of shielding effectiveness attributed
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to the formation of oxides as well as imperfection of shape and surface [12,13]. The EMI shielding
effectiveness depends on electrical conductivity, permeability, and thickness of the materials. There are
different technologies developed by the researchers worldwide to reduce the effect of EMI using
metallic materials, thin films, conductive polymers, and composites as electromagnetic shielding
materials [14–18]. One of the best methods is to use conductive metal plates, alloying, or conventional
process i.e., coatings to reduce EMI effect. The lightweight metals and alloys i.e., Mg, are widely used in
EMI shielding owing to their relatively good conductivity and basal texture intensity [19]. The alloying
of Al, Sn, Y, and Gd in Mg decreases the EMI shielding effectiveness, which could be attributed to the
decrease in conductivity of the binary alloy [20]. The addition of different amounts of Ti in Mg decreases
the conductivity but the EMI shielding effectiveness at ranges of 8.2–12.4 GHz increased compared
to pure Mg attributed to the decrease in reflection loss and simultaneous absorption coefficient [21].
Ce could improve the EMI shielding effectiveness of the Mg matrix owing to the increased reflection
and multiple reflection loss [22].

The stacking of the different layers to make composites improve the EMI shielding effectiveness
compared to bulk thickness of K2CrO4-polymethyl methacrylate (PMMA) composites owing to the
absorption loss [23]. The staked layer of multiwall carbon nano tube/PMMA exhibited higher shielding
effectiveness than a single layer [24]. There are different constraints to use the metal plate, polymer,
and composites such as high weight/density and cost. Thus, coating is the best option to reduce the
effect of EMI as shielding materials. However, EMI of deposited coating can be affected by bulkiness
and susceptibility to the corrosion or lack of structural flexibility [25–31]. The conducting metal can
be used as foil, laminates, lacquer, sputter coating, vacuum deposition, flame and arc spraying, and
electroless plating [32–38]. Among these processes, the arc thermal spray process is most widely used
to deposit the conducting metals, alloys, and plastics, which impart the good shielding properties [39].
The arc thermal spray process is carried out by melting the oppositely charged consumable twin wires
electrode to form an arc and then propelling the molten metal particles by compressed air onto the
substrate (to be deposited) [40].

The Al-Zn coating has been deposited by arc thermal spray process onto the steel plate as well
as concrete substrate, which shows the significant improvement in EMI attributed to the reflection
loss [41,42]. Zn content increases the shielding value in the T6 states of Mg-4Zn alloys [43]. Cu is
the metal being used as EMI shielding materials owing to its high absorption capacity of radio and
magnetic waves as well as electrical conductivity, which is identical to silver and is economical [44].
However, platinum, gold, and silver are highly conductive but extremely expensive, thus, these metals
cannot be used as EMI shielding materials [45]. Although, Cu is susceptible to corrosion and oxidation,
which can be improved by the addition of Ni that is corrosion resistant with lower conductivity [46].
Ni is also expensive; thus, it can be used in fiber form rather than plate or panel. Ni fiber significantly
improved the shielding effectiveness of cement-based materials [47]. Moreover, the electroplated
Ni–P/Cu–Ni polyester fabric exhibited higher EMI shielding compared to Ni-P owing to the increase in
electrical conductivity of Cu and crystallinity of Cu–Ni film [48].

The present study is emphasized to protect the national security building, military base camp,
hospital, etc., from EMI at 1.0 GHz, which required minimum 80 dB shielding value [12] to attenuate
the shielding materials and is recommended by national defense and military facilities as well as
MIL-STD-188-125-1 (a common specification of the US Ministry of Defense; and DMFC 4-70-30) [13].
Thus, we have used Cu as a parent metal along with Zn and Ni for deposition of 100, 200, and 500 µm
coating using arc thermal spray process, which can achieve the minimum required EMI shielding.
The variables are coatings (Cu, Cu-Zn, and Cu-Ni) and thicknesses (100, 200 and 500 µm) of each
coating chosen for evaluation of EMI shielding effectiveness. The EMI shielding performance was
evaluated at 0.1–1.0 GHz. The correlation of the surface morphology and texture have been established
with the EMI shielding value.
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2. Materials and Methods

2.1. Materials and Process of Coatings

The Cu, Cu-Zn, and Cu-Ni coating was deposited onto the smooth steel substrate by the arc
thermal spray process. In the arc thermal spray process, twin wires were melted at 30 V and 200 mA
on arcing point and with the help of compressed air on 7.5 bars, the molten metal particles are
propelled, resulting in deposition of coating by keeping the substrate away from the spray gun on
15–20 cm as described in our earlier publications [49–56]. The deposition of Cu coating was carried
out by twin wires of Cu while for Cu-Zn and Cu-Ni, one wire (wire-1) was Cu and another (wire-2)
was Zn (Cu-Zn coating) and Ni (Cu-Ni coating) as described in Table 1. The wire diameter for
all metals was 1.6 mm and the metal purity was 99.95 wt.% each. The digital images of Cu, Zn,
and Ni wires are shown in Figure S1 (Supplementary Figure S1). Different coatings (Cu, Cu-Zn,
and Cu-Ni) and thicknesses (100, 200, and 500 µm) were chosen for the evaluation of EMI shielding
value. The coating (100, 200, and 500 µm) was detached from the steel substrate by sharp knife
for characterization i.e., scanning electron microscopy (SEM), X-ray diffraction (XRD), electrical
conductivity, and EMI shielding effectiveness measurements.

Table 1. Experimental variables (coating and thickness).

Coating
For Deposition of Coating

Thickness (µm) of Coating
Wire-1 Wire-2

Cu Cu Cu

100

200

500

Cu-Zn Cu Zn

100

200

500

Cu-Ni Cu Ni

100

200

500

2.2. Characterization of Coatings

The top/outer surface and cross section morphology of different coatings (Cu, Cu-Zn, and Cu-Ni)
and thicknesses (100, 200, and 500 µm) detached from the steel substrate was performed by scanning
electron microscopy (SEM, HITACHI-S5000, Chiyoda City, Tokyo, Japan) operated at 15 kV and
elemental analysis by energy-dispersive X-ray spectroscopy (EDS). The porosity of coatings after
deposition was determined by ImageJ software (version 1.52n).

The nature of Cu, Cu-Zn, and Cu-Ni coatings was evaluated by X-ray diffraction (XRD, Rigaku,
Tokyo, Japan) using Cu Kα radiation (λ = 1.54059 Å) generated on 40 kV and 100 mA from 2θ = 10–90◦

at 4◦/min scan rate.

2.3. Conductivity Measurement of Coatings

The electrical conductivity of coatings was measured by Loresta-GX MCP-T700 (Nittoseiko
Analytech Co. Ltd., Kanagawa, Yamato, Chuorinkan, Japan) at four different locations and the average
was reported in the result. Four-point probes were used, where two points are inside the electrode for
voltage while the other two points are outside for current.
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2.4. EMI Shielding Evaluation of Coatings

The electromagnetic shielding performance of coatings was measured according to ASTM
D4935 [57]. In this method, each material was to be tested with a reference specimen where the
reference specimen was composed of a donut-shape with 133.1 mm outer and 76.2 mm inner diameter
while the test and load specimen diameter was 33 and 133.1 mm, respectively as shown in Figure 1
and described by Munalli et al. [58]. The measurement was performed by E5071C network analyzer
(Keysight Technologies, Yeouido-dong, Yeongdeungpo-gu, Seoul, Korea) and a PNR2205-10 coaxial
fixed attenuator (L3Harris Narda-ATM, Dongbaekjungang-Ro, Beon-Gil Gilheung-Gu, Yongin-Si,
Gyeonggi-Do, Korea). The electromagnetic waves were provided through port 1 from 0.1 to 1 GHz
at different frequency variables while the results were collected at port 2 and analyzed by a network
analyzer (Figure 1). The coatings specimens were kept in the middle as shown in Figure 1.

Figure 1. Schematic of E5071C network analyzer for electromagnetic interference (EMI) shielding
effectiveness measurement.

The EMI shielding effectiveness was measured through the intensity of the received electromagnetic
wave after passing through the reference specimen and the test specimen by irradiating electromagnetic
waves of arbitrary frequency along the coaxial cable. The EMI shielding effectiveness can be measured by

SE (dB) = 20log

∣∣∣∣∣∣1 + Z0

2(ZL + ZC)

∣∣∣∣∣∣ (1)

where Z0 is the characteristic value (50 Ω) of the coaxial cable, and ZL and Zc are the impedance of the
material under test and contact impedance, respectively.

3. Results and Discussion

The thickness of the coating was measured with non-destructive Elcometer456 (Tokyo, Japan)
by randomly selecting three different locations, and the average is reported in the manuscript.
The coating thickness was also verified with the cross-section SEM images. The thickness of all coatings
measured with Elcometer456 is found to be around 100 (±5), 200 (±10), and 500 (±20) µm.

3.1. SEM of Coatings

The cross-sectional SEM images of 100, 200, and 500 µm coatings are shown in Figures S2–S4,
respectively. The coating thickness of Cu, Cu-Zn, and Cu-Ni measured by cross sectional SEM images
is found to be 100 (±3) (Figure S2), 200 (±7) (Figure S3), and 500 (±6) µm (Figure S4). The coating
thickness obtained by SEM images are in good agreement with the result measured by Elcometer456.
The surface morphology of the Cu, Cu-Zn, and Cu-Ni coatings with different thicknesses are shown in
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Figures 2–4. The SEM images of 100 µm thick Cu, Cu-Zn, and Cu-Ni coating at 1000× are shown in
Figure 2. It can be seen from Figure 2a and Figure S2a that the 100-µm Cu coating exhibited defects
and cracking attributed to the presence of splats particles resulting in the formation of space between
two molten Cu particles. The deposition efficiency and quality of coating are directly related to
deposition speed. In the present study, the deposition speed was 25 µm/spray pass, which is higher
than normal process [59]. The semi-disk-shaped splat particles become flattened, which is attributed
to the kinetic energy of the molten droplets where the velocity of the spraying is determined the
morphology [60]. Thus, the pores and cracking are observed after solidification of the molten metal
particles. These defects/pores and splat particles may allow the electromagnetic waves to pass during
the EMI shielding effectiveness measurement. However, once the Zn (wire 2) is used along with
Cu (wire 1), the morphology of Cu-Zn film is improved as observed in Figure 2b and Figure S2b,
attributed to the melting point and density difference of Cu and Zn. Cu (density: 8.96 g/cm3) melts at
1085 ◦C while Zn (density: 7.13 g/cm3) at 420 ◦C. There are huge differences in density and melting
points of Cu and Zn. Cu exhibited higher density and melting points compared to Zn, which required
higher temperature to melt the metal. However, at this temperature i.e., 1085 ◦C, there is a possibility
that Zn can melt homogeneously, and the molten metal droplets become smaller compared to Cu,
which subsequently fill out the defects and pores of Cu; thus, dense, compact, and regular morphology
is observed in Cu-Zn coating (Figure 2b and Figure S2b). Conversely, there are severe defects and pores
observed by 100 µm Cu-Ni film as shown in Figure 2c and Figure S2c. Cu and Ni both have almost
identical densities, but the melting point is different. Ni melts at 1455 ◦C while Cu at 1085 ◦C. In this
case, until the Ni melts, the Cu make the homogeneous solution of molten metal particles, but Ni does
not melt completely; thus, some non-molten Ni droplets deposit onto the coating surface, resulting in
the formation of heavy defects. Cu and Ni have identical density but different melting points, where Cu
can melt and deposit early while Ni does so later, resulting in difference in coating composition owing
to the unsaturated solution of Cu-Ni. The difference in melting point of identical density metal creates
severe defects and pores owing to the deposition of different layer with different composition.

Figure 2. SEM images of 100 µm (a) Cu, (b) Cu-Zn, and (c) Cu-Ni coating.



Materials 2020, 13, 5776 6 of 16

As the thickness of coatings is increased, the required time to deposit the coatings is higher than
at a lower thickness. In this case, a greater number of passes of spraying is required to deposit a thick
coating. Therefore, there is the possibility to melt the metal particles homogeneously, resulting in less
defective coating. There were eight passes required to deposit 200 µm thick coatings of Cu, Cu-Zn,
and Cu-Ni. The top surface SEM images of 200 µm thick Cu, Cu-Zn, and Cu-Ni coatings are shown in
Figure 3, whereas the cross-section morphology is shown in Figure S3a–c, respectively. It can be seen
from these Figures that the morphology of 200 µm thick film improved compared to 100 µm. The Cu
coating shows splat particles with reduced volume of defects. There is plate morphology observed in
the 200-µm Cu coating (Figure 3a) attributed to the homogeneous melting of metal particles during
deposition of coating. The smaller molten metal particles uniformly deposited resulted in less defective
coating (Figure 3a and Figure S3a) compared to 100 µm. The Cu-Zn coating exhibited uniform and
dense morphology (Figure 3b and Figure S3b) but there are some inflight particles observed attributed
to the vast difference in melting point and density of Cu and Zn. These inflight particles come from
the molten Zn metal droplets and are suspended in the atmosphere (due to the vast difference in
melting point of Cu and Zn) during deposition of coating; but, once the coating process was stopped,
they immediately cooled down and deposited onto the surface as inflight particles, thus, some defects
are observed in Figure 3b. However, the Cu-Ni coating shows defects (Figure 3c and Figure S3c)
but lesser than 100 µm and higher than Cu and Cu-Zn coating. The Cu forms dense and compact
morphology but some non-molten Ni deposit onto the coating, which causes defects even after eight
spray passes. This result suggests that Cu-Ni coating required higher thickness to get a good-quality
film while Cu and Cu-Zn can get by with 200 µm coating. The defects/pores of Cu-Ni coating are open
face (vertical) where electromagnetic waves can easily pass through it.

Figure 3. SEM images of 200 µm (a) Cu, (b) Cu-Zn, and (c) Cu-Ni coating.
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As the coating thickness is increased, the morphology is improved significantly as shown in
Figure 4 attributed to homogenous melting of metal particles. The deposition of thick coating requires
a higher number of spray passes and time where the possibility to melt the high melting point metal
such as Cu and Ni is higher resulting in homogenous melting. In the case of pure Cu coating to deposit
500 µm, both metal wires are melted in a significant amount of time where the particle size of molten
metal droplets are very small, which subsequently cooled and uniformly deposited, resulting in dense,
compact, and uniform morphology as shown in Figure 4a and Figure S4a. Alternatively, the Cu-Zn
coating forms dense, regular, and smooth morphology (Figure 4b and Figure S4b) but there are some
splat particles observed owing to the difference in melting point and density of Cu and Zn. Moreover,
even at 500 µm thick Cu-Ni coating, there are some defects, cracks (Figure S4c), as well as splat particles
observed (Figure 4c), which refer to poor quality of the coating. The splat particles are probably Ni,
which exhibit higher melting points. In all coatings, the defects are significantly reduced, attributed to
the higher coating thickness.

Figure 4. SEM images of 500 µm (a) Cu, (b) Cu-Zn, and (c) Cu-Ni coating.

The porosity of the coatings on the outer surface as well as cross-section SEM images was measured
by ImageJ software and the results are shown in Table 2. It can be seen from this table that lower coating
thickness exhibited higher porosity but once the thickness increased, the porosity decreased gradually.
The porosity measured on the outer surface as well as the cross section are in good agreement with each
other. The 100 µm Cu-Ni coating exhibited around 48–49% porosity while Cu and Cu-Zn show around
34–38% and 21%, respectively. The Cu-Zn coating exhibits the lowest value in porosity attributed to
the deposition of the dense coating where smaller melted Zn particles sediment into the defects of the
coating resulted in lower porosity. The 200 µm thick Cu and Cu-Zn film exhibited almost identical
porosity (Table 2) and less than 100 µm attributed to the deposition of dense and compact coating.
As the coating thickness is increased up to 500 µm, the porosity of Cu and Cu-Zn is found to be around
7–8%, which is reduced by around 80–81% and 62% compared to 100 µm, respectively. However,
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Cu-Ni exhibits 23% porosity, which is reduced by around 52–53% compared to 100 µm. This result
suggests that once the coating thickness is increased from 100 to 500 µm, all of the coatings porosities
are reduced by more than 50%.

Table 2. Porosity measurement (%) and EDS analysis of coatings.

Coatings Thickness (µm)
Porosity (%) Elements (wt.%)

Outer/Top Surface Cross Section Cu Zn Ni O

Cu

100 38 34 99.78 - - 0.22

200 12 12 99.57 - - 0.43

500 7 7 99.60 - - 0.40

Cu-Zn

100 21 21 32.52 66.34 - 1.14

200 13 14 30.43 68.59 - 0.98

500 8 8 31.23 67.93 - 0.85

Cu-Ni

100 48 49 49.62 - 47.40 2.98

200 27 27 33.76 - 64.97 1.27

500 23 23 18.91 - 80.54 0.55

The EDS analysis of Cu, Cu-Zn, and Cu-Ni coatings at different thickness is shown in Table 2.
It can be seen from this table that the Cu coating in all thicknesses exhibited only Cu with nominal
amount of O i.e., 0.22–0.43 wt.% attributed to the atmospheric oxygen or inflight particles. The O in
all coatings is very low, and the maximum amount was found to be in the 100 µm Cu-Ni coating i.e.,
2.98 wt.%. The EDS analysis confirms that there is no oxidation of coating during deposition by arc
thermal spray process attributed to the fast spraying i.e., 25 µm/spray where chances for oxidation of
coating is minimum. The O in the coating might be coming from the atmosphere or inflight particles.
There is an interesting observation can be found in EDS analysis of Cu-Zn and Cu-Ni coatings that
they have formed pseudo alloy instead of pure. In Cu-Zn, the maximum amount is 66.34–68.59 wt.%
Zn while in the case of Cu-Ni, Ni is the maximum. It is attributed to the difference in density and
melting point of the metals. In the Cu-Zn coating, Zn exhibits a lower melting point as well as density
compared to Cu, which deposits onto the coating later. Zn melts early, and owing to the lower density,
is suspended into the atmosphere during the spraying process, which later cools and deposits onto
the surface, while due to the high density of Cu, it preferably deposits. Thus, on the top surface,
a lower density and melting point metal is observed i.e., Zn in a higher amount. Alternatively, for the
Cu-Ni coating, both metals have identical densities but the melting points are different. Ni has a
higher melting point than Cu, which requires more time to completely melt while Cu melts early and
preferably deposits [61]; thus, the later one i.e., Ni is found to be in a higher amount are a higher
thickness of coating, resulting in pseudo alloy formation. In the lower thickness of coating, Cu-Ni
deposits identical amounts and forms a Cu-Ni alloy, but as the thickness is increased, Ni content is
found to be increased while Cu is decreased.

3.2. XRD of Coating

The XRD of Cu, Cu-Zn, and Cu-Ni coatings having different thicknesses, as shown in Figure 5.
The XRD result of 100 µm thick Cu, Cu-Zn, and Cu-Ni coating is shown in Figure 5a. It can be seen
that Cu coating exhibited Cu (JCPD: 03-065-9026) having three lattice planes at (111), (200), and (220)
while the Cu-Zn coating exhibited identical Cu along with Zn (JCPDF: 03-065-5973) at (002), (100),
(102), (103), (004), (112), and (201) plane. Alternatively, in the Cu-Ni coating, it shows Cu along with Ni
(JCPDF: 03-065-0380). The lattice plane of Ni and Cu are identical, which can be attributed to the FCC
structure of Cu and Ni. Thus, both phases show identical orientation in the lattice plane. The phases
formed in the 200 (Figure 5b) and 500 µm (Figure 5c) coatings are identical as observed in 100 µm.
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This result suggests that there is no alloying of Zn and Ni with Cu and oxidation is attributed to
the coating process where it forms a mechanical bond rather than an intermetallic one [62] and fast
deposition of coating by the arc thermal spraying process, respectively. There is no difference in peak
intensity of Cu and Zn in Cu and the Cu-Zn coating at different thicknesses. On the contrary, the Cu-Ni
coating exhibited different peak intensity ratios of Cu and Ni at different thicknesses. As the thickness
increased, the peak intensity of Ni at (111), (200), and (220) gradually increased while Cu is decreased,
which is attributed to the higher participation of Ni in coating composition as observed in the EDS
analysis (Table 2). Thus, it can be said that XRD and EDS results are in good correlation.

Figure 5. XRD of (a) 100, (b) 200, and (c) 500 µm Cu, Cu-Zn, and Cu-Ni coatings.

3.3. Electrical Conductivity of Coating

The electrical conductivity of the coating is shown in Figure 6. The EMI shielding effectiveness
depends on the electrical and physical properties of the deposited coatings as well as the interference
between the coating and substrate. From Figure 6 it can be seen that as the thickness of the coating
increased, the electrical conductivity gradually increased [63], which is attributed to the improved
morphology where the metal particles are denser, compact, and regularly connected to each other as
observed in Figure 4 and Figure S4. The electrical conductivity of the 100 µm Cu-Zn coating is slightly
higher compared to the Cu, which is attributed to the lower porosity (Table 2). It is well known that
higher porosity leads to lower conductivity. The 100 µm Cu-Ni coating shows the lowest conductivity
owing to the presence of heavy defects/pores in the film. From Figure 2c and Figure S2c, it can be
seen that the 100 µm Cu-Ni coating deposited by the arc thermal spray process possesses the highest
porosity i.e., 48–49% (Table 2), which decreases the conductivity as observed in Figure 6, which is
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attributed to the irregularity in deposition of the metal particles [64]. In the present study, there is no
interference between the coating and substrate because the coating was detached from the smooth
steel substrate by knife. On the other hand, as the coating thickness increased, the conductivity of
each coating increased, which is attributed to the improved morphology. However, the 200 µm Cu
coating shows higher conductivity compared to Cu-Zn and Cu-Ni while the porosity of Cu and Cu-Zn
films is almost identical. This result suggests that as the thickness is increased and the required time
and spray passes to deposit the coating is increased, resulting in the molten metal particles become
smaller than at lower thicknesses, which improved the conductivity because the metal with the lower
melting point melts early and forms a dense structure and joins the molten metal droplets to each other.
Moreover, the conductivity of Cu metal is higher compared to Ni and Zn. In the case of the pure Cu
coating, the porosity decreased as the thickness increased, which led to higher conductivity while in
the case of Cu-Zn, the porosity decreased but owing to the low conductivity of Zn, the conductivity of
the coating is lower compared to Cu. On the other hand, the Cu-Ni coating possesses higher porosity
even at 500 µm thickness, which causes the discontinuity/irregularity in particles. Thus, the lowest
conductivity is observed (Figure 6).

Figure 6. Electrical conductivity of coatings.

3.4. Shielding Effectiveness Measurement

The EMI shielding is considered by blocking the flow of an electromagnetic wave. Therefore,
the shielding of electromagnetic waves can be represented by the sum of reflection (SER), absorption
(SEA), and multiple reflections (SEM) loss of materials i.e., SE = SER + SEA + SEM [65–67]. In this
case, SEM can be ignored [7,68] if SER is greater than 9 dB. Therefore, SER and SEA can be derived by
Simon formalism [69,70]:

SE = 50 + 10log10

(
1
ρ· f

)
+ 1.7t

(
f
ρ

) 1
2

(2)

where ρ is the volume resistivity (Ω·cm), which is the same as the reciprocal of the electrical conductivity
(σ), f is the frequency (MHz), and t is the thickness of the shielding material (cm). Based on Equation (2),
it can be said that if the conductivity of the shielding material is high or thick, then the shielding
effectiveness would be higher.

The EMI shielding effectivenss of different coating at various thicknesses are shown in Figure 7.
The EMI shielding value is dependent on the frequency of electromagnetic waves. The minimum
required shielding effectiveness for a national security building, military base camp, hospital, etc.,
from EMI is 80 dB at 1.0 GHz [12]. Ninghi et al. have observed that at a high frequency, the EMI
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shielding effectiveness is decreased owing to the absorption loss and electrical/magnetic dipoles [71].
Thus, it is important to consider the EMI shielding effectiveness of coatings at 1.0 GHz. It can be seen
from Figure 7a that the 100 µm Cu-Zn coating exhibited around 80 dB at 1 GHz while Cu is 68 dB.
This result suggests that the Cu-Zn coating can only sustain and use the EMI shielding application if the
coating thickness is considered 100 µm. The addition of Zn improved the EMI shielding effectiveness
significantly [43]. Moreover, as the frequency increased from 0.1 to 1 GHz, the shielding effectiveness
of 100 µm Cu and Cu-Ni coatings decreased gradually, which is attributed to the decrease in reflection
and increase in absorption loss of the electromagnetic waves. Due to the presence of heavy defects and
pores, the electromagnetic waves are slightly leaked from the pores of the coatings and the fixture,
which is inevitable where reflection loss is always dominant. Therefore, at high frequencies, the overall
shielding efficiency of the coating is decreased. The presence of heavy defects in the 100 µm Cu-Ni
coating (Figure 2c and Figure S2c) leads to a lower electrical conductivity i.e., 23.8 S/cm (Figure 6),
which in turn reduces the reflection loss [22]; thus, the shielding value is found to be lowest (Figure 7a).
As the thickness of coating is increased, the shielding effectiveness is increased as shown in Figure 7b,c,
which is attributed to the increase in electrical conductivity and absorption loss. It is observed in
Figure 6 that as the thickness is increased, the conductiviy is increased. There is zig-zag in shielding
effectiveness of high thickness coating attributed to the bumpy surface where electromagnetic waves
can leak. It can be seen from Figure 7b (200 µm) and Figure 7c (500 µm) that Cu, Cu-Zn, and Cu-Ni
achieved the required shielding value i.e., 80 dB at 1 GHz. This result suggests that these coatings with
more than 100 µm thick film is able to shield the EMI and can be used to protect the national security
building, military base camp, hospital, etc. However, among all coatings, the Cu-Zn coating exhibits
greater performance in regards of EMI shielding value. The 200 and 500 µm Cu-Zn coatings exhibited
89 and 95 dB EMI shielding effectiveness at 1 GHz, respectively. From this study, it can be concluded
that surface morphology, porosity, thickness, composition, and electrical conductivity of the coatings
are in good agreement with EMI shielding value. As the coating thickness is increased, the porosity
is decreased (Table 2), and electrical conductivity (Figure 6) and shielding effectiveness is increased
(Figure 7).

Figure 7. Shielding effectiveness value of (a) 100, (b) 200, and (c) 500 µm Cu, Cu-Zn, and Cu-Ni coatings
at different frequencies.
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4. Conclusions

In the present study, Cu, Cu-Zn, and Cu-Ni coatings were deposited by the arc thermal spray
process in various thicknesses to shield the EMI, and their properties were assessed by SEM, XRD,
electrical conductivity, and EMI shielding effectiveness. The 100 µm coating exhibited greater defects
and porosity attributed to the low spray pass and difference in melting points as well as the density of
metals to be deposited. The Cu-Zn coating showed improved surface morphology attributed to the
lower melting point and density of Zn compared to the Cu and Cu-Ni coatings. XRD results confirm
that the Cu film exhibited only a Cu phase while the Cu-Zn and Cu-Ni coatings show Zn and Ni
along with Cu, which suggest that there is no formation of intermetallic layers or alloying during
deposition by the arc thermal spray process. However, as the coating thickness of Cu-Ni increased,
the Ni content increased, as well as the intensity ratio of Ni peak. The 100 µm Cu coating exhibited
lower conductivity, attributed to the higher porosity compared to Cu-Zn. As the coating thickness
increased, the conductivity increased, which is attributed to the improved morphology and lower
porosity. The 100 µm Cu-Zn coating exhibited the minimum required EMI shielding value i.e., 80 dB at
1 GHz, which reveals that this coating can be used to impart the EMI shielding. However, the 100 µm Cu
and Cu-Ni coatings showed lower EMI shielding effectiveness compared to the minimum requirement,
which is attributed to the presence of heavy defects and pores where the electromagnetic waves
leaked slightly between the pores of coating and the fixture, which is inevitable. These coatings also
showed the gradual decrement in EMI shielding effectiveness as the frequency increased, owing to
the decrease in reflection loss and increase in absorption loss of the electromagnetic waves. Once the
coating thickness increased greater than 100 µm, all coatings exhibited the minimum required EMI
shielding value i.e., 80 dB at 1 GHz, attributed to the improvement in morphology, decrease in porosity,
and increase in electrical conductivity where molten metal particles are well-connected to each other,
resulting in the formation of a dense and compact coating, which leads to increased EMI shielding
effectiveness. This study suggests that instead of using pure Cu metal plates or coatings for EMI
shielding, a 100 µm Cu-Zn coating could be used, which is cost effective and effective for EMI shielding.
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(a) Cu, (b) Cu-Zn and (c) Cu-Ni film at 200×, Figure S3: Cross section SEM images of 200 µm (a) Cu, (b) Cu-Zn
and (c) Cu-Ni film at 200×, Figure S4: Cross section SEM images of 500 µm (a) Cu, (b) Cu-Zn and (c) Cu-Ni film
at 100×.
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