
RESEARCH ARTICLE

DNA Hypermethylation of CREB3L1 and Bcl-2
Associated with the Mitochondrial-Mediated
Apoptosis via PI3K/Akt Pathway in Human
BEAS-2B Cells Exposure to Silica
Nanoparticles
Yang Zou1,2, Qiuling Li1,2, Lizhen Jiang1,2, Caixia Guo1,2, Yanbo Li1,2, Yang Yu1,2,
Yang Li1,2, Junchao Duan1,2*, Zhiwei Sun1,2*

1 Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University,
Beijing 100069, P.R. China, 2 Beijing Key Laboratory of Environmental Toxicology, Capital Medical
University, Beijing 100069, P.R. China

* jcduan@ccmu.edu.cn (JD); zwsun@ccmu.edu.cn (ZS)

Abstract
The toxic effects of silica nanoparticles (SiNPs) are raising concerns due to its widely appli-

cations in biomedicine. However, current information about the epigenetic toxicity of SiNPs

is insufficient. In this study, the epigenetic regulation of low-dose exposure to SiNPs was

evaluated in human bronchial epithelial BEAS-2B cells over 30 passages. Cell viability was

decreased in a dose- and passage-dependent manner. The apoptotic rate, the expression

of caspase-9 and caspase-3, were significantly increased induced by SiNPs. HumanMethy-

lation450 BeadChip analysis identified that the PI3K/Akt as the primary apoptosis-related

pathway among the 25 significant altered processes. The differentially methylated sites of

PI3K/Akt pathway involved 32 differential genes promoters, in which the CREB3L1 and Bcl-
2 were significant hypermethylated. The methyltransferase inhibitor, 5-aza, further verified

that the DNA hypermethylation status of CREB3L1 and Bcl-2 were associated with downre-

gulation of their mRNA levels. In addition, mitochondrial-mediated apoptosis was triggered

by SiNPs via the downregulation of PI3K/Akt/CREB/Bcl-2 signaling pathway. Our findings

suggest that long-term low-dose exposure to SiNPs could lead to epigenetic alterations.

Introduction
The nanotechnology industry has grown exponentially over the last decade in a diverse range
of applications, including medicine (therapeutic, diagnostic and bio-imaging), food ingredi-
ents, cosmetics, and electronics [1,2]. More than 1600 consumer products containing nanoma-
terials are currently available in our daily life [3]. According to reports in the Project on
Emerging Nanotechnologies, silica nanoparticles (SiNPs) are listed within the Top 3 nanoma-
terials-based consumer products [4]. With the growing number of applications for SiNPs, the
potential burden on human and environmental exposure are increasing. Humans can be
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exposed to SiNPs via inhalation, dermal penetration ordigestion [5], thus, it is crucial to assess
their potential adverse biological effects. In vitro and in vivo studies have revealed that SiNPs
can cause cytotoxicity, genotoxicity, cardiovascular toxicity, pulmonary toxicity and hepatotox-
icity [6–11]. Yet, there are only very few studies that investigate nanomaterials-induced epige-
netic toxicity [12], and especially limited for SiNPs in particular.

Generally, epigenetic regulation of gene transcription occurs by three main mechanisms:
DNAmethylation, histone modification and miRNA expression [13]. DNA methylation, the
most common epigenetic mechanism, leads to changes in gene expression without alteration of
DNA sequences [14]. Aberrant (hyper- or hypo-) methylation is believed to be greatly influ-
enced by environmental risk factors, resulting in physiological instability of cell division
[15,16]. Hypermethylation of promoter regions (CpG islands) silences genes involved in DNA
repair, cell cycle and apoptosis pathways; while hypomethylation of a CpG dinucleotide in the
global DNA sequence activates gene expressions [17]. Numerous studies have explored the
genotoxic potential of nanomaterials, yet, very few studies have assessed their potential for epi-
genetic regulation [12]. Choi and coworkers first reported that nanomaterials could induce sig-
nificant epigenetic changes in 2008, by demonstrating that CdTe quantum dots (QDs)
decreased DNAmethylation of specific apoptotic and antioxidant genes in human MCF-7
breast cancer cells [18]. More recently, titanium dioxide nanoparticles were shown to increase
the levels of DNA methylation in the PARP-1 promoter in A549 cells [19]. In contrast, no
changes in DNA methylation were observed in Neuro-2A cells exposed to copper oxide nano-
particles [20]. The other types of epigenetic modifications in EK cells exposure to nanoparticles
were also reported: Eom et al. found that the differential sensitivity of integrated mRNA and
microRNA profiling in Jurkat T cells exposed to AgNPs and Ag ions [21]. Produced significant
changes in microRNA expression were also found in different size of gold nanoparticles [22].
Apart from these isolated report, there is a scarcity of information on nanomaterials-induced
epigenetic mechanisms, with the limited lack of consistency conclusions that can be drawn.

In the present study, epigenetic regulation of low-dose SiNPs exposure was first evaluated in
human bronchial epithelial BEAS-2B cells over 30 passages. We adopted the HumanMethyla-
tion450 BeadChip to analyze genome-wide methylation profiles. The cytotoxicity, apoptosis,
and activation of caspase-3 and caspase-9 were evaluated after BEAS-2B cells treated with
SiNPs. Microarray data indicated the involvement of the PI3K/Akt/CREB/Bcl-2 signaling path-
way which was further verified by qRT-PCR and western blot assays. In addition, the methyl-
transferase inhibitor5-aza-2’-deoxycytidine (5-aza), was performed to analyze the role of SiNPs
on DNA methylation and mRNA levels of the apoptosis-related genes CREB3L1 and Bcl-2.

Materials and Methods

SiNPs preparation and characterization
SiNPs were prepared and characterized as described in our previous studies [23]. Briefly, 2.5
mL of tetraethylorthosilicate (TEOS) (Sigma, USA) was added to premixed ethanol (50 mL)
containing ammonia (2 mL) and water (1 mL). The reaction mixture was kept at 40°C for 12 h
with continuous stirring (150 r/min). Particles were isolated by centrifugation (12,000 r/min,
15 min) and rinsed three times with deionized water. SiNPs were dispersed in deionized water
(50 mL) by sonicator for 5 minutes (160 W, 20 kHz, Bioruptor UDC-200, Belgium) prior to
experiments using in culture medium to minimize its aggregation.

Cell culture experiment and exposure to SiNPs
Human Bronchial epithelial cells (BEAS-2B) lines were purchased from the Cell Resource Cen-
ter, Shanghai Institutes for Biological Sciences (SIBS, China). Cells were cultured in Dulbecco’s
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Modified Eagle’s Medium (DMEM) (Hyclone, USA) supplemented with 10% fetal bovine
serum (Gibco, USA), 100 U/mL penicillin and 100 mg/mL streptomycin, in a humidified envi-
ronment (37°C, 5% CO2). For all experiments, the cells were seeded in culture plates at a den-
sity of 1×105 cells/mL, allowed to attach for 24 h, and then treated with SiNPs (suspended in
DMEM) for 24 h. Cells were collected after 1 passage, and the SiNP-treated process was
repeated over 30 passages. Control treatment cells were provided with an equivalent volume of
DMEM without SiNPs. Each group had three replicate wells.

MTT assay
The cell viability was determined using the MTT assay. Briefly, 1×104 BEAS-2B cells were seeded
on a 96-well plate in a volume of 100 μL DMEM, and allowed to attach for 24 h at 37°C. Cells
were treated with varying concentrations of SiNPs (3.125, 5, 6.25, 12.5, 25, 50 and 100 μg/mL) for
24 h at 37°C. MTT (10 μL) was added into each well at 5 mg/mL. Following 4 h incubation,
150 μL dimethylsulfoxide (DMSO) was added and mixed thoroughly for 5 min. Optical density
at 492 nmmeasured with a microplate reader (ThemoMultiscan MK3, USA). The concentration
of SiNPs (5 μg/mL) that exhibited greater than 95% cell viability was chosen for long-term low-
dose SiNPs exposure. Cell viability was also measured at the 5th, 10th, 20th and 30th passages.

Apoptosis assay
Apoptosis in BEAS-2B cells was assessed using an Annexin V-propidium iodide (PI) apoptosis
detection kit (Jiancheng, China) according to the manufacturer’s instructions. Briefly, BEAS-
2B cells were exposed to SiNPs for 30 passages, washed with PBS three times and trypsinized.
After centrifugation at 1000 rpm, the cell pellet was washed with PBS once and incubated with
5 μL Annexin V-FITC for 15 min, followed by staining with 5 μL PI. Samples were diluted with
500 μL binding buffer and analyzed with a flow cytometer (Becton Dickinson, USA), counting
at least 1×104 cells for each sample.

Methylation BeadChip array
DNA was isolated using a micro DNA isolation kit (Qiagen, Valencia, CA) according to the
manufacturer’s instructions. DNA (500 ng) was treated with bisulfate using an EZ DNAMeth-
ylation Gold Kit (Zymo Research, Irvine, CA), according to the manufacturer’s instructions.
The methylation of DNA was assayed on Infinium HumanMethylation450 BeadChips using
the Illumina HD methylation assay kit from Shanghai Biotechnology Corporation.

Data analysis for the methylation BeadChip arrays was carried out by extracting image data
using the Genome Studio methylation module. β-values (ranging from 0 to 1), reflecting signif-
icantly differentially methylated sites (i.e. Δβ�0.14 and p�0.05) were identified in different tis-
sue types. Genes were grouped in functional categories based on the Gene Ontology database
(GO: http://www.geneontology.org/), and functional pathways (KEGG and BIOCARTA) were
analyzed using the online SAS analysis system (http://www.ebioservice.com/sas.html).

Pyrosequencing analysis
DNA samples underwent bisulfite conversion using the EpiTect Plus Bisulfite Kit(Cat#59104,
Qiagen, Germany) following treatment of BEAS-2B cells with the methyltransferase inhibitor
5-aza for 24 h. Pyrosequencing and PCR amplification of CREB3L1 and Bcl-2 were conducted
using the PyroMark assay design software and PyroMark PCR kit, respectively. All processes
were performed according to manufacturer’s instructions at Shanghai Biotechnology Corpora-
tion. Primers for the Pyrosequencing analysis are listed in S1 Table.
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Quantitative RT-PCR analysis
Total cellular RNA was extracted using TRI Reagent (Molecular Research Center) according to
the manufacturer’s instructions. Reverse transcription (RT) of the purified total RNA was per-
formed using the iScriptcDNA synthesis kit (Bio-Rad 1708891, USA). The expression level of
GAPDH was used as an internal control. qRT-PCR was performed in a 7900 HT Sequence
Detection System (ABI, USA) using the Power SYBR Green PCRMaster Mix (ABI, USA).The
relative gene expression was analyzed using the 2−(ΔΔCt) method and normalized to the control.
All experiments were performed in triplicate, three independent times. The primers used for
qRT-PCR are listed in S2 Table.

Western blot analysis
Equal amounts (40 μg) of lysate proteins were loaded on 12% SDS-polyacrylamide gels and
electrophoretically transferred onto polyvinylidene fluoride (PVDF) membranes (Millipore,
USA). After blocking with Tris-buffered saline (TBS) containing non-fat milk (5%) for 1 h,
membranes were incubated with caspase-9, caspase-3, protein kinase B (Akt), p-Akt, cAMP
responsive element-binding protein (CREB), or Bcl-2 (CST, USA) (1:1000, rabbit antibodies)
at 4°C overnight. The PVDF membrane was rinsed with TBST and incubated with anti-rabbit
IgG secondary antibody (CST, USA) for 1 h. Proteins bound to antibodies were measured by
the chemiluminescence reagent, ECL (Pierce, USA). Densitometric analysis of the western blot
results was assessed using Image Lab™ Software (Bio-Rad, USA).

Statistical analysis
Statistical analysis was performed using SPSS 18.0 software (SPSS Inc., Chicago, IL, USA). Data
were expressed as mean ± standard deviation of independent experiments. The least significant
difference (LSD) test was used to compare the means of two samples, while one-way analysis of
variance (ANOVA) was used for multiple comparisons of>2 groups. In all cases, p<0.05 was
considered to be statistically significant.

Results

Characterization of SiNPs
Full characterization of SiNPs can be found in our previous study [21]. Briefly, the average diameter
of SiNPs was approximately 58 nm. The hydrodynamic sizes and zeta potentials of SiNPs were
detected in the distilled water and DMEM. The present results showed that SiNPs possessed favor-
able dispersibility and stability in the culture medium. And the purity of SiNPs was more than 99.9%.

Cytotoxicity of SiNPs
After 24 h SiNPs exposure, the viability of BEAS-2B cells decreased gradually in a dose-dependent
manner (Fig 1A). The cell viability of 12.5, 25, 50, 100 and 200 μg/mL SiNPs-treated groups were
significant decreased compared to control. The concentration of SiNPs (5 μg/mL) that retained
>95% cell viability was chose for long-term exposure dosage. The cell viability of SiNPs was
decreased to 84.5%, 78.7%, 58.4%, 51.8% at the 5th, 10th, 20th, 30th passage, respectively (Fig 1B).
Our data showed that SiNPs induced the cytotoxicity in a dose- and passage-dependent manner.

Mitochondrial apoptosis induced by SiNPs
To further explore the nature of cell death induced by SiNPs, apoptosis was measured by flow
cytometry. The apoptotic rate was significant higher in SiNP-treated groups compared to that
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of control at the 5th passage (Fig 2). The apoptotic rate induced by SiNPs at 5th, 10th, 20th,
30th passages were 34.8%, 45.1%, 61.3%, 64.6%, respectively. The activities of caspase-9 and
caspase-3, were assessed by western blot assay (Fig 3). Relative densitometric analysis showed
that the expression of Caspase-3 and Caspase-9 was significant increased in SiNPs-treated
groups and the protein level of Caspase-3 and Caspase-9 was markedly upregulated. Our data
demonstrated that the SiNPs could trigger the mitochondrial apoptosis in a passage-dependent
manner in BEAS-2B cells.

Fig 1. Cell viablity of BEAS-2B cells in the presence of SiNPs. (A) Cell viability of 3.125, 5, 6.25, 12.5, 25, 50,
100μg/mL SiNPs-treated groups for 24 h exposure. (B) Cell viability following 5 μg/mL SiNPs after the5th, 10th,
20th, 30th passage. Data are expressed as means ± S.D. *p<0.05 compared with control group.

doi:10.1371/journal.pone.0158475.g001
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Identification of DNA methylation status of global genes induced by
SiNPs
To investigate whether long-term SiNPs exposure resulted in the alteration of the DNA meth-
ylation status in BEAS-2B cells, we adopted theHumanMethylation450 BeadChip. Among the
45,000 CpG loci, there were 2,196 CpG loci that showed differential methylation levels (β-val-
ues) between the SiNPs-BEAS-2B and BEAS-2B (p<0.05). Of these 2,196 CpG loci, 223 were

Fig 2. Apoptosis of BEAS-2B cells after exposure to SiNPs at the 5th, 10th, 20th, 30th passage. (A) Apoptotic
populations of cells double-stained with PI- and FITC-labled Annexin V using flow cytometry. (B) SiNPs increased the
apoptosis rate in a passage-dependent manner. Data are expressed as means ± S.D. *p<0.05compared with control
group.

doi:10.1371/journal.pone.0158475.g002
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considered to be hypomethylated (Δβ<-0.14) and 1,973 were considered to be hypermethy-
lated (Δβ> 0.14) (Fig 4). After enrichment analysis of KEGG (p<0.05), the methylated sites
were associated with a total of 25 pathways (Fig 4). The PI3K/Akt pathway was identified as
the apoptosis-related pathway among the 25 significantly altered pathways. Within the PI3K/
Akt signaling pathway, the differentially methylated sites involved 32 different gene promoters,
in which the CREB3L1 and Bcl-2 gene were significant hypermethylated.

Hypermethylation of CREB3L1 and Bcl-2 promoters induced by SiNPs
We analyzed normal BEAS-2B cells and the 30th passage of SiNPs-exposed BEAS-2B cells by
Illumina methylation array. Among all CpG bb sites that were hypermethylated, there was
DNAmethylation of CpG sites located in the N-shore of CREB3L1 gene, and CpG sites located
in the island of the Bcl-2 gene (S3 Table). The methylation of CREB3L1 and Bcl-2 was further
confirmed by pyrophosphate sequencing method with methyltransferase inhibitor, 5-aza. The
inhibitor 5-aza effectively attenuate the hypermethylation levels of CREB3L1 and Bcl-2 in the
30th passage of SiNPs-treated BEAS-2B cells (Fig 5).

Fig 3. Effect of SiNPs on the expression of caspase-9 and caspase-3 in BEAS-2B cells. (A) Protein levels induced by SiNPs at the
5th, 10th, 20th, 30th passage. (B) Relative densitometric analysis. Data are expressed as means ± S.D. *p<0.05 compared with control
group.

doi:10.1371/journal.pone.0158475.g003
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Genes expression of CREB3L1 and Bcl-2 triggered by SiNPs
To confirm whether the DNA hypermethylation regulated the expression of their relevant
genes, the mRNA levels of the CREB3L1 and Bcl-2 were quantified by qRT-PCR analysis. As
shown in Fig 5, the gene expression of CREB3L1 and Bcl-2 were significant downregulated in
the 30th passage of SiNPs-treated groups compared to that of control, while the inhibitor 5-aza
could markedly increase the mRNA levels of the CREB3L1 and Bcl-2 (Fig 6). Our results dem-
onstrated that the DNA hypermethylation status of CREB3L1 and Bcl-2 decreased their mRNA
levels of SiNPs-treated BEAS-2B cells.

Effect of SiNPs on PI3K/Akt/CREB/Bcl-2 signaling pathway
To further illustrate the underlying mechanisms of SiNPs on apoptosis, we examined the
PI3K/Akt/CREB/Bcl-2 signaling pathway by western blot. As shown in Fig 7, the protein levels
of p-Akt/Akt, CREB and Bcl-2 were significantly decreased in BEAS-2B cells treated with 5 μg/
mL SiNPs compared to control group at all passages. Our data indicated that SiNPs triggered
apoptosis via PI3K/Akt/CREB/Bcl-2 signaling pathway in a passage-dependent manner. A

Fig 4. Analysis of gene DNAmethylation status between the SiNPs-treated BEAS-2B cells (g2) and control cells (g1) using Infinium
HumanMethylation450 BeadChip.

doi:10.1371/journal.pone.0158475.g004
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schematic model of the molecular mechanisms of long-term low-dose exposure of SiNPs-
induced apoptosis in BEAS-2B cells is presented in Fig 8.

Discussion
Over the last decade, nanomaterials have been shown to have the capacity to cause cytotoxicity
and genotoxicity in vitro and in vivo [24–26]. Yet, there are only few studies focusing on the
epigenetic toxicity mechanisms induced by nanomaterials. Many aspects of this area remain to
be established, and preliminary conclusions appear contradictory [12]. DNA methylation is
one of the common epigenetic mechanism resulting in changes to gene expression without
DNA sequence alteration [27]. In the present study, we show for the first time that low-dose

Fig 5. DNAmethylation of CREB3L1 andBcl-2 promoters in the 30th passage of BEAS-2B cells exposed to
SiNPsin the presence of the methyltransferase inhibitor 5-aza.Data are expressed as means ± S.D. *p<0.05
compared with control group. #p<0.05 compared with the 30th passage SiNPs-treated group.

doi:10.1371/journal.pone.0158475.g005
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exposure of SiNPs induced apoptosis in BEAS-2B cells over 30 passages via epigenetic
regulation.

Our data showed that the cytotoxicity induced by SiNPs increased in a dose- and passage-
dependent manner (Fig 1). Since the cell viability is directly linked to cell death, apoptosis was
evaluated by Annexin V/PI double staining. In line with the cytotoxicity results, the apoptotic
rate induced by SiNPs was significantly increased in a passage-dependent manner (Fig 2). Apo-
ptosis, is a tightly regulated form of programmed cell death, involved in an energy-dependent
sequence of biochemical events that leads to cytoplasmic organelles and nuclear fragmentation

Fig 6. mRNA expression of CREB3L1 and Bcl-2 in the 30th passage of BEAS-2B cells exposed to SiNPs and the
methyltransferase inhibitor 5-aza.Data are expressed as means ± S.D. *p<0.05 compared with control group. #p<0.05
compared with the 30th passage of the SiNP-treated group.

doi:10.1371/journal.pone.0158475.g006
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as well as chromatin condensation [28]. Apoptosis occurs through both extrinsic (Fas) and the
intrinsic (mitochondrial) pathways [29]. The mitochondria-mediated pathway involves a cas-
cade of events, including the efflux of cytochrome C, the formation of apoptosomes accompa-
nied with Apaf-1 and caspase-9, resulting in caspase-3 activation and subsequent induction of
apoptosis [30]. Mitochondria-mediated apoptosis had been observed in response to several
metal nanoparticles, such as copper oxide nanoparticles, silver nanoparticles and zinc oxide
nanoparticles [31–33]. Here we found that the SiNPs, similarly to the nonmetal nanoparticles,
could trigger the mitochondria-mediated apoptosis via the up-regulation of caspase-9 and cas-
pase-3 in BEAS-2B cells (Fig 3). Thus, we suggested that the mitochondria-mediated apoptosis
might be a common mechanism induced by nanoparticles of different types.

We adopted the HumanMethylation450 BeadChip to further analyze genome-wide methyl-
ation profiles and signaling pathways. The PI3K/Akt pathway was identified as the apoptosis-
related signaling pathways among the 25 significantly altered pathways (Fig 4). The differen-
tially methylated sites of the PI3K/Akt signaling pathway involved 32 different gene promoters,
in which CREB3L1 and Bcl-2 were significantly hypermethylated (S3 Table). The process of
DNAmethylation transiently adds a methyl group to the 5’carbon position of cytosine of cyto-
sine-guanosinedinucleotides (CpG). CpG islands are in, or near, the gene’s promoter region
that allow the transcription of genes when unmethylated [34]. Our data showed that the
CREB3L1 and Bcl-2 were significantly hypermethylated, and that the methyltransferase inhibi-
tor 5-aza could effectively attenuate the hypermethylation levels of CREB3L1 and Bcl-2 (Figs 5
and 6). Tucci et, al. found that titanium dioxide nanoparticles could disturb the methionine
cycle and diminish levels of methionine, indicating that titanium dioxide nanoparticles can
cause DNA hypomethylation in human keratinocytes HaCaT cells [35]. Using the same cell

Fig 7. Effect of SiNPs on the PI3K/Akt/CREB/Bcl-2 signaling pathway. (A)Protein expression of p-Akt, Akt, CREB, Bcl-2. (B) Relative
densitometric analysis. Data are expressed as means ±S.D.*p<0.05 compared with control group.

doi:10.1371/journal.pone.0158475.g007

DNA Hypermethylation of CREB3L1 and Bcl-2 Induced by SiNPs

PLOSONE | DOI:10.1371/journal.pone.0158475 June 30, 2016 11 / 15



HaCaT line, Zhuang et al. reported that silicon dioxide nanoparticles triggered global DNA
hypomethylation due to the downregulation of DNMTs and MBD2 [36]. However, our results
showed that the SiNPs induced more DNA hypermethylation than hypomethylation in BEAS-
2B cells. We speculated that the methylation profile induced by nanoparticles can vary accord-
ing to the cell line under investigation; a subject that will be important to address in future
studies.

To gain insight into the underlying mechanisms of SiNPs-induced mitochondria-mediated
apoptosis, we examined the PI3K/Akt/CREB/Bcl-2 signaling pathway. Our data indicated that
SiNPs triggered apoptosis via PI3K/Akt/CREB/Bcl-2 signaling pathway in a passage-dependent
manner (Fig 7). The surface of SiNPs contains a lot of hydroxyl radical (�OH), which has a
great tendency to induce the ROS generation and oxidative damage in cells [37]. Our previous
study confirmed that the ROS scavenger, N-acetylcysteine (NAC), could effectively inhibition
PI3K/Akt /GSK-3β pathway induced by silica nanoparticles in L-02 cells [38]. So, we could
conclude that the hydroxyl radical is a major chemical reason for the activation of PI3K/Akt
pathway by SiNPs. The classic signaling pathway of PI3K/Akt regulates several pro-survival
proteins, such as NF-kB, CREB and Bcl-2; as well as regulating several pro-apoptotic proteins
[39]. CREB has a pro-survival effect through mediation of several transcription factors. It can

Fig 8. Schematic representation of the DNA hypermethylation of CREB3L1 and Bcl-2, associated with mitochondrial-mediated
apoptosis via PI3K/Akt signaling pathway induced by low-dose SiNPs.

doi:10.1371/journal.pone.0158475.g008
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directly regulate the downstream pro-survival transcription factor, Bcl-2 [40]. The Bcl-2 family
is known to participate in the regulation of the apoptosis process. Bcl-2, is mainly localized in
mitochondria, where it plays an important role in controlling mitochondrial membrane integ-
rity and cytochrome C release [41–43]. Our previous study found that the PI3K/Akt signaling
pathway was involved in the cross-talk between autophagy and angiogenesis [44]. In this study,
the DNA hypermethylation of CREB3L1 and Bcl-2 induced by SiNPs was also shown to be
associated with mitochondrial-mediated apoptosis via the PI3K/Akt signaling pathway. A
schematic model of the molecular mechanisms obtained in this study is presented in Fig 8.

Conclusions
The present study demonstrated that low-dose exposure of SiNPs induced cytotoxicity and
mitochondrial-mediated apoptosis in a passage-dependent manner in BEAS-2B cells. The dif-
ferentially methylated sites of PI3K/Akt pathway involved 32 different gene promoters, in
which the CREB3L1 and Bcl-2 were significant hypermethylated. The DNA hypermethylation
status of CREB3L1 and Bcl-2 were associated with a decrease in their mRNA levels. In addition,
mitochondrial-mediated apoptosis was triggered by SiNPs via the downregulation of the PI3K/
Akt/CREB/Bcl-2 signaling pathway. Our findings suggest that exposure to low-dose SiNPs for
long-term could lead to epigenetic alteration in human bronchial epithelial cells. Our data pro-
vide persuasive evidence for further safety evaluation of nanomaterials.
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