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INTRODUCTION

Musculoskeletal pain involves bones, joints, and related muscular tissues and includes most
debilitating pain conditions such as low back pain, arthritic pain, and widespread muscle
pain. Chronic musculoskeletal pain is the most predominant among chronic pain conditions
and presents a serious challenge to primary care. Pain arising from musculoskeletal tissues is
characteristic of deep pain and has important differences from that of cutaneous pain [Table 1;
(1)]. Compared to cutaneous tissue injury, the injection of the same amount of inflammatory
agent into the joint induces more intense inflammation and greater and more widespread neuronal
activation in the pain transmission pathways (2). Musculoskeletal nociceptive inputs appear more
effective in inducing neuronal excitation and produce greater sensory disturbances (3, 4), which
may explain predominant chronic pain conditions involving deep tissues. The underlying etiology
and pathology of chronicmusculoskeletal pain conditions are poorly understood even after decades
of research.

EXPERIMENTAL MUSCULOSKELETAL PAIN - RELEVANCE TO
CHRONICITY

Human muscle pain can be induced experimentally by injecting the hyperalgesic agents such as
hypertonic saline (5), capsaicin (6), glutamate (7), serotonin (8), or nerve growth factor (9, 10)
into the muscle. To avoid invasive procedures, a short-wave diathermy-induced human muscle
pain model has been developed (11). These human muscle pain models help to advance our
understanding of the mechanisms and improve the treatment of muscle pain. A limitation of these
models, however, is that the induced muscle pain hypersensitivity would resolve within minutes to
hours [e.g., (5, 12)]. Nerve growth factor induces relatively long-lasting hyperalgesia for 4–7 days to
a few weeks after injection into the muscle in humans (9, 13, 14). Chronic pain is defined as pains
that persist or recur for longer than 3 months (15). While acute and chronic pain shares similar
neural mechanisms, chronic pain is underlying by distinct mechanisms of central sensitization and
still unsettled involvement of the immune system (16–18). Although these human experimental
models mimic aspects of acute or persistent pain, they are not necessarily suitable for studying pain
chronicity, a deteriorating and devastating problem for patients.

Animal persistent musculoskeletal pain models have been developed to simulate chronic pain
conditions in humans. A variety of methods can be used to assess muscle/joint pain in animals,
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TABLE 1 | Comparison of musculoskeletal and cutaneous pain.

Musculoskeletal pain Cutaneous pain

Localization Diffuse Localized

Description Cramping, aching,

throbbing, dull

Sharp, pricking,

stabbing, shooting

Noxious St. Not necessarily

tissue-damaging

Usually

tissue-damaging

Referred pain Yes No

Hyperalgesia/Allodynia Yes Yes

including evoked nocifensive reflex and vocalization, movement-
related measures such as weight-bearing and gait analysis,
functional measures such as bite force and grip force,
spontaneous nociception such as home cage monitoring,
scratching behaviors, and grimace scale. To mimic human
rheumatic disease, polyarthritis was induced by injecting
complete Freund’s adjuvant (CFA) into the base of the rat’s tail
(19). Pain hypersensitivity occurs in multiple joints after 10 days
and lasts up to 3 weeks. Later studies revealed that a systemic
disease was induced in this model that included skin lesions,
destruction of bone and cartilage, impairment of liver function,
and lymphadenopathy, which made it difficult to differentiate
pain behavior from generalized malaise and debilitation, and
led to ethical concerns (20). Injection of inflammatory irritants
into the joints and muscles, including CFA, carrageenan,
zymosan, mustard oil, formalin, capsaicin, bee venom, acidic
saline, lipopolysaccharide, inflammatory cytokines, monosodium
iodoacetate, and sodium urate crystals, has been used to produce
tissue injury and hyperalgesia [(21), review]. These models
mainly reflect early injury responses and there is still a significant
challenge to develop models that can be translated into human
chronicmusculoskeletal pain conditions [see (22)].

Surgical interventions are employed to model chronic low
back pain, the most commonly seen chronic musculoskeletal
pain [reviewed in (23)]. The procedures include the compression
of the dorsal root ganglion (24), disruption of the lumbar
intervertebral disc (25), implantation of tissues into the lumbar
epidural space to mimic disc herniation (26), injection of
complete Freund’s adjuvant into the intervertebral disc or
nucleus pulposus (27), and surgical application of zymosan
into the epidural space to induce inflammation of the dorsal
root ganglion (28). These approaches lead to behavioral
hyperalgesia resembling human low back pains such as
discogenic and radicular back pain and low back pain related
to local inflammation. The pain hypersensitivity after surgical
interventions can last for up to months (24, 25, 27), longer than
that after a simple injection of algesic mediators. To mimic soft
tissue musculoskeletal pain such as tendinopathy, a constriction
injury of the tendon of the rat masseter muscle produces pain
hypersensitivity that lasts for months (29, 30). These models may
be employed to identify distinct mechanisms that contribute to
the development of chronicmusculoskeletal pain.

The new International Classification of Diseases-11 has
updated the chronic pain classification to include the

Primary chronic pain category to designate chronic pain
that cannot directly be ascribed to any disease of structural
injury. Fibromyalgia, a chronic condition characterized by
widespread pain involving musculoskeletal tissues, is a type
of primary chronic musculoskeletal pain and women appear
to be affected more than men (31, 32). A reserpine myalgia
model has been presented to model fibromyalgia in animals
(33). In this model, a daily subcutaneous injection of reserpine
(1 mg/kg) was repeated for 3 consecutive days induced
decreased muscle pressure threshold and allodynia. While
the reserpine approach is promising, the model’s relevance to
fibromyalgia is still an issue. The reserpine-induced myalgia
would only persist for about 1 week and the sex difference in
fibromyalgia prevalence is not reproduced (33, 34). Reserpine
depletes monoamine neurotransmitters norepinephrine,
dopamine, and serotonin by inhibiting vesicular monoamine
transporters (35). Reserpine-induced pain suggests that these
monoamines exert a net inhibitory effect on nociception. It is
interesting to note that Catechol-O-methyltransferase (COMT)
metabolizes catecholamines, but inhibition of COMT leads to
enhanced catecholamine levels and pain hypersensitivity via
beta2/3-adrenoceptors (36). The imbalance of monoamines
in fibromyalgia and functional pain syndrome requires
further investigation.

The preclinical muscle/bone/joint pain models have
contributed greatly to our understanding of the biological
mechanisms underlying musculoskeletal pain. However, there
are still gaps in our understanding, particularly with the
development of pain chronicity. Most studies have settled to
use the observed persistent pain within days or a couple of
weeks after the injury as a surrogate of chronic pain in humans,
despite that the early persistent pain could still be a type of acute
pain and may miss characteristics of chronic pain that occurs
late. Recent studies have reported month-long upregulation of
microglial markers in the spinal cord after nerve injury and
differential cytokine profiles between the early and late phases of
hyperalgesia (37). The transcription factor NF-kB is known for
its immediate pro-inflammatory role, but it also contributes to
the resolution of inflammation at the late phase of inflammation
(38). Reevaluation of the CFA inflammatory hyperalgesia model
indicates that the temporal course of mechanical hyperalgesia
consists of an initial developing phase with peak hyperalgesia
at 4–24 h, a subsequent attenuating phase of a few weeks,
followed by a late persistent (chronic) phase that lasted for
months (18). Importantly, different cellular mechanisms are
involved in the early acute phase and late chronic phase of
CFA-induced hyperalgesia, as suggested by a late downregulation
of astroglial glutamate transporters that occurs at a time when
hyperalgesia transitions into the persistent chronic phase (18).
Thus, preclinical studies on chronic musculoskeletal pain need
to attend to the late chronic phase of pain hypersensitivity.
The central mechanisms involved in the transition of chronic
muscle pain should also be studied (39, 40). We are challenged
to differentiate the factors relevant to the transition and
maintenance of musculoskeletal pain chronicity. Myalgia is one
of the major symptoms of Covid-19 (41, 42). It remains to be
seen whether it could develop into a chronic problem.

Frontiers in Pain Research | www.frontiersin.org 2 October 2020 | Volume 1 | Article 575479

https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/pain-research#articles


Ren Challenges in Musculoskeletal Pain Research

WIDESPREAD AND COMORBID PAIN
CONDITIONS

Widespread pain is commonly seen in musculoskeletal pain
conditions, which is characteristic of deep tissue pain that refers
to the areas remote from injury. The temporomandibular joint
disorders (TMJD) patients not only have pain in the TMJ
and muscles of mastication but also pain in other muscles
and joints (43, 44). Somewhat conceptually overlapping with
widespread pain, patients with chronic musculoskeletal pain
frequently have other comorbid pain conditions: fibromyalgia
and TMJD (45, 46), migraine (47), and visceral pain (48), TMJD
and headache (49), and Ehlers-Danlos syndromes (joint pain)
andChiariMalformation (headache and neck pain) (50). A causal
relationship between the comorbid pain conditions is often
difficult to determine regarding which condition triggers the
other, but the involvement of multiple body structures suggests
a central-mediated effect (51, 52).

Widespread and comorbid muscle pains can be reproduced in
animal models. Repeated unilateral injections of acidic saline into
the gastrocnemius muscle of rats produce bilateral hyperalgesia
that lasts for up to 30 days (53), which mimics persistent
widespread muscle pain in humans. Unilateral injection of
CFA into the masseter muscle induces bilateral behavioral
hyperalgesia (54). Combined masseter muscle inflammation and
stress induce visceral hypersensitivity similar to that seen in
comorbid TMJD and irritable bowel syndrome patients (55).
Interestingly, the inflammatory pain of the craniofacial muscle
in rats can spread to the hind paw, but not vice versa (56). Since
primary sensory afferents from the craniofacial region project to
a wide region of the brain, in contrast to distinct somatotopy
of spinal afferents (57), craniofacial musculoskeletal pain tends
to induce comorbid pain conditions. The cellular mechanisms
underlying the comorbidity of chronic musculoskeletal pain
remain to be elucidated.

HOMEOSTATIC IMMUNE REGULATION IN
PERSISTENT PAIN

The development of persistent or chronic pain largely depends
on the interactions between the nervous and immune systems,
which involves glia that function as immune cells in the
brain (17, 58). The pain-related neuroimmune interactions are
reciprocal and involve neurotransmitters and their receptors
and immune mediators including cytokines and their receptors.
In inflammatory hyperalgesia after injection of CFA into the
masseter muscle, there is reactive astrogliosis, induction of
proinflammatory cytokine IL-1b, and the coupling of NMDA
receptor phosphorylation through IL-1 receptor signaling (59).
In ischemic myalgia, IL-1b signals through IL-1 receptor to
upregulate acid-sensing ion channels to induce nociceptor
sensitization (60). Activation of P2X4 receptors on muscle
macrophages leads to IL-1b release and muscle hyperalgesia (61).

Despite evidence from preclinical studies, clinical trials for
the treatment of chronic pain with glial modulators have
been unsuccessful (62), which would suggest our incomplete

understanding of the mechanisms. From imaging studies on
chronic low back pain patients, it is observed that glial activity
is negatively correlated with the levels of pain and IL-1b,
suggesting an inhibitory role of glia related to the translocator
protein, the marker used for glial activation in the study
(63). This inhibitory role of glial activity has largely been
overlooked. The immune system provides balanced regulation
to maintain normal function. The effector and regulatory T cells
(Teffs and Tregs), for example, are pro- and anti-inflammatory,
respectively (64). The depletion of Tregs delays pain resolution
(65) and enhances neuropathic pain (66). Tumor necrosis factor
(TNF) is proinflammatory through the TNFR1 while anti-
inflammatory via TNFR2 (67). Deletion of TNFR2 hampers,
but activation of TNFR2 promotes recovery from neuropathic
pain (65). The known proinflammatory NF-kB pathway is
involved in the development of pain hypersensitivity but also
involved in bone marrow stromal cell-produced pain relief
in a tendinopathy model (68), suggesting dual roles of NF-
kB in hyperalgesia and pain relief according to circumstances.
These results suggest that the perturbation of the balanced or
homeostatic immune regulation, not only immune activation,
leads to disease conditions including chronic pain. In search
of treatment strategies targeting the immune system, it would
be ideal to return to homeostasis by strengthening the anti-
inflammatory/protective profile, instead of simply shutting off
immune activation.

SEX DIFFERENCES

The phenomenon of female predominance in chronic pain has
been a topic of interest in recent decades (69–71), which has led
to the National Institutes of Health (NIH) mandate to include
sex as a biological variable in NIH-funded Research (72). Similar
to other chronic pain conditions, women appear to be affected
more than men by chronic and co-morbid musculoskeletal pain
(73, 74). While the relative prevalence of chronic pains in females
and males can be quantified, we still need to find answers for
the factors that contribute to these differences. In addition to
document different levels of pain, more focus should be on the
underlying differences in biology between males and females.
Preclinical studies have shownmale-specific involvement of Toll-
like receptor 4 in persistent pain [see (71)]. A recent report
shows that the upregulation of genes that escape X chromosome
inactivation is correlated to the development of co-morbid
chronic musculoskeletal pain after a car accident in women, but
not inmen (74). Elucidating the underlying differential biology in
sex differences in pain would be important in avoiding the biased
development of pain medicine.

DIAGNOSIS AND ETIOLOGY

Most of our knowledge about mechanisms of persistent pain
is based on studies of cutaneous pain in animals, experimental
subjects, and patients. Although it is tempting to generalize
these findings to the pain of deep tissues such as muscle and
joint, there are important differences between cutaneous and
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deep pain (Table 1). Deep pains are diffuse and difficult to
localize and represent a challenge in diagnosis and identification
of etiology. It is often difficult to identify the direct cause of
chronic musculoskeletal pain conditions such as TMJD and
low back pain (75, 76). The diagnosis and etiology of primary
chronic musculoskeletal pain, fibromyalgia in particular (77),
are still under debate. Clinical studies in this area are much
needed to improve the prevention and treatment of chronic
musculoskeletal pain.

TREATMENT OPPORTUNITIES

Managing musculoskeletal pain, especially when it becomes
chronic, is a daily challenge in primary care. Commonly used
pharmacological agents are NSAIDs, opioids, and steroids.
Treatment options also include physical therapy, psychotherapy,
mesotherapy, whole-body cryotherapy, and alternative
or complementary therapies acupuncture, prolotherapy,
percutaneous electrical nerve stimulation, and neuromuscular
electrical stimulation. The current treatment provides some
relief of acute or short-lasting pain but is unsatisfactory for
chronic musculoskeletal pain (78–81). A recent report showed
that transcranial magnetic stimulation of the prefrontal cortex
attenuated long-term experimental muscle pain in human
subjects (14).

Cell-based therapy has shown tremendous promise in the
management of chronic musculoskeletal pain in recent years.
Patients with disc diseases receiving intradiscal injection of
bone marrow concentrate show improvement of discogenic
pain through up to a 3-year follow-up (82, 83). The clinical
improvement is attributable to mesenchymal stromal cells
(MSCs) in the bone marrow. Clinical studies have shown the
pain-reducing effect of multipotent MSCs in arthritic joint pain

(84–86), rotator cuff disease (87), and discogenic pain (88,
89). Large scale randomized controlled trials are necessary to
substantiate these exciting findings.

Preclinical studies have addressed cellular mechanisms of
MSC-produced musculoskeletal pain relief. In a tendon injury
model, a single intravenous injection of bone marrow-derived
MSCs produces long-term attenuation of behavioral hyperalgesia
(30, 90). The pain-attenuation is induced through the interaction
of BMSCs with immune cells and mediators, that lead to
suppression of proinflammatory cytokines and upregulation of
anti-inflammatory cytokines (91), inhibition of NMDA receptor
phosphorylation (92), and activation of endogenous opioid
receptors (93). One pitfall of systemic MSCs is that they tend
to be trapped mostly in the lungs after transplantation (94, 95)
and there is a case of reversible pulmonary embolism after
multiple infusion of adipose tissue-derived MSCs (96). However,
MSCs injected locally to the spinal cord or transplanted directly
into degenerated disc appeared to survive longer (97, 98). The
therapeutic effect of MSCs can be further improved by modifying
their phenotype before transplantation (99, 100). Studies on
the use of therapeutic MSCs are rapidly expanding and we
are looking forward to the establishment of novel treatment
strategies for chronic musculoskeletal pain.
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