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Background: Plenty of evidence suggested that chronic low-grade inflammation

triggered by innate immunity activation contributes to the pathogenesis of type 2 diabetes

(T2D). Using the trans-mitochondrial cybrid cell model, we have demonstrated that

mitochondria independently take part in the pathological process of insulin resistance

(IR) and pro-inflammatory phenotype in cybrid cells harboring mitochondrial haplogroup

B4, which are more likely to develop T2D. Themitochondrial network is more fragmented,

and the expression of fusion-related proteins is low in Cybrid B4. We also discovered the

causal role of mitochondrial dynamics (mtDYN) proteins in regulating IR in this cybrid

model, and the bidirectional interaction between mtDYN and mitochondrial oxidative

stress is considered etiologically important. In this study, we further investigated whether

mtDYN bridges the gap between nutrient excess and chronic inflammation in T2D.

Methods: Trans-mitochondrial cybrid cells derived from the 143B human osteosarcoma

cell line were cultured in a medium containing glucose (25mM) with or without

saturated fatty acid (0.25mM BSA-conjugated palmitate), and the expression of innate

immunity/inflammasome molecules was compared between cybrid B4 (the major

T2D-susceptible haplogroup among the Chinese population) and cybrid D4 (the major

T2D-resistant haplogroup among the Chinese population). We investigated the causal

relationship between mtDYN and nutrient excess-induced inflammation in cybrid B4 by

genetic manipulation of mtDYN and by pharmacologically inhibiting mitochondrial fission

using the Drp1 inhibitor, mdivi-1, and metformin.

Results: Under nutrient excess with high fatty acid, cybrid B4 presented increased

mitochondrial pro-fission profiles and enhanced chronic inflammation markers (RIG-I,

MDA5, MAVS) and inflammasome (NLRP3, Caspase-1, IL-1β), whereas the levels

in cybrid D4 were not or less significantly altered. In cybrid B4 under nutrient

excess, overexpression of fusion proteins (Mfn1 or Mfn2) significantly repressed the

expression of innate immunity/inflammasome-related molecules, while knockdown
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had a less significant effect. On the contrary, knockdown of fission

proteins (Drp1 or Fis1) significantly repressed the expression of innate

immunity/inflammasome-related molecules, while overexpression had a less significant

effect. In addition, Drp1 inhibitor mdivi-1 and metformin inhibited mitochondrial fission

and attenuated the pro-inflammation expression as well.

Conclusion: Our results discovered the causal relationship between mtDYN and

nutrient excess-induced chronic inflammation in a diabetes-susceptible cell model.

Targeting mtDYN by direct interfering pro-fission can be a therapeutic intervention for

chronic inflammation in T2D.

Keywords: mitochondrial dynamics, innate immunity, type 2 diabetes, nutrient excess, inflammation

INTRODUCTION

Type 2 diabetes (T2D), clustering with a group of risk factors
of metabolic origin, increases cardiovascular disease risk (1).
Recently, it has been highlighted that mitochondrial dysfunction,
oxidative stress, and chronic inflammation serve as upstream
events leading to diabetes and its complications in affected
tissues (2–6). Plenty of evidence suggested that chronic low-
grade inflammation triggered by innate immunity activation
contributes to the pathogenesis of T2D (7–9). A variety of
pathogen- and host-derived “danger” signal may activate the
nucleotide oligomerization domain (NOD)-like receptor family
pyrin domain containing 3 (NLRP3) inflammasome (10, 11).
The well-known endogenous stress and injury-related products
include adenosine triphosphate (ATP) (injury and necrotic cell
death), amyloid-β fibril (Alzheimer’s disease), high glucose levels
(metabolic syndrome), and monosodium urate (gout) (10, 11).

Mitochondrial dysfunction has been regarded as a
fundamental factor in the triggering of NLRP3-mediated
inflammation (12), and mitochondrial reactive oxygen species
(ROS) overproduction is critical for activation of NLRP3
inflammasome (13). Mitochondrial dynamics (mtDYN),
which refers to repeated cycles of mitochondrial fusion and
fission, is a quality-control system that serves to optimize
mitochondrial function (14). Studies have demonstrated the
involvement of mtDYN in cellular energy homeostasis (15, 16),
cell cycle (17), apoptosis (18–20), oxidative phosphorylation
(21), oxygen consumption (22), ROS (23), and autophagy
(24, 25). In our previous studies using the trans-mitochondrial
cybrid cell model, we have demonstrated that mitochondria
independently take part in the pathological process of insulin
resistance (IR) and pro-inflammatory phenotype in cybrid
cells harboring mitochondrial haplogroup B4, which are more
likely to develop T2D in the Chinese population (3, 26). The
mitochondrial network is more fragmented, and the expression
of fusion-related proteins is low in Cybrid B4 (4). By using
this cybrid model, we also found the causal role of mtDYN in
the development of IR from T2D-susceptible mitochondrial
haplogroup, and the bidirectional interaction between mtDYN
and mitochondrial oxidative stress is considered etiologically
important (5). However, the relationship between mtDYN and
innate immunity/inflammasome in T2D remains unknown. In

this study, we further investigated whether mtDYN bridges the
gap between nutrient excess and chronic inflammation in T2D.

METHODS

Cybrid Cell Generation
Our culture system has been described previously (27). Firstly,
mtDNA-depleted ρ0 cells were generated by exposing 143B
osteosarcoma cells (ATCC R© CRL-8303TM, purchased from
Bioresource Collection and Research Center (BCRC), Hsinchu,
Taiwan) to low-dose ethidium bromide, followed by single-clone
isolation. Next, trans-mitochondrial cybrid cells were generated
by fusing 143B-ρ0 cells with human platelets which were isolated
from volunteer subjects harboring mtDNA haplogroup B4 or D4.
Fusion of platelets with ρ0 cells was conducted in the presence
of polyethylene glycol 1500 (50% w/v; Roche, Nutley, NJ, USA).
Cybrid cells were cultured in Dulbecco’s Modified Eagle Medium
(DMEM; 11995-065, Gibco) containing 10% fetal bovine serum
(FBS; 04-001-1A, Biological Industry), in an incubator with 5%
CO2 at 37◦C. The studies involving human participants were
reviewed and approved by the Institutional Review Board of
Chang Gung Memorial Hospital (CGMH; IRB number 101-
1620A3). Written informed consent was obtained from the
participants of the study.

Overexpression of Mfn-1, Mfn-2, Fis-1, and
Drp-1, siRNA Knockdown and Treatment of
Drugs
Gene overexpression of Mfn1, Mfn2, Drp1, and Fis1 (RG207184;
RG202218; RG202046; RG202560; Origene Technologies, Inc.,
Rockville, MD, USA) were performed using Lipofectamine R©

2000 (1367620, Invitrogen) in the presence of Opti-MEM (31985-
070, Gibco) for 18 h. A DNA (µg) to Lipofectamine R© 2000
(µl) ratio of 1:1 was used for transfection. GFP-expression
vector (OriGene-ORIPS100010, Origene) was used as mock
control (Technologies, Inc., Rockville, MD, USA). For siRNA
knockdown, interfering RNAs (sc-43927; sc-43928; sc-43732;
sc-60643; Santa Cruz Biotechnology, Santa Cruz, CA) were
delivered using Lipofectamine R© 2000 (1367620, Invitrogen) in
the presence of Opti-MEM (31985-070, Gibco) for 4 h, followed
by washing and replacement with a fresh growth medium for
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72 h. We grew cybrid cells individually under 25mM glucose
or glucose plus saturated fatty acid (FA) for 6 h to create
different nutritional conditions. Saturated fatty acid palmitate
(P9767; Sigma) was conjugated into bovine serum albumin as
a carrier. The concentration of palmitate was 0.25mM, similar
to postprandial levels in humans (28). For drug treatment
experiments, cells were treated with vehicle, 1mM metformin
(M0605000, Sigma-Aldrich), or 10µM mdivi-1 (M0199, Sigma-
Aldrich) for another 24 h.

Western Blotting
The cells were seeded at a density of 5 × 106 cells per 100-
mm dish (Nunc, Denmark). The cells were harvested, after
which their protein extract was isolated using a buffer containing
150mM NaCl, 50mM HEPES pH 7, 1% Triton X-100, 10%
glycerol, 1.5mM MgCl2, 1mM EGTA, and a protease inhibitor.
Following centrifugation, the concentration of the protein lysate
was measured by Bradford Protein Assay Kit (#23200, Thermo
Fisher). The protein for SDS-PAGE was then prepared with
2× solution (4% SDS, 20% glycerol, 10% 2-mercaptoethanol,
0.004% bromophenol blue, and 0.125M Tris–HCl) and heated
in boiling water for 5min. 20 µg proteins was loaded and
separated via SDS-PAGE by using an 8–10% polyacrylamide gel
in an electrophoresis chamber (Mini-PROTEAN R© Tetra Vertical
Electrophoresis Cell, Bio-Rad), and then they were transferred
onto a polyvinylidene fluoride (PVDF) membrane (Millipore)
by using a transfer apparatus (Power Blotter–Semi-dry Transfer
System, Thermo Fisher). The protein-loaded PVDF membrane
was blocked with 5% skimmed milk in TBS-T for 1 h at room
temperature and then incubated overnight at 4

◦
C with primary

antibodies including anti-RIG-1 (PA5-20276, Thermo, 1:1000),
anti-NLRP3 (15101S, Cell Signaling, 1:1000), anti-caspase-1
(3866S, Cell signaling, 1:1000), anti-MDA5 (PA5-20337, Thermo
Fisher, 1:1000), anti-MAVS (PA5-20348, Thermo Fisher, 1:1000),
anti-MFN2 (ABC42, Millipore, 1:1000), anti-MFN1 (ABC41,
Millipore, 1:1000), anti-p-DRP1 (3455S, Cell Signaling, 1:1000),
anti-FIS1 (sc-376447, Santa Cruz, 1:1000), and anti-β-actin (sc-
47778, Santa Cruz, 1:1000). Further, following conjugation of
the secondary antibodies with HRP including goat-anti rabbit
(sc-2004, Santa Cruz, 1:5000) and anti-mouse IgG (A9044,
Sigma-Aldrich, 1:10000) at room temperature for 60min, the
immunoreactivity on the membrane was detected by ECL Plus
luminal solution (Advansta, USA), under a photodocumentation
system (UVP BioSpectrum 810, Thermo Fisher).

Measurement of Mitochondrial Function
Cellular metabolic liability assessed by oxygen consumption
rate (OCR) and extracellular acidification rate (ECAR) was
determined using a Seahorse XF24 Extracellular Flux Analyzer
(Seahorse Bioscience Inc., Chicopee, MA, USA), as previously
described (4). Briefly, 3 × 106 cells per well were seeded in
Seahorse Cell Culture 24-well plates. Cells were incubated in
DMEM in Seahorse cell plates for 1 h before measurement. When
assay was performed, four measurements of the basal level of
oxygen consumption were recorded. Subsequently, oligomycin
(0.75µM), a complex V inhibitor, was injected and mixed, and
three measurements were recorded to determine ATP-linked

oxygen consumption. Following oligomycin, FCCP (0.2µM), a
proton uncoupler, was injected to determine maximal respiration
capacity with another three measurements recorded. Finally,
complex I inhibitor rotenone (0.8µM) was injected for three
measurements of non-mitochondrial oxygen consumption.

Statistical Analysis
Data collected from at least three independent experiments
were expressed as the mean ± standard error (SE). Statistical
significance between groups was evaluated by one-way analysis
of variance (ANOVA) followed by post-hoc Bonferroni’s test.
A p-value under 0.05 was considered as statistical significance.
The statistic from experimental results was calculated using
Microsoft Excel, and the graphs were plotted using GraphPad
Prism software.

RESULTS

Comparison of Mitochondrial Dynamics,
Chronic Inflammation Markers, and
Inflammasome in Cybrid B4 and D4 Cells
Under Nutrition Excess and Metformin
Treatment
As shown in Figure 1A, under nutrient excess with glucose
and high fatty acid, the levels of dynamic fusion proteins
(Mfn1/Mfn2) were found to be lower in both diabetes-susceptible
cybrid B4 and diabetes-resistant D4 cells. In contrast, the
expression of fission proteins (Drp1 and Fis1) was significantly
increased in cybrid B4, whereas the levels in D4 cells were not or
less significantly altered. After treatment with antidiabetic agent
metformin in B4, the nutrition excess-induced pro-fission was
rescued by increased Mfn1 and decreased Drp1/Fis1 expression.
As to innate immunity-related chronic inflammation markers
(Figure 1B), within group comparison, MDA5, MAVS, NLRP3,
Caspase-1, and IL-1β were found to be higher in B4 under high

fatty acid treatment, whereas these markers in D4 cells were
not altered. For the comparison between B4 and D4, upon high
fatty acid treatment, the expression of MDA5, NLRP3, Caspase-
1, and IL-1β was significantly increased in B4. After treatment
with metformin in diabetes-susceptible B4 cells, the expression
of nutrition excess-induced innate immunity/inflammasome
molecules was ameliorated, including MDA5, NLRP3, caspase-1,
and IL-1β.

Mfn1 and Mfn2 Ameliorate Nutrient
Excess-Induced Expressions of Innate
Immunity/Inflammasome Molecules in
Diabetes-Susceptible Cybrid B4
After overexpression of fusion-related proteins Mfn1 or Mfn2,
the level of nutrient excess-induced innate immunity-related
chronic inflammation markers, including MDA5, MAVS,
NLRP3, and Caspase-1, was significantly reduced (Figure 2).
This trend was observed in the presence of palmitate, while
the trend was less significantly altered in the absence of
palmitate. There was a significantly increased level of RIG-1,
MDA5, MAVS, and Caspase-1 under basal nutrient conditions

Frontiers in Endocrinology | www.frontiersin.org 3 July 2020 | Volume 11 | Article 445

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Chang et al. Mitochondrial Dynamics in Innate Immunity

FIGURE 1 | Expression profile of mitochondrial dynamic and innate immune markers in cybrid B4, D4, and B4 treated with metformin under nutrient excess. Cybrid

cells B4, D4, and B4+metformin treated with or without 0.25mM FA for 6 h, followed by 1mM metformin treatment for a further 24 h. Representative blot image of

mitochondrial dynamic (A) and innate immune markers (B) and corresponding densitometric results. β-Actin as loading control. *p < 0.05 compared to the B4 group

in the absence of FA.
†
p < 0.05 comparison between indicated groups. FA, fatty acid.

after knockdown of fusion-related molecules (Mfn1/Mfn2)
(Figure 3). Overexpression significantly increased Mfn1 and
Mfn2 protein abundance, whereas Mfn1 and Mfn2 were
significant reduced after siRNA knockdown (Figure S1).

Drp1 and Fis1 Deteriorate Nutrient
Excess-Induced Expressions of Innate
Immunity/Inflammasome Molecules in
Diabetes-Susceptible Cybrid B4
As shown in Figure 4, knockdown of fission-related proteins
(Drp1/Fis1) significantly decreased the level of nutrient excess-
induced innate immunity-related chronic inflammationmarkers,
including RIG1, MDA5, MAVS, NLRP3, and Caspase-1. This
trend was observed in the presence of palmitate, while the
trend was less significant in the absence of palmitate. After
overexpression of fission-related proteins (Drp1/Fis1), there
was an increased MAVS level in the presence of absence of
palmitate, while there was an increased MDA5 and NLRP3 level
only under basal nutrient conditions (Figure 5). Overexpression
significantly increased Drp1 and Fis1 protein abundance,
whereas Drp1 and Fis1 were significant reduced after siRNA
knockdown (Figure S1).

Drp1 Inhibitor mdivi-1 Attenuated the
Expression of Nutrient Excess-Induced
Innate Immunity-Inflammasome in
Diabetes-Susceptible Cybrid B4
To validate the effect of pharmacological manipulation of
mtDYN on the expression of a nutrient excess-induced innate
immunity/inflammasome molecule, Drp-1 inhibitor, mdivi-1
was employed. The levels of RIG-1, MAVS, NLRP3, and caspase-
1 were all significantly downregulated after mdivi-1 treatment
(Figure 6).

Perturbation of Mitochondrial Dynamics
Affects Mitochondrial Energetics Under
Different Nutrient Conditions
In the basal and maximal respiration panel, either Drp1
knockdown or Mdivi-1 can increase OCR under basal nutrient
conditions, whereas the OCR was substantially lower after Mfn-1
knockdown. However, under nutrient excess conditions, Mfn-1
knockdown increased OCR, whereas the OCR was substantially
lower after Drp1 knockdown and Mdivi-1 treatment than Mfn-1
knockdown (Figure S2).
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FIGURE 2 | Role of MFN1/MFN2 overexpression on innate immune response in cybrid B4 under nutrient excess. Cybrid B4 cells were overexpressed with GFP,

GFP-MFN1, or GFP-MFN2 for 18 h, followed by a 6-h exposure with or without 0.25mM FA. (A) Representative blot image of RIG-I, MDA5, MAVS, NLRP3, and

caspase-1. β-Actin as loading control. (B) Histograms of densitometric results. Quantification value of β-actin was used for normalization. *p < 0.05 compared to

vector control in the absence of FA.
†
p < 0.05 comparison between indicated groups. FA, fatty acid.

FIGURE 3 | Role of MFN1/MFN2 knockdown on innate immune response in cybrid B4 under nutrient excess. (A) Representative blot image of RIG-I, MDA5, MAVS,

NLRP3, and caspase-1. β-Actin as loading control. (B) Histograms of densitometric results. Quantification value of β-actin was used for normalization. *p < 0.05

compared to siRNA control in the absence of FA or between indicated groups.
†
p < 0.05 comparison between indicated groups. CON, control; FA, fatty acid.

DISCUSSION

The mitochondrion, the cellular powerhouse in all the eukaryotic
organelle, plays a pivotal role in cellular metabolism (29), and

mitochondrial dynamics (mtDYN) serves as a quality-control
system essential for maintainingmitochondrial homeostasis (30).
The dynamic behavior has now been reported to be associated
with biosynthetic and bioenergetics characteristics (31). Plenty
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FIGURE 4 | Role of DRP1/FIS1 knockdown on innate immune response in cybrid B4 under nutrient excess. (A) Representative blot image of RIG-I, MDA5, MAVS,

NLRP3, and caspase-1. β-Actin as loading control. (B) Histograms of densitometric results. The quantification value of β-actin was used for normalization. *p < 0.05

compared to siRNA control in the absence of FA.
†
p < 0.05 or between indicated groups. CON, control; FA, fatty acid.

FIGURE 5 | Role of DRP1/FIS1 overexpression on innate immune response in cybrid B4 under nutrient excess. (A) Representative blot image of RIG-I, MDA5, MAVS,

NLRP3, and caspase-1. β-Actin as loading control. (B) Histograms of densitometric results. The quantification value of β-actin was used for normalization. *p < 0.05

compared to vector control in the absence of FA.
†
p < 0.05 comparison between indicated groups. FA, fatty acid.

of evidence revealed the role of mtDYN in the pathogenesis of
insulin resistance (IR) and T2D (15, 32–37). The mitochondria
in T2D have been reported to be more fragmented, related
to the downregulation of MFN2, in skeleton muscles from

obese or T2D subjects (38–40). Also, using mice with tissue-
specific knockout of Mfn2 in the liver and skeletal muscle led to
fragmented mitochondrial networks, increased ROS production,
and impaired metabolic features (21, 41). In T2D subjects,
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FIGURE 6 | Effect of mdivi-1 on innate immune response in cybrid B4 under nutrient excess. Cybrid B4 cells were treated with/without FA for 6 h, followed by 10µM

mdivi-1 for another 24 h. (A) Representative blot image of RIG-I, MDA5, MAVS, NLRP3, and caspase-1. β-Actin as loading control. (B) Histograms of densitometric

results. The quantification value of β-actin was used for normalization. *p < 0.05 compared to mock control in the absence of FA.
†
p < 0.05 comparison between

indicated groups. FA, fatty acid.

Mfn1 deficiency was associated with mitochondrial function
impairment in the myocardium (42). In addition, venous
endothelial cells isolated from T2D patients were observed with
fragmented mitochondria and increased levels of Fis1 and Drp1
(43). These confirm the crucial role of mtDYN associated with
obesity and T2D.

Recently, extensive studies of the mtDYN effects on immune
function of both innate and adaptive immunity in antiviral
response have been conducted (44, 45), but whether mtDYN
could regulate innate immunity-inflammasome in response to
non-infectious diseases and nutrient excess is unknown. Here,
we demonstrated that mtDYN critically regulates the activity
of the nutrient-sensing innate immunity-NLRP3 inflammasome
pathway in diabetes-susceptible cybrid B4. Further, antidiabetic
agent metformin could attenuate the pro-fission trend of mtDYN
and the innate immunity-NLRP3 inflammasome pathway. We
demonstrated thatmitochondrial fusion proteinsMfn1 andMfn2
are crucial for suppression of the inflammasome pathway. In
the meanwhile, the fission protein Drp1 inhibitor, mdivi-1,
could induce mitochondrial fusion, which also leads to reduced
expression of the NLRP3 inflammasome activation.

The changes in nutrient supply and energy demand have
been reported to be associated with the alterations or mutations
in mtDYN. In mouse embryonic fibroblasts, nutrient excess
causes mitochondrial fragmentation, while nutrient deprivation
induces mitochondrial elongation (46–48). Furthermore, during
nutrient shortage, mitochondria fuse to form an elongated
network to maximize ATP production, whereas during nutrient
excess, mitochondria divide into smaller fragments to prevent
overt ATP synthesis (28). Putti et al. presented that long-
chain saturated fatty acids promote skeletal muscle inflammation
and IR by impairing mitochondrial bioenergetics with the
fission phenotype. Conversely, omega-3 PUFAs improve insulin
sensitivity in skeletal muscle by modulating mtDYN and
mitochondrial function (49, 50). MtDYN may be a potential link
between nutrient excess and IR (33).

Palmitate has been reported to induce ROS production in
different types of cell (51–54). Increased mitochondrial fatty
acid oxidation is responsible for ROS generation in lipotoxicity.

The oxidation of palmitate will provide excess electrons to the
mitochondrial electron transfer chain, which may give rise to
overproduction of superoxide (55).

Our previous reports demonstrated impaired mitochondrial
respiration and higher ROS production in the B4 cybrid in
basal conditions. Besides, cybrid B4 cells have a significant
lower activity of the electron transport chain complexes I,
II, and V than those of cybrid D4 (4). In this study, the
expressions of mitochondrial fission-related proteins and innate-
immunity inflammasome were significantly increased under
high fatty acid treatment in diabetes-susceptible cybrid B4
as compared to diabetes-resistant cybrid D4. It is probably
that fatty acids cause increased oxidative stress and further
deregulation of mitochondrial homeostasis in cybrid B4 cells,
leading to a vicious circle of mitochondrial ROS. Of note, we have
demonstrated a mutual interaction between mtDYN andmtROS.
MtROS was reduced after overexpression of fusion-related
proteins, while an opposing effect appeared after knockdown.
In contrast, mitochondrial ROS increased after overexpression
of Drp1 or Fis1, while an opposing effect appeared after
knockdown (5). Alternatively, the fragmented mitochondrial
morphology and increased mtROS in the diabetes-susceptible
cybrid B4 were improved by antioxidant agent N-acetylcysteine,
indicating that manipulating mtROS can alter the mtDYN (3,
4). Mitochondrial fission with a concomitant increased mtROS
has been responsible to trigger NLRP3 oligomerization or to
move mitochondria in close proximity to NLRP3 (56–59).
The activation of the NLRP3 inflammasome then triggers the
activation of downstream inflammatory cascades. In addition,
palmitate was reported to induce receptor-interacting protein
(RIP)1/RIP3 activation, whichmediates the form of programmed
lytic cell death called “necroptosis.” RIP1/RIP3 activation also
leads to the activation of Drp1, resulting in ROS production and
subsequent activation of NLRP3 inflammasome (60). Evidence
shows that the NLRP3 inflammasome plays a pivotal role
in the ischemia/reperfusion (I/R) injury, to which diabetic
subjects are more sensitive (61). Ong et al. reported that the
pharmacological inhibition bymdivi-1, a Drp1 inhibitor, protects
the cardiac myocyte against I/R injury (62). Also, inhibition
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of soluble epoxide hydrolase, an enzyme responsible for the
conversion of lipid epoxides to diols, significantly attenuated
the NLRP3 inflammasome activation and limited the I/R injury-
triggered mitochondrial localization of Drp1 (63). However,
there are still some ROS-independent mechanisms. Mfn2 has
been reported to be a modulator of antiviral immunity by
interacting with MAVS. Overexpression of Mfn2 may lead
to the inhibition of RIG-1, MDA-5, IRF-3, and NFκB (64).
This explains that overexpression of Mfn2 attenuated the diet-
induced inflammation in the present study. Overall, the available
evidence indicates that modulation of mitochondrial dynamics
could be a new therapeutic alternative for diabetic complication
(62, 63, 65).

In this study, pharmacological treatment with metformin
to cybrid B4 rescued the pro-fission status and consequently
revealed the downregulation of the RIG-1-MAVS-NLRP3
inflammasome pathway. Metformin has been reported to
attenuate the development of atherosclerosis by inhibition of
mitochondrial fission mediated by Drp1 (66). Our findings
are supported by the previous report, which also showed that
metformin maintained mitochondrial integrity by inhibiting
Drp1 activity and prevented endoplasmic reticulum (ER)
stress-associated NLRP3 inflammasome activation (67). The
mechanism of how metformin inhibits DRP1 may be associated
with ROS modulation (68). We further tested pharmacological
inhibition of fission protein Drp1 by mdivi-1, which also
downregulated the RIG-1-MAVS-NLRP3 inflammasome
pathway. This phenomenon has been observed in murine
microglial cells in previous reports (69, 70). Our results
demonstrated that both metformin and mdivi-1 ameliorate
nutrient excess-induced chronic inflammation mediated
through the change of mtDYN.

There are limitations in this study. First, we did not use
tissues relevant for T2D in this study. However, the data
showed the independent role of the mitochondrial genetic
variant on innate immunity response in T2D. Metformin
treatment or manipulation of mtDYN attenuated inflammation
associated with nutrient excess. Second, only one siRNA was
used for knockdown of Mfn-1, Mfn-2, Fis-1, and Drp-1 gene
expression. Third, there is no measure of insulin action in this
study. In our previous studies (4, 5), we have demonstrated
the causal role of mtDYN on IR and the antioxidant agent
N-acetylcysteine attenuate pro-inflammatory signal induced
by insulin.

In conclusion, our results discovered the causal relationship
between mtDYN and nutrient excess-induced chronic
inflammation in a diabetes-susceptible cell model. Targeting

mtDYN by direct interfering pro-fission can be a therapeutic
intervention for chronic inflammation in T2D.
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Figure S1 | Gene manipulation efficiency of overexpression (OE) and siRNA (si).

Cybrid B4 cells transfected with indicated plasmid or small interfering dsRNA were

lysed for the measurement of targeted protein level with western blot. β-actin used

as loading control. Densitometric quantification normalized to corresponding

vector/scramble control were presented under each blot image.

Figure S2 | Perturbation of mitochondrial dynamics remodels mitochondrial

activity in basal and nutrient excess. Cybrid B4 cells treated with siRNAs or

mdivi-1 were exposed with the (A) absence or (B) presence of FA and ensuingly

subjected to metabolic phenotyping with Seahorse XF24 bioanalyzer. (C) Basal,

proton leak, maximal and non-mitochondrial respiration were determined by

measuring OCR in the presence of basal assay medium, oligomycin (0.75µM),

FCCP (200 nM), and rotenone (0.8µM), respectively. ECAR acquired under basal

assay medium. Three independent experiments were conducted. OCR, oxygen

consumption rate; ECAR, extracellular acidification rate; FA, saturated fatty acid;

FCCP carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone. ∗p < 0.05

compared to corresponding si-CON under identical nutrient condition.
†
p < 0.05

compared to corresponding si-MFN1 under identical nutrient condition.
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