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Abstract 

Genotyping array is the most economical approach for conducting large-scale genome-wide genetic 
association studies. Thorough quality control is key to generating high integrity genotyping data and 
robust results. Quality control of genotyping array is generally a complicated process, as it requires 
intensive manual labor in implementing the established protocols and curating a comprehensive 
quality report. There is an urgent need to reduce manual intervention via an automated quality 
control process. Based on previously established protocols and strategies, we developed an R 
package GTQC (GenoTyping Quality Control) to automate a majority of the quality control steps 
for general array genotyping data. GTQC covers a comprehensive spectrum of genotype data 
quality metrics and produces a detailed HTML report comprising tables and figures. Here, we 
describe the concepts underpinning GTQC and demonstrate its effectiveness using a real 
genotyping dataset. R package GTQC streamlines a majority of the quality control steps and 
produces a detailed HTML report on a plethora of quality control metrics, thus enabling a swift and 
rigorous data quality inspection prior to downstream GWAS and related analyses. By significantly 
cutting down on the time on genotyping quality control procedures, GTQC ensures maximum 
utilization of available resources and minimizes waste and inefficient allocation of manual efforts. 
GTQC tool can be accessed at https://github.com/slzhao/GTQC. 
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Introduction 
Genotyping arrays are microarrays that exploit 

the DNA complementary hybridization principle to 
detect single nucleotide polymorphisms (SNPs) in 
human samples. Genotyping arrays are typically used 
for investigating known disease related variants in the 
human genome, and they have been the driving force 
of Genome-Wide Association Studies (GWAS) for the 
last 15 years. The evolution of genotyping arrays can 
be divided into two phases: before and after the 
introduction of High-Throughput Sequencing (HTS) 
technology. Before HTS was introduced and became 
popular, genotyping arrays existed as the only option 
to screen for variants on a genome-wide scale. After 
the recent boom of HTS, genotyping arrays remained 
a competitive alternative to HTS, due to the 

customizable array designs and the dramatically 
lowered assay cost. At ~1/20 cost compared to whole 
genome sequencing, the genotyping array is still a 
preferential platform for large scale GWASs, which 
typically involve thousands of samples per study and 
thus take account of the assay cost as a crucial factor. 
Furthermore, genotyping data has been used far 
beyond the traditional GWAS analysis. For example, 
recent advancements in utilization and curation of 
expression quantitative trait loci [1-4] and 
methylation quantitative trait loci [5] show that SNPs 
are associated with the abundance of transcriptome 
and methylation. Genotyping data can also be used to 
construct polygenic scores [6] in Mendelian 
randomization studies [7], reconstruct distant 
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pedigree [8], measure the genome-wide autozygosity 
with either run of homozygosity [9] or Heterozygosity 
Ratio [10, 11], estimate mitochondria heteroplasmy 
[12], and infer mitochondria copy number [13]. 
Conventional and alternative applications of 
genotyping data result in thousands of array-based 
studies each year consistently. 

Quality control appears as one of the most 
important steps in genotyping data workflow, as it 
roughly takes half of the overall processing time [14] 
and the time duration often surpasses that required 
for quality control of HTS data. Quality control 
procedures, especially for the market-dominating 
Illumina genotyping arrays, have been extensively 
described and are coming into a consensus. In 2013, 
Grove et al. described the best practices adopted by 
the CHARGE consortium, which used the Illumina 
Human Exome Bead Chip [15]. One year later, a 
detailed protocol for the quality control of the same 
Human Exome Bead Chip was published [14], 
introducing scripts written in the combination of three 
languages (R, Perl, Shell). In 2017, Zhao et al. 
summarized quality control strategies for Illumina 
Human Exome Bead Chip and extended them to all 
types of Illumina genotyping arrays [16]. Also in 2017, 
Wang et al. pushed one step further by introducing a 
quality control tool StrandScript, which particularly 
focuses on correcting strand errors in Illumina 
genotyping array [17]. While the recent development 
of quality control strategies mostly centered on 
Illumina’s genotyping technology, researchers also 
examined Affymetrix (ThermoFisher) Genome Wide 
Human SNP Array 6.0 genotyping data, such as those 
released from The Cancer Genome Atlas (TCGA). 
Various quality issues have been identified in public 
genotyping datasets [18]. Therefore, it is imperative to 
integrate the recently proposed strategies and 
perspectives into a set of universal quality control 
protocols, and such a protocol should ideally be 
applicable to general genotyping platforms regardless 
of the array manufacturers. 

Even though a multitude of insightful quality 
control strategies has been released, a satisfactory 
package is yet to be developed to take charge of the 
crucial quality control component of the genotyping 
data workflow. In the field, the existing protocols are 
composed of written recommendations and 
fragmented code chunks. Application of these 
established protocols requires extensive manual effort 
to tweak each step and then to string the outputs of 
discrete steps or multiple trials to a relatively 
comprehensive report. An automated quality control 
program not only significantly reduces the overall 
processing time for genotyping array data, but also 
dramatically suppresses random mistakes arising 

from frequent manual intervention. With the practical 
demand in mind, we designed and developed GTQC 
(abbreviated from “GenoTyping Quality Control”), an 
R package that automates the genotyping array 
quality control process for general genotyping data. 

Materials and methods 
We developed the genotyping quality control 

software GTQC purely in the R language and made it 
encompass the quality control strategies we 
established previously [14, 16]. The mandatory input 
format of GTQC is the standard PLINK file [19], a 
universal format of genotyping data. GTQC 
scrutinizes the genotyping data quality from the 
following aspects: Sample Call Rate, SNP Call Rate, 
Minor Allele Frequency (MAF), gender error, 
Heterozygosity Ratio, Hardy-Weinberg equilibrium 
(HWE), race error, and SNP consistencies between 
duplicated samples or duplicated SNPs. GTQC was 
developed in a component-based design, meaning 
that we allocated one independent component of the 
software to examine one aspect of the genotyping 
data. All components can be run independently, with 
their specific parameters controlled at the interface of 
the main R session. GTQC produces a final quality 
report on all covered quality metrics for an overall 
assessment. To demonstrate the utility of GTQC, we 
downloaded two sets of SNP data from public 
sources. The first dataset contains 306 subjects (151 
Asians, 14 Blacks, 134 Caucasians, 2 American 
Indians, and 5 of unknown race) of the liver 
hepatocellular carcinoma (LIHC) cohort from TCGA. 
This dataset was genotyped with the Affymetrix 
Genome-wide Human SNP Array 6.0, which contains 
934,968 SNPs. Additionally, SNP data of 2,504 subjects 
from The International Genome Sample Resources 
(IGSR), formerly known as the 1000 Genome Project, 
were also obtained for comparison purposes. The 
IGSR SNP dataset was generated not exclusively by 
genotyping; rather, it was created in a combination of 
genotyping, sequencing, and imputation. 

Results and Discussion 
While the HTS technology is generally 

considered superior to microarrays, genotyping 
arrays managed to maintain a substantial influence 
within the biomedical research field. This lasting 
popularity of genotyping arrays can be best 
represented by the immense publications based on the 
very technology. According to PubMed publication 
records, the past two decades have witnessed much 
more publications based on genotyping array data 
than those based on exome sequencing, and the trend 
persisted even after the recent wide adoption of HTS 
(Figure 1). For example, in 2020, there were roughly 
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six times more manuscripts published using 
genotyping array data than using exome sequencing 
data. The substantially higher number of publications 
associated with genotyping arrays may be attributed 
to the more affordable price, a large amount of 
accumulated legacy genotyping data, and divergent 
applications of genotyping array data [20]. 

The discrete components of GTQC are aimed at 
the following quality control metrics: Sample Call 
Rate, SNP call rate, MAF, gender check, race check, 
HWE, and Heterozygosity Ratio. We used the SNP 
data from TCGA’s LIHC cohort as an example to 
demonstrate the utility of GTQC. The representative 
figure results on various quality control aspects are 
demonstrated in Figure 2. 

Defined with respect to a sample, Sample Call 
Rate is formulated as the percentage of SNPs called in 
the particular sample over the union set of SNPs 
called from all samples. Defined with respect to a 
SNP, SNP Call Rate is formulated as the percentage of 
SNP-presenting samples over all samples of the study 
cohort. It was previously recommended that 98% and 
95% could be used as threshold values for Sample Call 
Rate and SNP Call Rate, respectively [14]. In our 
example analyses of the TCGA LIHC cohort, all 
samples reached a 90% Sample Call Rate, and more 
than 99% of SNPs had a SNP Call Rate of 90% or 
higher (Figure 2A). 

Unlike Sample Call Rate and SNP Call Rate, 
MAF cannot be derived from a single sample; rather, 

it is defined with respect to a subject cohort or a 
population. Regarding the precise chromosome locus 
bearing a SNP, MAF is computed as the instances of 
minor alleles divided by the instances of all alleles, 
with “instances” referring to the whole cohort. 
Common SNP arrays typically include SNPs with 
MAF >0.2 in a population. In research practice, MAF 
is often used as a rudimentary filter to select a specific 
set of SNPs by rarity. As an illustrative example, we 
employed GTQC to calculate MAF values for all SNPs 
on chromosome 21 (Figure 2B). A good practice is to 
compare the posterior MAF with a reference MAF 
established in a prior benchmark SNP dataset, such as 
the IGSR Project. According to our analysis, 11,883 
SNPs are shared between the example dataset and 
IGSR dataset, and these common SNPs showed a 
substantial consistency in MAF between LIHC and 
IGSR cohorts (Pearson correlation coefficient = 0.93, p 
< 0.0001) (Figure 2C). 

Self-reporting phenotypic variables gender and 
race are subject to data input errors and 
social-psychological confusion. Checking consistency 
between the reported gender and the genotyped 
gender provides crucial information on data integrity. 
Chromosomes 1 to 22 are diploid, meaning they have 
two copies for each SNP, either identical or variant. 
Besides the autosomal chromosomes, there are two 
sex chromosomes: X and Y. Females have two copies 
of chromosome X, making them diploid; males have 
an X chromosome and a Y chromosome. The different 

configuration of sex chromosomes 
distinguishes the males from the females 
genetically. The quality assessment of 
SNPs on a sex chromosome (X or Y) must 
be performed within a homogeneous 
gender sub-population. It is worth noting 
that Pseudo-Autosomal Regions (PAR) 
are existent on sex chromosomes. PARs 
are homologous regions that result from 
the pairing and recombining of 
chromosomes X and Y during meiosis in 
evolution. Often the so-called 
“chromosome XY” is tagged with SNPs 
on PARs, but, in some arrays, the PAR 
SNPs are simply labeled with 
Chromosome X. Thus far, there have been 
three PARs identified [21, 22]. SNPs in 
PARs should be treated as diploid and 
thus handled in the same way as common 
autosome SNPs, rather than as sex 
chromosome SNPs. SNPs on chromosome 
X can be exploited by GTQC to estimate 
the gender of the subject. Problematic 
SNPs on sex chromosomes that suggest 
suspicious gender self-reporting are 

 

 
Figure 1. The trends of genotype-centric studies/data in GWAS and post-GWAS era 
(1998-2020). Despite a declining trend past the peak year 2015, the genotyping array based 
publications still largely surpass exome sequencing based publications in quantity. The growth of 
dbSNP is in line with the growth of genotyping and exome sequencing publications. The left y-axis 
denotes the number of publications (red), the right y-axis denotes the number of SNPs in dbSNP 
(blue), and the x-axis denotes the year. 
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identified by GTQC (Figure 2D). Of the 306 subjects, 
209 are reported males, 90 are reported females and 7 
are of unknown sex. Males should have chromosome 
X inbreeding estimate close to one (expected range: 
0.98 – 1), while females should have chromosome X 
inbreeding estimate close to zero (expected range: -0.3 
– 0.2). According to GTQC gender checking, of the 
seven gender-unknown subjects, two are females and 
five are males. The chromosome X inbreeding 
estimates for 74 subjects fall out of the expected 
ranges, indicating problematic data quality or 
mislabeled gender information. For example, in our 
analysis results for the TCGA LIHC cohort, one TCGA 
subject (TCGA-GJ-A9DB) is labeled as male, but the 
chromosome X inbreeding estimate of -0.02 suggests 
female. 

Like gender, race is another phenotypical 
variable that can be complicated with self- 
identification bias or data input error. Researchers 
often perform principal component (PC) analysis on 
ancestry informative markers (AIMs) to yield a 
genetically determined race and further use the 
genetically determined race as a surrogate for the 
self-reported race. AIMs are SNPs that exhibit 
considerable disparate allele frequencies between 
populations of different ethnicities. Most genotyping 

arrays encompass a number of AIMs. GTQC performs 
PC analysis and reports the first and second most 
accountable principal components, termed PC1 and 
PC2, respectively. In their association models, genetic 
association studies often adjust for the first few PC 
instead of the actual race, because the PCs can capture 
the intrinsic genetic difference more accurately even 
within a population ostensibly of a same race [23]. 
Multiple races of distinct genetic profiles typically 
form segregated clusters on the PC1-vs-PC2 scatter 
plot (Figure 2E), where obvious outlier samples or 
hybrid race samples can be visually discerned. For 
example, in our analysis results for the TCGA LIHC 
cohort, one TCGA subject (TCGA-G3-A5SI) is labeled 
as Asian, but it is closer to the Caucasian cluster rather 
than the Asian cluster. This suggests that either this 
sample’s race is mislabeled, or this subject is of the 
hybrid race between Caucasian and Asian. 

The HWE principle asserts that, in a randomly 
mating population devoid of genetic drift or other 
external disturbance, the genotype distribution 
among the population remains an equilibrium state in 
a long, cross-generation timespan. As indicated by the 
aforesaid constraints, when the equilibrium state is 
disturbed, it usually suggests unusual events 
including population stratification, genotyping errors, 

 

 
Figure 2. Quality control results generated by GTQC on TCGA’s LIHC genotyping dataset. A. Summary of Sample Call Rate and SNP Call Rate at 
varied levels. B. Histogram of MAF. C. Scatter plot of MAF between TCGA’s LIHC cohort and IGSR project, with only Asian subjects included. Each dot denotes the 
paired MAF values for a common SNP from the two cohorts. A high correlation indicates better data quality. D. Histogram of chromosome X inbreeding estimate. 
This is the result of GTQC’s gender check of the example dataset. The gender check results help identify mislabeled gender information and recover gender for 
missing data. Alleged female cases with >0.2 inbreeding coefficient and alleged male cases with <0.98 inbreeding coefficient are flagged as problematic gender (yellow). 
E. Scatter plot of PC1 and PC2 from PC analysis. Race clusters can be clearly identified within the plot. Certain samples located between clusters suggest suspicious 
hybrids. F. Histogram of adjusted p-values from HWE check. The red dotted line denotes the threshold for statistical significance (0.05). G. Box and violin plots of 
Heterozygosity Ratios stratified by race. Due to the limited sample size, American Indians were not plotted. Subjects with unknown race information were not 
included either. The ethnic disparity in Heterozygosity Ratio can be seen. Asians show the lowest ratio values while black people show the highest values. 
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or association to the very trait under study [24, 25]. 
Within the quality control context, deviation from 
HWE is frequently regarded as a warning sign of 
genotyping errors in large GWAS set upon unrelated 
individuals [26, 27]. While it is not uncommon for 
GWAS to encompass diverse populations, HWE test 
should be conducted race by race, because there is not 
an expected genotyping equilibrium across 
population boundaries. Furthermore, many 
genotyping datasets were generated in a case-control 
study design, in which case the HWE test should use 
only the control samples – as we put above, some 
diseases can cause deviation from HWE at the disease 
associated loci [28]. GTQC reports the distribution of 
Bonferroni-adjusted HWE p-values (Figure 2F). In our 
analysis results for the TCGA LIHC cohort, 6.24% of 
SNP had an adjusted p-value < 0.05, indicating 
potential violation of HWE. These SNPs should be 
either removed from downstream analysis or flagged 
for further quality check. 

For a genotyping dataset that involved a 
homogeneous sample population and covered a large 
number of SNPs, computing the Heterozygosity Ratio 
can help identify problematic SNPs. Heterozygosity 
Ratio is computed for a subject as the ratio between 
the number of heterozygous SNPs and the number of 
non-reference homozygous SNPs. The Heterozygosity 
Ratio was originally proposed by our group as a 
quality control parameter for SNP data, and we 
proved that it has a theoretically expected value of 
two [29]. An empirical data study showed that the 
Heterozygosity Ratio is dependent on race [30]: only 
African ancestry individuals approximate the 
theoretical value of two, whereas populations of other 
races fall far below two. Such a disparity in 
Heterozygosity Ratio is reproduced in our analysis of 
the TCGA LIHC dataset (Figure 2G). Specifically, 
exceedingly high heterozygosity may indicate sample 
contamination, and exceedingly low heterozygosity 
may indicate inbreeding. 

GTQC is also capable of computing consistency 
between duplicated samples and duplicated SNPs. 
International GWAS and alike projects almost always 
include external control samples, such as those 
curated by HapMap [31] or 1000 Genome Project [32]. 
Internal duplicated samples are also commonly 
included in common GWAS studies. Genotype 
consistency among these duplicated control samples 
is a crucial metric to signify the quality of genotyping 
assay. GTQC has a specialized module to interrogate 
genotyping consistency based upon user-designated 
control samples and duplicated samples. Because of 
the lack of duplicated samples in our example dataset, 
this particular feature is not demonstrated, but 
readers can refer to our prior work [16] to learn about 

the relevant rationale and empirical parameters that 
GTQC adopted. 

Conclusion 
High-throughput genomic technology has been 

the driving force for biomedical research for the last 
two decades. One early type of high-throughput 
genomic technologies are the DNA hybridization 
based genotyping array, which was the backbone of 
the GWAS era. A large amount of genotyping array 
data have been deposited into public genomic data 
repositories and are available for secondary analysis. 
For example, the TCGA project provides both blood 
and tumor genotyping data on all of their 
participants. As of February 2021, over 400 
genotyping array datasets with millions of subjects 
have been curated in the most authoritative database 
of genotypes and phenotypes, dbGAP [33]. These data 
have been severely underutilized. Given the 
increasing popularity of alternative applications of 
genotyping data, these data will provide substantial 
data mining opportunities. However, many of the 
publically available datasets did not go through 
proper quality control prior to release. For example, it 
has been reported TCGA’s released genotyping data 
contains potential cross-contamination [34]. In our 
analysis of TCGA’s LIHC cohort, we also identified 
potential mislabeled gender and race information. 
Such suspicious examples call for thorough quality 
control on genotyping data regardless of data origin. 
GTQC reduces the overall genotyping array 
processing time by providing automated quality 
control analysis on genotyping data. Because the 
input data is PLINK format file, Genotype QC is not 
limited to a specific array type or an individual 
manufacturer. GTQC generates a final report as an 
excellent guide for assessing the overall genotyping 
quality and identifying problematic samples and 
SNPs. 
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