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Abstract

Motivation: The recently developed barcoding-based synthetic long read (SLR) technologies have

already found many applications in genome assembly and analysis. However, although some new

barcoding protocols are emerging and the range of SLR applications is being expanded, the exist-

ing SLR assemblers are optimized for a narrow range of parameters and are not easily extendable

to new barcoding technologies and new applications such as metagenomics or hybrid assembly.

Results: We describe the algorithmic challenge of the SLR assembly and present a cloudSPAdes al-

gorithm for SLR assembly that is based on analyzing the de Bruijn graph of SLRs. We benchmarked

cloudSPAdes across various barcoding technologies/applications and demonstrated that it

improves on the state-of-the-art SLR assemblers in accuracy and speed.

Availability and implementation: Source code and installation manual for cloudSPAdes are avail-

able at https://github.com/ablab/spades/releases/tag/cloudspades-paper.

Contact: i.tolstoganov@spbu.ru

Supplementary Information: Supplementary data are available at Bioinformatics online.

1 Introduction

The SLR technology. Long-read sequencing technologies (developed

by Pacific Biosciences and Oxford Nanopores) have resulted in

improved assemblies as compared to short-read sequencing technol-

ogies. However, their applications, particularly in the field of meta-

genomics, remain rather expensive in terms of the per-base cost

(Gong et al., 2018; Goordial et al., 2017). In contrast, the synthetic

long reads (SLRs) technologies [recently developed by Illumina, 10X

Genomics, Loop Genomics, and Universal Sequencing Technology

(UST)] combine the accuracy and low cost of short reads with the

long range information, making them an attractive alternative to

error-prone long reads (Marks et al., 2018; Voskoboynik et al.,

2013; Zheng et al., 2016).

Various SLR technologies follow similar protocols (Fig. 1):

• DNA is sheared into long genomic fragments.
• Fragments are distributed across multiple containers, each con-

tainer characterized by a unique barcode. A container may con-

tain multiple fragments with the same barcode.
• Fragments in each container are amplified and broken further

into shorter subfragments marked with the barcode of the con-

tainer it came from.

• All subfragments are pooled together and sequenced as short

paired-end reads which can be assigned to their original contain-

ers using barcodes.

As the result, each long fragment is represented as a read cloud:

a set of barcoded paired-end reads that originated from a given frag-

ment (Kuleshov et al., 2016).

TSLR and SSLR. The TruSeq SLR (TSLR) technology generates

384 containers with 150–300 fragments with length �10kb and

sequences them with high coverage (Bankevich and Pevzner, 2016;

Voskoboynik et al., 2013). These parameters enable barcode assem-

bly of all reads with the same barcode that aims to reconstruct all

fragments marked by this barcode.

Although TSLRs revealed rare species in metagenomes

(Bankevich and Pevzner, 2016, 2018; Sharon et al., 2015), their

applications are limited by a rather high cost.

The Sparse SLR (SSLR) technologies (such as developed by 10x

Genomics and UST) represent a lower cost alternative to the TSLR

technology (Marks et al., 2018; Zheng et al., 2016) that results in a

low coverage of fragments by short reads and does not enable bar-

code assembly. Instead, it generates longer fragments (typically 10–

70 kb) distributed over many containers (up to 4 million).
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In difference from truSPAdes (Bankevich and Pevzner, 2016)

aimed at high-cost TSLRs, cloudSPAdes was developed for the

lower-cost SSLRs.

The mean fragment length defines a typical repeat length an

SSLR technology can resolve. However, the low coverage of frag-

ments by short reads may result in difficulties in repeat resolution,

even in the case of long fragments. Thus, each SSLR assembly algo-

rithm should be adapted to the parameters of a specific SSLR tech-

nology and even to the parameters of a specific dataset (even

generated by the same technology!) since various datasets often have

different characteristics.

Although the 10X Genomics Chromium Controller is now the

most popular instrument for generating SSLRs, various groups are

now developing new barcoding protocols with the goal to reduce

the cost of SSLRs and even substitute a rather expensive Chromium

Controller by a simpler kit-based barcoding protocol, thus reducing

the cost by an order of magnitude. For example, UST recently intro-

duced Transposase Enzyme Linked Long-read Sequencing (TELL-

seqTM) that enables faster and more cost-effective way to generate

SSLRs in a single-tube reaction without a need for an expensive

protocol-specific instrument. TELL-Seq promises to advance short-

read sequencing by replacing mate-pairs in generating low-cost

high-quality short-read assemblies.

TELL-seq takes advantage of a unique property of Mu transpos-

ition reaction, which creates a very stable intermediate product (i.e.

strand transfer complex) when Mu transposomes attack a DNA tar-

get (Savilahti et al., 1995), and barcodes the DNA target before it

breaks. TELL-Seq produces SSLR sequencing libraries for a variety

of genome sizes ranging from bacterium to human with 1 to 10 ng

genomic DNA input in approximately 3 h. In difference from the

Chromium Controller, it does not require emulsion compartments

and results in a scalable and automation-friendly workflow.

Since various barcoding protocols often have different parame-

ters, there is a need to test how these parameters affect the quality of

genome assembly. However, our benchmarking revealed that exist-

ing SSLR assemblers are optimized for a narrow range of parameters

and their performance may greatly deteriorate when these parame-

ters change. With respect to various applications, we demonstrate

that the state-of-the-art metagenomics SSLR assemblers, that work

well on some dataset, may perform poorly on other datasets with

different coverage of fragments by short reads, different distribu-

tions of species abundances, etc. For example, even for the same

SSLR technology, there exist a need to adjust parameters due to

varying sample characteristics, e.g. DNA can be more fragmented in

one sample versus another, resulting in shorter fragments. This

raises a problem of developing a universal SSLR assembler that

learns parameters from the data and works well across a wide range

of parameters.

SLR assemblers. The existing SLR assemblers can be classified

into three categories:

• The barcode assembly approach reconstructs SLRs by assem-

bling short reads from a single barcode as in the TSLR technol-

ogy (Bankevich and Pevzner, 2016) or several barcodes as in the

SSLR technology (Bishara et al., 2018), and further reconstructs

the genome from the resulting SLRs.
• The scaffolding approach aligns the barcoded reads to contigs

and uses them for scaffolding (Adey et al., 2014; Kuleshov et al.,

2016; Yeo et al., 2018).
• The de Bruijn graph approach constructs the assembly graph of

all barcoded reads and uses it for the follow-up SLR assembly

(Weisenfeld et al., 2017).

With exception of Supernova (Weisenfeld et al., 2017), the exist-

ing SSLR assemblers [Architect (Kuleshov et al., 2016), ARCS (Yeo

et al., 2018) and Athena (Bishara et al., 2018)] use SPAdes assembler

(Bankevich et al., 2012) for an initial assembly (without using bar-

coding information) and further improve it by utilizing the barcod-

ing information. However, they only use SPAdes contigs and do not

take advantage of the SPAdes assembly graph that provides import-

ant information for analyzing barcodes. cloudSPAdes addresses this

limitation by analyzing the assembly graph and represents the first

application of assembly graphs for metagenomic SSLR assembly

[assembly graphs were previously used only for genomic SSLR as-

sembly (Weisenfeld et al., 2017)].

The Shortest Cloud Superstring Problem. A string is called a

superstring of a collection of strings if it contains each string from

this collection as a substring. The genome assembly problem is

related to the Shortest Superstring Problem, finding a shortest super-

string for a collection of strings. In difference from the classical gen-

ome assembly problem, the algorithmic problems motivated by the

SSLR assembly have not been explored yet. Below we describe an

analog of the Shortest Superstring Problem (for a set of clouds rather

than strings) motivated by the SLR assembly.

The composition of a string S [denoted as composition(S)] is

defined as the set of all characters in S. A set of characters c is a

cloud of a string S if there exists a substring s of S with composition

equal to c. We say that a string S conforms with a collection of sets

C (referred to as a cloud-set) if each set in C is a cloud of S. Given a

cloud-set C, the Shortest Cloud Superstring (SCS) Problem is to find

a shortest string that conforms with C. Note the difference between

the Shortest Superstring (the set of strings is known) and the SCS

Problems (the set of strings is unknown but their compositions are

known), reflecting the difference between the classical genome as-

sembly and the SLR assembly.

Below we explain how the SCS Problem relates to the SLR assem-

bly, describe an algorithm for solving this problem, generalize this

problem for assembly graphs and use it to develop the cloudSPAdes

tool for both genomics and metagenomic SSLR assembly.

2 Materials and methods

De Bruijn graph. In the genomic mode, cloudSPAdes uses a genom-

ic assembler SPAdes (Bankevich et al., 2012) to construct the as-

sembly graph from reads. Given a set of reads Reads and a k-mer

Fig. 1. An overview of SLR technologies. A genome (metagenome) is sheared

into long fragments that are placed into multiple containers. Fragments in

each container are amplified, broken into short subfragments, barcoded and

sequenced. Resulting reads are assigned to their original containers using

barcodes
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size (or a range of k-mer sizes in the iterative mode), SPAdes con-

structs the de Bruijn graph of reads and transforms it into the as-

sembly graph DB ¼ DBðReads; kÞ after performing various graph

simplification procedures (Fig. 2). In the metagenomic mode,

cloudSPAdes uses a metagenomic assembler metaSPAdes (Nurk

et al., 2017) to construct the assembly graph from reads with non-

uniform coverage.

Each edge in the assembly graph is labeled by a nucleotide string

and the length of an edge is defined as the number of nucleotides in

this string.

For simplicity, below we assume that all chromosomes are circu-

lar. Each chromosome traverses a cycle in the assembly graph that

we refer to as a genomic cycle (a genomic cycle may be broken into

multiple paths if there exist drops in coverage that fragment the as-

sembly graph). The multiplicity of an edge in the assembly graph is

defined as the total number of times it is traversed by all genomic

cycles in the assembly graph. An edge is classified as unique

if its multiplicity is 1 and as repeat, otherwise. Although this

classification is not known in the de novo setting, SPAdes infers the

tentative sets of unique and repeat edges.

Clouds in the assembly graph. We refer to a subpath of the gen-

omic cycle traversed by a fragment F in the assembly graph DB as

path(DB, F) and to the set of edges in this subpath as the cloud in

the assembly graph of the fragment F, referred to as cloud(DB, F).

We say that a barcode marks an edge of the assembly graph if one of

the reads aligned to this edge has this barcode. We refer to a barcode

marking the fragment F as barcode(F).

In the ideal case, when barcode(F) marks all edges in path(DB,

F) (and does not mark other edges), the SSLR technology provides

information about cloud(DB, F) [all edges marked by barcode(F)]

but does not reveal path(DB, F). In practice, if edges of cloud(DB,

F) form a connected subgraph in the assembly graph, one might at-

tempt to reconstruct path(DB, F) from cloud(DB, F) as a path tra-

versing all edges in this subgraph. If we succeed in reconstructing

path(DB, F), we can transform it into a string over the edge alphabet

(the set of all edges in the assembly graph). If all fragments were

Fig. 2. Outline of the cloudSPAdes algorithm. (First layer) Linear representation of a circular genome as1s2bs4cs3s2ds1s2es4 with five long edges a;b; c;d and e.

Numbers under the edges denote the lengths of the segments. (Second layer left) Assembly graph DB of the genome. (Second layer right) Contracted assembly

graph CDB. The contraction of an edge (v, w) is the gluing of the endpoints of this edge into a single vertex u, followed by the removal of the loop-edge resulting

from this gluing (all edges incident to v or w in the assembly graph are incident to u in the contracted assembly graph). (Third layer left) The containment metric

for the contracted de Bruijn graph CDB. (Third layer middle) The transition-set T in the contracted assembly graph with the containment index exceeding 0.7 and

the T-compatible cloud-set C. The transition-set T includes all correct genomic transitions (ab, bc, cd, de, ea) and three false transitions (ba, cb, ae). (Third layer

right) The T-compatible clouded Eulerian cycle for the contracted assembly graph CDB, the transition-set T and the cloud-set C. (Fourth layer) The short-edge sub-

graph of the assembly graph DB between two consecutive long edges a and b in the genomic cycle. There are two possible ways to fill the gap between a and b,

the correct one (shown on top and reconstructed by cloudSPAdes) and the incorrect one (shown at the bottom)
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transformed into such strings, the SSLR assembly problem would be

reduced to genome assembly from a set of such strings.

In reality, path(DB, F) may be self-overlapping (in the case when

it contains repeat edges), making it difficult to figure out how it tra-

verses edges in cloud(DB, F). Below we show how to use clouds for

reconstructing the genomic cycle even in the case when paths trav-

ersed by some fragments are unknown.

Since each cloud in the assembly graph is a composition of a sub-

path of a genomic cycle, the SSLR assembly corresponds to solving the

SCS Problem for the set of all clouds in the assembly graph. However,

although the SCS Problem is a useful abstraction, it does not adequate-

ly model the cloud assembly (similarly to the Shortest Superstring

Problem that does not adequately model the read assembly).

Below we introduce a more adequate model for the SSLR assem-

bly [Clouded Eulerian Path (CEP) problem] and describe a practical

SSLR assembly algorithm.

The challenge of reconstructing clouds in the assembly graph.

Given the set of all edges marked by barcode [referred to as

edges(DB, barcode)], we consider the problem of reconstructing

cloud(DB, F) for all fragments F marked by barcode.

One way to address this problem is to select each connected sub-

graph formed by edges(DB, barcode) as an approximation of

cloud(DB, F) for some fragment F. However, short edges in

cloud(DB, F) are often not marked by barcode(F) (since the coverage

of fragments by reads is low), making it difficult to reconstruct

cloud(DB, F). In this case, cloud(DB, F) does not form a connected

subgraph in the assembly graph and is broken into multiple con-

nected subgraphs (Fig. 3a).

Additionally, each barcode usually marks multiple fragments

that may correspond to paths sharing some edges. Thus, a connected

subgraph formed by edges(DB, barcode) may correspond to several

fragments rather than to a single fragment (Fig. 3b). We refer to

such subgraphs of the assembly graph as multicloud subgraphs as

opposed to unicloud subgraphs that represent a single cloud in the

assembly graph.

Since multicloud subgraphs are difficult to analyze, one can con-

sider only subgraphs that form a path [such a path likely corre-

sponds to path(DB, F)] that traverses each edge in a subgraph at

least once. However, limiting analysis to paths may filter out some

unicloud subgraphs, since some edges unmarked by barcode(F) will

be missing from path(DB, F) (Fig. 3c).

Focusing on long edges of the assembly graph. To address the

complications illustrated in Figure 2, instead of considering all edges

of the assembly graph, we focus on long edges (longer than a length

threshold LT) and ignore short edges. We refer to a cloud with at

least two long edges as a multi-edge cloud and define the complexity

of a cloud-set as the mean number of long edges in a multi-edge

cloud. On the one hand, setting up a small length threshold results

in difficult-to-analyze cloud-sets with high complexity. On the other

hand, setting up a large length threshold results in easy-to-analyze

cloud-sets with small complexity but makes it difficult to fill the

gaps between consecutive long edges (formed by short edges) in the

genomic path.

Our benchmarking revealed that selecting the length threshold in

such a way that the resulting clouds are relatively small (the com-

plexity of the resulting cloud-set is �3) represents a good trade-off.

Figure 4 illustrates how the number of long edges and the complex-

ity of a cloud-set [denoted complexity(LT)] reduce with the increase

in the length threshold LT. We define the parameter LT as the max-

imum value L of the length threshold with complexity(L) above 3.

cloudSPAdes first attempts to infer the order of long edges and

afterwards attempts to fill the gaps between long edges by progres-

sively shorter and shorter edges.

For simplicity, below we define this iterative process by defining

only two tiers of edges lengths: long (longer than LT) and short (all

Fig. 3. Reconstructing clouds in the assembly graph. A fragment of assembly

graph with edges marked by blue, red and green barcodes. Long edges are

shown as solid and short edges are shown dashed. (a) A cloud formed by the

blue barcode is broken into two subgraphs. (b) Two fragments that share the

red barcode also share a short edge, resulting in a multicloud subgraph. (c) A

short edge in the fragment-path that is not marked by the green barcode

results in a connected component (marked by the green barcode) that cannot

be traversed by a single path

Fig. 4. Number of long edges in the assembly graph (left), complexity (middle) and the mean weight of a vertex in the contracted assembly graph (right) depend-

ing on the edge length threshold (for the YEAST dataset described in Section 3). Long edges are defined as edges longer than 11 kb (the mean number of long

edges in a multi-edge cloud is 3 for the edge length threshold 11 kb)

i64 I.Tolstoganov et al.

Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )


remaining edges). In the Supplementary Material, we will illustrate

this iterative process in more details by defining three tiers of edge

lengths: ultralong (longer than LTþ), long (longer than a threshold

LT but shorter or equal than LTþ) and short (all remaining edges).

Contracted assembly graph. Short edges in Path(F) are less likely

to be marked by barcode(F) than long edges. Thus, instead of recon-

structing the order of all edges in path(DB, F), we focus on a simpler

problem of reconstructing the order of long edges in path(DB, F) for

every fragment F.

To focus on long edges in the assembly graph DB, we contract

all short edges in this graph (Figure 2). Note that the resulting as-

sembly graph may contain non-branching vertices (vertices with a

single incoming and a single outgoing edge). The contracted assem-

bly graph DBLT is obtained from this graph by transforming each

non-branching path into a single edge. For the YEAST dataset

(LT � 11 kb), the contracted assembly graph DBLT has 154 vertices

and 525 edges (13 of them are loops). We define the weight of a ver-

tex in the contracted assembly graph as the total length of all edges

that were contracted into this vertex (Fig. 4).

Below we describe variations of the SCS Problem aimed at ana-

lyzing the contracted assembly graph [Cloud Permutation (CP)

Problem and CEP Problem]. The latter employs the concept of tran-

sitions between the edges of the contracted assembly graph that we

use for reconstructing the set of long edges for every cloud in the as-

sembly graph. A transition-set in a graph G is an arbitrary set of

pairs of incident edges (v, w) and (w, u) in this graph [a loop (v, v)

may form a transition with any edge that has v as one of its

endpoints]. We distinguish between correct transitions (pairs of con-

secutive edges in a genomic path) and false transitions (all other

pairs of edges).

The CP Problem and the CEP Problem. Our goal is to solve the

SCS Problem for clouds encoded in the alphabet of long edges in the

contracted assembly graph. Since long edges are mostly unique, this

task corresponds to a simpler CP Problem: find a permutation (a

string without repeated symbols) that conforms with a cloud-set C.

We omitted the word ‘shortest’ in this formulation, since all permu-

tations have the same length [each of them contains all characters

from C that we denote as char(C)].

Twenty years ago, various DNA physical mapping studies

(Pevzner, 2000; Rajaraman et al., 2017) analyzed algorithmic prob-

lems similar to the CP Problem (Alizadeh et al., 1995; Batzoglou

and Istrail, 1999; Mayraz and Shamir, 1999). However, we are not

aware of a software tool that resulted from these studies and would

be applicable to SSLRs. Below we describe the CEP Problem that is

relevant to analyzing clouds on edges of an assembly graph.

We refer to a cloud-set where each cloud is a subset of edges in a

graph G as a cloud-set in G. Given a transition-set T in a graph G,

we say that a path P in G is T-compatible, if every pair of consecu-

tive edges in this path forms a transition in T. Given a transition-set

T in a graph G, and a cloud-set C in G, a Clouded Eulerian Path is a

T-compatible Eulerian path in G that forms a permutation of its

edges conforming with the cloud-set C. The CEP Problem is to find

a CEP for G, T and C. Note that solving the Clouded Permutation

Problem on C is equivalent to solving the CEP problem in the case

when a graph G contains a single vertex, all its edges represent

loops, and every pair of edges in G forms a transition. In the case of

an empty cloud-set C, solving the CEP problem corresponds to find-

ing a T-compatible Eulerian path in G (Fleischner, 1990).

Clouds in the contracted assembly graph. Each cloud cloud(DB,

F) in the assembly graph corresponds to a cloud cloud(CDB, F) in

the contracted assembly graph. Let clouds(CDB, barcode) be the set

of clouds in the contracted assembly graph of all fragments marked

by barcode. Since the contracted assembly graph does not have short

edges [that are often not marked by barcode(F)], clouds in this graph

are more likely to represent connected subgraphs than clouds in the

assembly graph. Thus, reconstructing clouds(CDB, barcode) from

only long edges marked by barcode is easier than reconstructing

clouds(DB, barcode) from all edges in the assembly graph marked

by barcode.

Each barcode marks a set of edges edges(CDB, barcode) in the

contracted assembly graph. We consider the induced subgraph

formed by these edges and analyze its connected components. Given

a transition-set T, we classify a connected component as simple if it

contains a T-compatible Eulerian path (non-simple components like-

ly result from barcode collisions) and report simple components as

putative clouds. We refer to the set of putative clouds constructed

using the contracted assembly graph CDB, a transition-set T and

barcoded reads Reads as CloudsðCDB;T;ReadsÞ (each cloud in this

set represents a set of edges in the contracted assembly graph).

Let Genome be a genome string and Cycle(Genome, DB) be a

genomic cycle traversed by Genome in the assembly graph DB. This

cycle got contracted into a genomic cycle Cycle(Genome, CDB) in

the contracted assembly graph CDB that we aim to reconstruct.

Given a contracted assembly graph CDB, we attempt to solve the

cloud superstring problem for the cloud-set CloudsðCDB;T;ReadsÞ
to reconstruct Cycle(Genome, CDB).

Brief outline of the cloudSPAdes algorithm. Below we use a sim-

ple simulated dataset to illustrate the main steps of the algorithm

and delegate the details to the Supplementary Material. Figure 2

describes a simulated genome and a simulated SSLR dataset with

50 000 fragments (with mean fragment length 20 kb and mean

coverage 0.1�) distributed among 2000 containers.

cloudSPAdes first derives the parameter LT by analyzing the

dataset and uses it to transform the assembly graph DB into the con-

tracted assembly graph CDB ¼ DBLT . It further defines the initial

transition-set that includes five correct (ab, bc, cd, de, ea) and seven

false (ad, ae, ba, cb, ce, db, ec) transitions. cloudSPAdes attempts to

remove false transitions by evaluating various metrics described in

the Supplementary Material. Figure 2 illustrates only one of these

metrics that we describe below.

We refer to the set of barcodes marking an edge e in a graph as

barcode-set of an edge and denote this set as b(e). Given edges e1

and e2, we refer to the set of barcodes marking both e1 and e2 as

bðe1; e2Þ. We score the similarity between barcode-sets of two edges

using the containment index CI (Koslicki and Zabeti, 2017)

CIðe1; e2Þ ¼
jbðe1; e2Þj

minðjbðe1Þj; jbðe2ÞjÞ
:

We say that long edges e1 and e2 have similar barcode-sets if

CIðe1; e2Þ exceeds a threshold CIlong (the approach for setting this

threshold is described in the Supplementary Material).

Figure 2 shows the containment metric for the simulated dataset

(entries exceeding the threshold CIlong are shown in dark blue).

After applying this threshold, we are left with a transition-set T con-

sisting of all correct transitions (ab, bc, cd, de, ea) and three false

transitions (ba, cb, ae). After deriving the transition-set T,

cloudSPAdes constructs a cloud-set C ¼ CloudsðCDB;T;ReadsÞ in

the contracted assembly graph consisting of only five clouds {ab},

{bc}, {abe}, {bcd}, {cde}. Afterwards, cloudSPAdes attempts to find

out how the genomic cycle traverses the contracted assembly graph

by solving the CEP problem (there exists only one T-compatible

Eulerian cycle for this cloud-set).

After finding a genomic cycle in the contracted assembly graph

CDB, cloudSPAdes turns the attention to the assembly graph DB,
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fills the gap between each pair of consecutive long edges in this cycle

and constructs a genomic cycle in the assembly graph. In the simu-

lated example, it is not clear whether this cycle is traversed as

as1s2bs4cs3s2ds1s2es4 or as as3s2bs4cs1s2ds1s2es4. cloudSPAdes

selects one of these possibilities by iteratively reducing the parameter

LT to fill the gaps between long edges in the assembly graph using

additional metrics described in the Supplementary Material.

Combinatorics of crossing clouds. cloudSPAdes is motivated by

a combinatorial analysis of cloud-sets that we describe in the

Supplementary Material. For simplicity, the theoretical results

below and in the Supplementary Material refer to the case of recon-

structing a single linear genome. However, in the case of a metage-

nome, cloudSPAdes uses these results to assemble multiple circular

genomes in a metagenome. For a self-contained description of all

results, below we define a condition on a cloud-set that guarantees

that the CP Problem has a unique solution.

We say that sets c1 and c2 cross (c1 _ c2) iff c1 6� c2; c2 6� c1,

and c1 \ c2 6¼1. A cloud-set C crosses a subset of char(C) if it con-

tains a cloud crossing this subset. A set of clouds C is complete if it

crosses each non-trivial subset of char(C).

Theorem. Let G be a permutation that conforms with a cloud-set C.

Then G is unique iff C is complete.

Organization of Supplementary Material. Section 1 introduces

various procedures aimed at eliminating false transitions. Sections

2–7 describe the transition elimination procedures in more details.

Section 8 describes how to partition the contracted assembly graph

into smaller subgraphs and to solve a separate CP Problem in each

of them. Section 9 describes how cloudSPAdes utilizes read-pairs in

the SSLR libraries.

Long edges in path(DB, F) form a path path(CDB, F) in the con-

tracted assembly graph that we aim to reconstruct and to further use

the reconstructed paths for figuring out how the genomic cycle tra-

verses the contracted assembly graph. Since path(CDB, F) does not

provide information about short edges within genomic cycle,

Supplementary Section 10 describes how to fill in the gaps between

long edges in this path (formed by paths consisting of short edges),

thus reconstructing the entire genomic cycles.

The proof of the Theorem is given in Supplementary Section 11.

Supplementary Sections 12 and 13 describe how cloudSPAdes com-

bines information provided by a cloud-set and a transition-set in the

contracted assembly graph. Supplementary Section 14 outlines the

steps of the cloudSPAdes algorithms in more details.

3 Results

SLR assemblers. We benchmarked cloudSPAdes and the state-of-

the-art SSLR assemblers Architect (Kuleshov et al., 2016), ARCS

(Yeo et al., 2018), Athena (Bishara et al., 2018) and Supernova

(Weisenfeld et al., 2017) using QUAST (Gurevich et al., 2013) and

metaQUAST (Mikheenko et al., 2016). Architect, ARCS, Athena

and Supernova are aimed at various settings and/or various variants

of the SLR technologies: Architect is best suited for TSLR assem-

blies, ARCS and Supernova were developed for human SSLR

assemblies and Athena was developed for metagenomics SSLR

assemblies.

Datasets. We benchmarked all SLR assemblers on three genomic

SSLR dataset generated by TELL-seq technology and three metage-

nomic SSLR datasets generated by 10X Genomics technology (see

Supplementary Section 15 for detailed information about these data-

sets and the reference genomes). Although the metagenomics

datasets were generated using the same, they have widely different

characteristics with respect to fragment coverage by short reads and

abundances of various species, thus allowing us to analyze how sta-

ble each assembly tool is with respect to these variations. The gen-

omic datasets were analyzed with the goal to evaluate whether the

state-of-the-art SSLR tools can be applied to emerging technologies

with parameters that differ from the parameters of the 10X

Genomics technology.

YEAST, STAPH and ECOLI datasets contain reads from the

genomic DNA of Saccharomyces cerevisiae, Staphylococcus aureus

and Escherichia coli DH10B strain, respectively.

MOCK5 dataset is a synthetic community dataset containing

reads from the genomic DNA mixture of five bacterial species, four

of them have genomes that are similar to known genomes (Danko

et al., 2019).

MOCK20 dataset is a synthetic community dataset containing

reads from the genomic DNA mixture of 20 bacterial strains, 19 of

them have genomes that are similar to known genomes (Bishara

et al., 2018).

GUT dataset is a large metagenomic dataset from the gut of a

male adult (Bishara et al., 2018).

The lengths of fragments generated by the SSLR technology are

defined by the lengths of DNA fragments extracted from the sample.

Since extracting high molecular weight DNA from a metage-

nomic sample is challenging (Bag et al., 2016; Kuhn et al., 2017),

the average SSLR fragment length often drops from 30–70 kb in an

isolate to 5–10 kb in a metagenome. Supplementary Section 16

presents statistics for various SSLR metagenomic datasets.

Benchmarking SLR assemblers. Table 1 summarizes the assem-

bly statistics for metagenomic datasets. Table 2 summarizes the as-

sembly statistics for prokaryotic datasets. Figure 5 presents the NAx

plots for the YEAST, STAPH, ECOLI, MOCK5 and MOCK20

datasets and the NGx plot for the GUT dataset. Figure 6 provides

information about the NGA50 statistics and the number of misas-

semblies for each reference genome for the MOCK5, MOCK20 and

GUT datasets.

The benchmarking results for the YEAST datasets reveal that

the existing SSLR assemblers are unstable with respect to parame-

ters: their performance deteriorates when they are faced with

datasets whose parameters differ from the parameters these

assemblers optimized for. The unstable behavior of various SSLR

tools makes it difficult to develop new barcoding technologies

since the ongoing experimental developments of new protocols

have to be constantly complemented by computational tests

(otherwise it is unclear how a new technology affects the down-

stream assembly).

cloudSPAdes turned out to be a fast assembler that performs

well across the range of technologies and applications. As discussed

in (Nurk et al., 2017), the NA50 metric alone is limited with respect

to estimating the contiguity of metagenomics assemblers since biolo-

gists are typically interested in the contiguity of the 10–100 most

abundant genomes that often form less than 50% of the total meta-

genome length. We thus reflected the both NA50 and NA10 statis-

tics in Table 1 (see Fig. 5 for detailed information about the

contiguity of various assemblers).

On the MOCK5 dataset, cloudSPAdes generated the longest con-

tigs with respect to the NA50 (225 kb for cloudSPAdes versus

154 kb for Athena) and NA10 (1265 kb versus 688 kb). The superior

performance of cloudSPAdes on the MOCK5 dataset may be

explained by its adaptability to the specific properties of the SSLR

datasets, e.g. the MOCK5 dataset has an unusually low fragment

coverage.
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On the MOCK20 datasets, cloudSPAdes and Athena showed

similar results: Athena resulted in higher NA50 (124 kb for

cloudSPAdes versus 203 kb for Athena) but lower NA10 (1368 kb

for cloudSPAdes versus 1141 kb for Athena).

On the GUT dataset, cloudSPAdes, Athena and Supernova gener-

ated the most contiguous assemblies. However, Supernova’s assembly

has limited applicability since it generated contigs with an extremely

large fraction of unknown nucleotides (22.6% of all nucleotides are

marked as Ns). cloudSPAdes and Athena resulted in assemblies with

similar contiguity (NG50 and NG10 are approximately 20% higher

for Athena than for cloudSPAdes). However, NG50 and NG10 param-

eters do not account for assembly errors that typically inflate the contig

lengths. Since only a few reference genomes for the GUT dataset are

known, we are unable to derive the NA50 and NA10 statistics for this

dataset. However, judging from the fact that Athena made �50%

more assembly errors on the reference GUT genomes, we project that

cloudSPAdes assemblies may have very similar or even higher NA50

and NA10 statistics than Athena assembly. Interestingly, Athena

resulted in a 20% smaller total assembly length than cloudSPAdes.

Athena took 24 days to assemble the GUT dataset, while cloudSPAdes

took only 12.5 h (not counting the metaSPAdes running time).

4 Discussion

Although long error-prone reads have revolutionized sequencing of

large genomes, the relatively high cost limits their applications to

sequencing of small genomes. This is unfortunate since the number

of bacterial sequencing projects based on short reads [most of them

assembled with SPAdes (Bankevich et al., 2012)] greatly exceeds the

number of eukaryotic sequencing projects based on long reads [most

of them assembled with Canu (Koren et al., 2017)]. However, since

long-read assemblies are much more contiguous than short-read

assemblies, there is an effort to make assemblies of small genomes

both contiguous and cost efficient at the same time. Although SSLRs

represent a potential solution for a low-cost genome sequencing, the

10X Genomics Chromium Controller remains rather expensive for

Table 1. Assembly statistics for the MOCK5, MOCK20 and GUT datasets

Assembler metaSPAdes Athena cloudSPAdes Architect ARCS Supernova

MOCK5

# contigs 353 117 97 295 319 1895

Total length (kb) 21 253 21 820 21 260 21 259 21 256 21 614

NA50 (kb) 51 154 225 61 52 2

N50 (kb) 116 351 1294 185 168 120

NA10 (kb) 194 688 1265 284 268 101

N10 (kb) 562 1020 2836 1129 1372 2369

Longest alignment (kb) 268 1150 1416 563 563 491

# N’s per 100 kb 22 0 761 25 23 15 762

Mean NGA50 per reference (kb) 93 544 528 125 105 19

Mean # misassemblies per reference 3.75 21.5 10 5.25 6.25 59.5

Running time 37 h 37 h þ 36 h 37 h þ 51 min 37 h þ 4 h 37 h þ 3.5 h 25 min

MOCK20

# contigs 1089 243 793 1032 1015 13 193

Total length (kb) 51 053 50 917 54 838 51 067 51 060 67 321

NA50 (kb) 50 203 124 50 54 18

N50 (kb) 155 885 845 157 189 36

NA10 (kb) 364 1141 1368 366 1021 95

N10 (kb) 581 3011 1968 587 6300 166

Longest alignment (kb) 907 2389 1844 907 1435 1532

# N’s per 100 kb 14 0.4 403 16 14 245

Mean NGA50 per reference (kb) 153 781 787 153 467 343

Mean # misassemblies per reference 1.4 3.4 3.0 1.6 1.6 12.2

Running time 68 h 68 h þ 9 days 68 h þ 3 h 68 h þ 6.5 h 68 h þ 5 h 26 days

GUT

# contigs 39 317 14 015 33 130 39 283 39 270 25 333

Total length (kb) 342 982 318 979 376 934 346 276 342 987 374 906

NG50 5708 15 544 12 729 5903 6441 21 195

NG10 95 914 375 559 322 007 96 072 95 939 263 602

Longest contig (kb) 725 1968 1934 725 725 1787

# N’s per 100 kb 22 0 714 22 23 22 613

Mean NGA50 per reference 40 301 93 563 85 859 40 301 40 301 17 586

Mean # misassemblies per reference 11.08 52.46 35.31 13.69 11.15 24.53

Running time 6 days 6 days þ 24 days 6 days þ 12.5 h 6 days þ 13 h 6 days þ 9 h 28 h

Note: The running time for all tools but Supernova includes the SPAdes or metaSPAdes running time (�6 days for the GUT dataset). The best value for each

row is indicated in bold. metaSPAdes was run with the default k-mer size equal to 55. All benchmarking was done on Intel Xeon E7-4880 processor using 15

CPUs. metaQUAST defines the NA50 statistics as similar to NGA50, but calculates it with respect to the total assembly length instead of the reference genome

size. To compare various assemblers, we used both contigs and scaffolds exceeding 2 kb in length. metaQUAST was launched with the -m 2000 and -x 2500

options for all datasets, and with –fragmented option for the GUT dataset. The reference length for the GUT dataset was set to length of the metaSPAdes assembly

(520 Mb). Since the reference assemblies may have significant differences compared to the genomes in the GUT metagenome, estimates of the number of assembly

errors for the GUT dataset should be taken with caution since many of the errors may represent differences with the references rather than errors. All tools except

Architect were run with default parameters. Architect was run with parameters t¼ 2, rc abs thr ¼ 3; rc rel edge thr ¼ 0:02; rc rel prun thr ¼ 0:01 to optimize

its performance on SSLR datasets.
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Table 2. Assembly statistics for the YEAST, STAPH and ECOLI datasets

Assembler SPAdes Athena cloudSPAdes Architect ARCS Supernova

YEAST

# contigs 305 116 101 320 259 898

Total length (kb) 11 583 11 752 11 734 11 603 11 589 10 983

NGA50 (kb) 103 179 539 228 185 22

NG50 (kb) 103 187 691 410 198 23

NGA10 (kb) 227 470 888 622 532 63

NG10 (kb) 243 470 1, 715 772 533 70

Longest alignment (kb) 314 545 848 314 584 92

# N’s per 100 kb 18 1 761 24 57 548

# misassemblies 1 15 7 21 1 16

Running time 74 min 74 min þ 11 h 74 min þ 13 min 74 min þ 30 min 74 min þ 42 min 25 min

STAPH

# contigs 89 21 56 75 79 12

Total length (kb) 2870 2886 2905 2874 2872 2957

NGA50 (kb) 174 728 1645 821 252 2794

NG50 (kb) 174 728 1655 821 252 2797

NGA10 (kb) 303 1170 1645 859 356 2794

NG10 (kb) 313 1231 1654 1022 356 2797

Longest alignment (kb) 313 1170 1645 859 356 2793

# N’s per 100 kb 25 0 603 33 60 27

# misassemblies 2 2 3 5 2 0

Running time 119 min 119 min þ 115 min 119 min þ 1 min 119 min þ 11 min 119 min þ 9 min 190 min

ECOLI

# contigs 110 16 9 75 75 63

Total length (kb) 4515 4634 4596 4516 4518 4471

NGA50 (kb) 82 396 2543 201 287 123

NG50 (kb) 83 439 2813 209 287 127

NGA10 (kb) 260 1, 075 2543 542 505 260

NG10 (kb) 260 1, 075 2813 542 506 260

Longest alignment (kb) 326 1074 2543 542 505 414

# N’s per 100 kb 20 0 647 28 97 73

# misassemblies 1 5 3 5 3 5

Running time 18 min 18 min þ 43 min 18 min þ 11 s 18 min þ 1 min 18 min þ 53 s 11 min

Note: The running time for all tools but Supernova includes the SPAdes running time. The best value for each row is indicated in bold. All benchmarking was

done on Intel Xeon E7-4880 processor using 15 CPUs. Number of misassemblies includes only global misassemblies as identified by QUAST (with breakpoint dis-

tance exceeding 2 kb). QUAST was launched with the –scaffold-gap-max-size 20000 and -x 2000 options for all datasets.

Fig. 5. The NGAx plots for the YEAST (top left), STAPH (top middle) and ECOLI(top right) datasets. NAx plots for the MOCK5 (top right), NAx plots for the

MOCK20 (bottom left) and NGx plot for the GUT (bottom right) datasets. The metaSPAdes curve is not shown since it is nearly identical to the ARCS curve for the

GUT dataset. The metaSPAdes curve is replaced with the SPAdes curve for the YEAST, STAPH and ECOLI plots
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sequencing small genomes. That is why UST and other companies

are trying to reduce the cost of SSLRs, to eliminate the need for an

expensive Chromium Controller, to simplify sample preparation,

and to enable new SSLR applications. These efforts promise to revo-

lutionize sequencing of small genomes by making it as cost-effective

as short-read sequencing and as contiguous as long read sequencing.

However, to support such developments, there is a need to develop a

‘universal’ SSLR assembler that works well across various barcoding

technologies and various applications.

We have demonstrated that the existing SSLR assemblers are rather

stringent with respect to changing parameters of the emerging barcoding

technologies and even the parameters of specific metagenomics datasets

generated using the same 10X Genomics technology. cloudSPAdes is an

attempt to develop a universal open-source SSLR assembler that works

well across various technologies and datasets. Although it significantly

improves on the contiguity of SPAdes and metaSPAdes assemblies, fur-

ther efforts are needed to close the gap between the contiguity (and the

number of assembly errors) of the low-cost SSLR assemblies and high-

cost assemblies based on long error-prone reads.
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