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ABSTRACT: The development of a new and efficient supercritical carbon dioxide (S-CO2) power cycle system is one of the
important technical ways to break through the bottleneck of coal power development, improve the efficiency of power generation,
and realize energy saving and emission reduction. In order to simplify the complicated workload and save the huge time cost of
numerical simulations on combustion characteristics, it is of great significance to accurately make the combustion characteristic
prediction according to the operating performance of the S-CO2 CFB boiler. This study proposed a combustion characteristic
prediction model corresponding to the S-CO2 CFB boiler based on the adaptive gray wolf optimizer support vector machine
(AGWO-SVM). The parameters of the gray wolf optimizer algorithm were processed adaptively first combined with the boiler
characteristics, and then the adaptive gray wolf optimizer algorithm was integrated with the support vector machine to solve the
imbalance of local and global search problems of particles being easy to gather in a certain position in the process of pattern
recognition. The novel method effectively predicts the boiler in the scaling process from the aspect of boiler capacity, optimizes the
combustion characteristic expression by numerical simulations, greatly saves time cost and applicability of enlarged design by altering
complex numerical simulations, and lays the application foundation of the S-CO2 CFB boiler in the industrial field with acceptable
operation accuracy.

1. INTRODUCTION
The supercritical CO2 (S-CO2) power cycle has received
extensive attention and research in the fields of nuclear energy,
fossil, concentrated solar energy, waste heat recovery, and ship
propulsion system due to its advantages, such as simple system
structure, high cycle efficiency, compact components, and
environmental friendliness.1−3 In the coal-fired power
generation field, circulating fluidized bed (CFB) coal-fired
power generation technology, as the most industrialized clean
coal combustion technology, has advantages of low NOx
emission, simple desulfurization process, high combustion
efficiency, and wide coal applicability compared with the
pulverized boiler.4−7 The combination of CFB coal-fired power
generation technology with the S-CO2 power cycle has
attracted wide attention from scholars all over the world.8−11

The heat transfer temperature of S-CO2 working fluid ranging
from 530 to 650 °C is about 150 °C higher than that of the

conventional steam (330−600 °C), which improves the
boundary temperature of the furnace, enhances the furnace
combustion process and the heat transfer of the heating
surfaces, and improves the combustion efficiency and carbon
conversion rate of the boiler.12,13

Combustion and heat transfer characteristics of S-CO2 CFB
boilers change significantly compared with traditional steam
CFB boilers, which brings new challenges to the high efficiency
and low pollution combustion and regulation of the boiler. Xu
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et al.9 summarized the thermal coupling relationship between
the S-CO2 power cycle and coal-fired boilers, among which the
most important is that using the S-CO2 working medium cycle
instead of water steam as the heat transfer boundary affects the
combustion characteristics and pollutant generation process in
the furnace. On the one hand, due to the unique physical and
thermal properties of CO2, the boundary conditions of the
coal-fired S-CO2 CFB boiler are different from those of the
conventional steam CFB boiler, and the boiler structure and
heating surface layout have changed.14 On the other hand, the
temperature of the S-CO2 working medium into the coal-fired
boiler (about 530 °C) is much higher than that of the steam
cycle temperature (about 233 °C),6 which affects the heat
transfer surface temperature distribution and heat flux
distribution, resulting in the furnace combustion character-
istics, heat transfer performance, and pollutant emission
characteristics far from the traditional steam ones.

In order to master the combustion characteristics under the
unique heat transfer boundary of S-CO2, many scholars and
scientific research units all over the world have made great
efforts.15,16 Zhou et al.17 analyzed the fuel combustion loss rate
of the 1000 MW S-CO2 Brayton cycle coal-fired power
generation system and proposed better system operating
parameters. Yang et al.18 simulated the combustion process of
the 300 MW S-CO2 pulverized coal boiler coupled with the
heat transfer process of the working medium, and it was found
that the two peak temperature regions of the spiral wall heater
were about 900 K. Wang et al.19 established the S-CO2 one-
dimensional fluid dynamics model and conducted the
numerical simulation of a 5 MW gas S-CO2 test boiler
combined with the CFD simulation method. Gu et al.20

focused on a 12 MW pilot S-CO2 CFB boiler under oxy-fuel by
3D CFD numerical simulation, and the influence of different
heat transfer boundary conditions and different oxygen
concentrations on the particle movement, combustion
characteristics, and gas pollutant emission characteristics was
systematically studied.

In the process of enlarging the boiler capacity and operating
parameters of the S-CO2 CFB boiler, the change regularities of
combustion characteristics of the furnace are complex, which is
affected by various factors such as furnace structure design,
size, air flow rate, and coal feeding rate.11,21 Meanwhile, the
complexity of the high-concentration gas−solid two-phase flow
of the circulation process will take high time cost and have
limitations to relying entirely on numerical simulation.
Therefore, it is of great significance to accurately predict the
combustion characteristics according to the working con-
ditions and operating characteristics of the industrial S-CO2
CFB boiler.

It is difficult to establish an accurate prediction model of the
combustion characteristics of the S-CO2 CFB boiler based on
the conventional analytic formula modeling method. In recent
years, the rapid development of artificial intelligence
technology has been extensively used in China and abroad.
Among them, the support vector machine (SVM), which is an
important machine learning method to develop an intelligent
diagnosis system, has attracted considerable attention in recent
years. Its strong generalization ability makes it more and more
commonly used in the field of coal-fired power gener-
ation.22−26 Gu and Liu27 proposed an SVM based on an
improved particle swarm algorithm (IPSO-SVM) prediction
model, which improves the motion pattern recognition rate of
signals. Combined with the characteristics of the Gallic

smelting production process, the accuracy is significantly
better than the traditional SVM and PSO-SVM models. Zhang
et al.25 established NOx emission, fly ash carbon content, and
flue gas temperature models based on a least square-support
vector machine (LS-SVM) to effectively improve boiler
efficiency and reduce noise emissions through combustion
optimization. The SVM seeks the optimal classification surface
for the linear stability of sample data in high-dimensional
space, and its calculation and storage data are not limited by
the input dimension, which conforms to the characteristics of
many factors affecting the combustion characteristics of S-CO2
CFB boilers.28−30 The gray wolf optimizer (GWO) algorithm
is a new group intelligent optimization algorithm proposed
according to the wolf hunting behavior and internal hierarchy.
This algorithm solves a large number of continuous
optimization problems with its fast convergence speed and
high solution accuracy, and it has certain applications in
combinatorial optimization problems.31−34

This study presents a combustion characteristic prediction
model of the S-CO2 CFB boiler based on an adaptive gray wolf
optimizer support vector machine (AGWO-SVM). The
parameters of the GWO algorithm were processed adaptively
first combined with the boiler characteristics, and then the
adaptive GWO algorithm was integrated with the SVM to
solve the “precocious” convergence problem of particles being
easy to gather in a certain position in the process of pattern
recognition. The novel method predicts the boiler combustion
efficiency, carbon conversion rate, and NOx emission
concentration with the boiler capacity increasing by comparing
with the conventional prediction method and the original
simulation data.

2. ESTABLISHMENT OF THE GWO-SVM PREDICTION
MODEL
2.1. SVM. The SVM is a novel machine learning method

proposed by the famous scholar V.N. Vapnik based on the
Vapnik−Chervonenkis dimension theory and structural risk
minimum principle of statistical learning. Its core idea is to
transform the nonlinear data to the high-dimensional linear
space and to meet the maximum classification spacing, so that
the classification line can correctly separate the two types of
samples, and then obtain the required optimal classification
hyperplane. Assuming a dataset of {xi, yi}, i = 1, 2, ..., N, yi∈{
−1, +1}, xi∈Rd is given, the plane representing the two samples
is classified by circles and forks, respectively.

When the SVM introduces the relaxation variable ξi ≥ 0 and
the penalty coefficient C′ (C′ > 0), the solution formula for the
hyperplane is
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where αi is the Lagrangian factor solved by the quadratic
optimization problem, and the optimal classification hyper-
plane is
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When the raw data is nonlinear, the nuclear function is
introduced for replacement, and the radial base nuclear
function is generally used in the data processing of the S-
CO2 CFB boiler.
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Then, the optimal classification hyperplane is
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2.2. GWO. The GWO algorithm is proposed by the
Australian scholar Mirjalili and coworkers in 2014, inspired by
the wolf pack feeding process.35 The GWO algorithm has the
advantages of fast convergence speed, few parameters, simple
principle, and being easy to implement.36−38

The GWO algorithm is an optimization algorithm inspired
by the process of wolf search and hunting prey. As a social
animal, wolves usually exist in nature and each population has
a strict population system. In the group ranks according to the
individual ability of the gray wolf, the most capable and highest
individual α wolf with the highest level leads the whole
population. The second β wolf is the executor of the α wolf
command. The third level is δ wolf commanded by α wolf and
β wolf, and the rest of the pack is ω wolf, which is the lowest
level individual of the pack, as shown in Figure 1.

When rounding up prey, α wolf, β wolf, and δ wolf have the
ability to search the prey position, while ω wolf rounds up the
prey according to the position of α wolf, β wolf, and δ wolf.
The GWO algorithm is mainly divided into search, surround,
and capture with the mathematical model of the algorithm as
follows:
(1) Search and surround. α wolf, β wolf, and δ wolf judge

the direction of the prey and the distance from the prey
according to the smell of the prey and guide ω wolf to
surround the prey.

The distance between the prey and any individual gray wolf
is described by D in eq 5.

= | · |D C X t X t( ) ( )p (5)

where t represents iterations, Xp(t) represents the prey
location, X(t) represents the location of ω wolf, and C′
represents the coefficient vector with the range of [0,2]. The
function of C′ is to randomly adjust the difficulty of gray
wolves close to the prey, so as to avoid the algorithm falling

into the local optimum and better complete the optimization.
When C′ is less than 1, and when C′ is greater than 1, it is
more difficult to approach the prey, which is listed in eq 6.

=C r2 1 (6)

where r1 represents a random quantity ranging from 0 to 1.
The equation for a gray wolf to update the position is

displayed as follows:

+ = ·X t X t A D( 1) ( )p (7)

where A′ is the coefficient vector as listed in eq 8, whose value
shows the gray wolf’s exploration ability. When |A′| > 1, the
gray wolf group will expand the search range and conduct a
global search, and when |A′| < 1, the gray wolf group will
shrink the search range for local accurate search.

=A ar a2 2 (8)

=a
t

2 2
MaxIter (9)

where r2 is a random quantity with the range of [0,1], a
represents the convergence factors that determine the search
range, and MaxIter determines the maximum number of
iterations indicating a linear decrease from 2 to 0 with iteration
number t.
(2) Capture. Since the prey location (optimal solution) is

unknown in the algorithm, and α wolf, β wolf, and δ wolf
respectively represent the three positions closest to the
prey, the prey location of the GWO algorithm is the
position of α wolf, β wolf, and δ wolf, and ω wolf
constantly updates its position according to the position
of the three wolves and finally completes the capture.

= | · |D C X t X t( ) ( )1 (10)

= | · |D C X t X t( ) ( )2 (11)

= | · |D C X t X t( ) ( )3 (12)
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= ·X X A D3 3 (15)
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+ +
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X X X
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3p

1 2 3
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where Dα, Dβ, and Dδ represent the distance between these
three wolves and the ω wolf. Xα(t), Xβ(t), and Xδ(t) represent
the positions of α wolf, β wolf, and δ wolf when the number of
iterations is t, respectively. The position update formula of the
ω wolf and the other three gray wolves is shown in eq 16.

The GWO algorithm completes the optimization according
to the natural gray wolf hierarchy and the feeding process,
which has the advantages of simple structure, few parameters,
and being easy to realize. Compared with the GWO algorithm
and genetic algorithm, the GWO algorithm optimization ability
is stronger. However, the GWO algorithm itself also has
shortcomings, such as the setting of the original convergence
factor, so it needs to be improved adaptively.
2.3. AGWO-SVM. The prediction process of the

combustion characteristics of the S-CO2 CFB boiler focuses
on optimizing the original convergence factor a in order to

Figure 1. Level diagram of the GWO algorithm.
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expand the search range of the optimization in the early stage
of the search and narrow the search range in the later stage for
partial optimization. This treatment method solves the
imbalance of local and global search problems of particles
being easy to gather in a certain position in the process of
pattern recognition. Local optimum means that the solution to
a problem is optimal in a certain range or region, or to solve
the problem or to achieve the goal is optimal within a certain
range or limit. In some engineering fields, limited by time and
cost, the local optimum and the global optimum may not be
strictly checked, but in some cases, the formula requires the
global optimum, which is to avoid the result of only the local
optimum.

= + i
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jjj y

{
zzza

a a t( )
2

cos
MaxIter

initial final

(17)

Figure 2 shows the comparison of convergence factor a
before and after adaptive processing. It is seen that in the first

half of the iteration, adaptive a is always larger than the original
a and the value of adaptive A is also larger than the original A.
Compared with the previous iteration process of the original
GWO algorithm, the scope of each time has strengthened the
optimization ability of the algorithm. In the late iteration, after
the adaptive processing of the convergence factor, the value of
A is also smaller than the value of the original convergence
factor. Therefore, the improved convergence factor strengthens
the local search ability in the later period of optimization and
the convergence accuracy of optimization is higher.

In addition, this study also introduces the dynamic weight
strategy39 to speed up the convergence speed of the GWO
algorithm. Equation 16 is the position of the next update
calculated by the GWO algorithm according to the position of
α wolf, β wolf, and δ wolf. It is seen from the formula that α
wolf, β wolf, and δ wolf lack pertinence in the guiding
significance of wolves. Ignoring the different abilities of α wolf,
β wolf, and δ wolf, the convergence speed of the algorithm is
slow. In view of the defect of the GWO algorithm, the dynamic
proportional weight mechanism is introduced, which makes α
wolf have the largest influence on the next position update,
with β wolf and δ wolf in order. The algorithm convergence is

accelerated by introducing this strategy. The specific formula is
listed from eqs 18 to 21.
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where Wα, Wβ, and Wδ represent the weight α wolf, β wolf, and
δ wolf guide for the update of the ω wolf location, respectively,
and fα, fβ, and fδ represent fitness values for each iteration of α
wolf, β wolf, and δ wolf.

The AGWO algorithm improves on the penalty factor and
kernel function parameters in the SVM, and then the two
parameters obtained by the optimization are used as the SVM
model. Figure 3 shows the flowchart of the AGWO-SVM
algorithm. Specific steps are performed as listed below:

Figure 2. Comparison of convergence factor a before and after
adaptive processing.

Figure 3. AGWO-SVM algorithm process.
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(1) Relevant parameters such as population number,
maximum number of iterations, and population size
are set.

(2) Parameter initialization. Relevant parameters such as A′,
C′, and a are initialized.

(3) The feature vectors obtained after data preprocessing are
input into the SVM model for training.

(4) The fitness values of all gray wolves in the population are
calculated and ranked in descending order to select α
wolf, β wolf, and δ wolf.

(5) The position of the ω wolf is updated according to eqs
11−16.

(6) C′ is updated according to eq 6, and A′ is updated
according to eqs 8 and 9.

(7) The fitness values of all gray wolves in the population
and sort are counted. Compared with the last iteration,
the three optimal values are found. When MaxIter is
reached, the iteration of the algorithm stops and Xα is
output. Otherwise, return to step (3) to recalculate.

(8) The SVM classification model is constructed by using
the position of α wolf X in different dimensions as the
value of the penalty factor and kernel function
parameters in the SVM model.

3. PREDICTION MODEL OF BOILER COMBUSTION
CHARACTERISTICS
3.1. Physical Model of S-CO2 CFB Boilers. Full-loop

CFD numerical simulation results of three-scale S-CO2 CFB
boilers with the capacity of 0.1, 10, 100, 300, 600, and 1000
MW, respectively, offer the database adopted in the prediction
model. Figure 4 shows the physical model of the full-loop six-
capacity S-CO2 CFB boilers, and the authors’ previous
research38 provides specific numerical simulation research
methods, simulation processes, and combustion characteristic
results. Based on the coal-fired CFB boiler design principle in
accordance with the first law of thermodynamics and heat
transfer law, the configuration and size for the six-capacity
boilers are determined and designed. The six-capacity S-CO2

Figure 4. Physical models of lab-scale, pilot-scale, and industry-scale S-CO2 CFB boilers.

Table 1. Input Parameters and Characteristic Parameters

operating parameters 0.1 MW 10 MW 100 MW 300 MW 600 MW 1000 MW

coal input (kg/s) 0.005 0.489 14.697 35.55 72.116 151.67
cold wall (K) 890 890.15 908.3 915.5 923.3 935.2
platen heating surfaces (K) 810.05 845.6 850.13 860.5
external heat exchanger (K) 810.5
fluidization air temperature (K) 763 763 763 763 763 763
particle and gas
diameter of bed material (mm) 0.2−0.6
diameter of coal (mm) 0.01−5
particle density (kg/m3) 2400
initial particle number 5.3 × 105 1.5 × 106 4.56 × 106 5.26 × 106 5.74 × 106 6.05 × 106

gas density (kg/m3) 1.173
gas viscosity (kg/m·s) 1.844 × 10−5

characteristic parameters
excess air ratio 1.25 1.25 1.25 1.25 1.25 1.25
fluidization gas velocity (m/s) 2.8 3 3.56 4.2 4.5 5.5
residence time of gas (s) 2.48 6.9 8.28 9.56 10.11 12.5
volumetric thermal load (MW/m3) 1.619 0.201 0.101 0.084 0.058 0.055
cross-sectional thermal load (MW/m2) 10.04 4.23 3.63 3.37 2.9 2.85
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CFB boilers consist of furnace main body, cyclone separator, S-
CO2 cold wall, dipleg, and seal pot. Different from the lab-scale
boiler, the industry-scale boiler installs the platen heating
surfaces inside the furnace and the pilot-scale boiler adds an
external heat exchanger (EHE) because combustion releases
more heat needing to be transferred. The primary air, the
secondary air, and coal enter the furnace evenly from the
bottom distribution plate, the secondary air inlets, and the coal
feeding inlets arranged on the side wall of the lower furnace,
respectively. Besides, the horizontal air, sowing air, and loosen
air are designed at the seal pot position to make the bed
material circulate more smoothly from the cyclones to the
furnace. The furnace outlet is set as the pressure outlet
boundary condition. Six S-CO2 CFB boilers of different
capacities are designed with the same regulation and belong to
the same collective group with the detailed input parameters
and characteristic parameters listed in Table 1.11

This study establishes the physical model of the 1000 MW
S-CO2 CFB boiler for numerical simulation of the gas−solid
combustion process according to the same numerical
simulation method introduced in the authors’ previous
research.11 The purpose of simulating the 1000 MW S-CO2
CFB boiler is to verify the accuracy of the combustion
characteristics obtained based on the other five-capacity CFB
boilers and to correct the scale-up fitting formulas as well.
Besides, the accuracy of the AGWO-SVM combustion
characteristic prediction algorithm established based on the
simulation results of the additional five-capacity boilers is
improved. Similarly to the 600 MW S-CO2 CFB boiler, the
1000 MW one consists of an annular furnace core structure
with eight cyclones arranged centrosymmetrically around the
outer ring. The height, width, and depth of the furnace are 52,
33, and 22 m for the outer ring, respectively, and the
dimensions for the furnace inner ring are 19.8 and 10.5 m,
respectively. The platen heating surfaces, whose height is 26 m
in total, are arranged symmetrically around the inner ring wall.
The total air flow rate is 2,315,950 Nm3/h with the excess air
ratio of 1.2 and the temperature of 500 °C. The diameter of
coal particles distributes normally varying from 0.7 to 0.8 mm
with the coal feeding rate of 296,500 kg/h. The bed material
mainly consists of silicon, which also consists of wide sieve
particles with the diameter ranging from 0.2 to 0.3 mm.
3.2. AGWO-SVM Prediction Model. Combustion char-

acteristics of the S-CO2 CFB boiler are studied based on the
AGWO-SVM prediction model with the process of the
prediction model shown in Figure 5, which is divided into
the following five steps:

Step 1: The AGWO-SVM model is constructed.
Step 2: 500 sets of simulation data of the 100 MW S-CO2

CFB boiler are selected as the training database, which
includes operation parameters, boiler size parameters, and
combustion characteristic parameters from boiler start to stable
operation and is sorted depending on the time series.

Step 3: 300 sets of 0.1, 10, 300, and 600 MW S-CO2 CFB
boilers are respectively selected into the test database. The
operating parameters and size parameters in the whole process
from boiler start to stable operation are input according to the
time series with the boiler combustion characteristic parameter
output.

Step 4: The test output results of each capacity boiler are
compared with the simulation results. If the difference is within
the range of error accepted, the predicted combustion

characteristics can output based on the constructed AGWO-
SVM prediction model. Otherwise, the test will be repeated.

Step 5: Predicted combustion characteristics are verified
based on simulation data of the 1000 MW S-CO2 CFB boiler.
If the 1000 MW S-CO2 CFB boiler data concur with the
predicted combustion characteristic parameters within the set
maximum error, the predicted combustion characteristics
based on the AGWO-SVM algorithm can be obtained.
Otherwise, the AGWO-SVM algorithm should be rebuilt
after the error analysis and the adjustment of operating
parameters.

The AGWO-SVM network structure diagram is illustrated in
Figure 6, which consists of three core parts, namely, input
layer, output layer, and hidden layer. The combustion
characteristics are determined by numerous parameters of S-
CO2 CFB boilers, not only affected by coal-fired situations
such as coal components, diameter distribution, and
combustion intensity but also influenced by oxygen abundance,
air temperature, dense-phase temperature, excess air coef-
ficient, and wall heat transfer effect. The parameters largely
affecting the combustion characteristics should be found and
input in the process of modeling and simulation, which can
avoid shocking the prediction result data or affecting the
accuracy of the predicted combustion characteristics, and the
Pearson correlation analysis method is employed. The
parameters most closely related to boiler combustion

Figure 5. Prediction process of combustion characteristics based on
AGWO-SVM.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c07483
ACS Omega 2023, 8, 10160−10175

10165

https://pubs.acs.org/doi/10.1021/acsomega.2c07483?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c07483?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c07483?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c07483?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c07483?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


characteristics are taken as input data, namely, boiler capacity
W, boiler volume V, furnace heating surface area A, air flow
rate U, coal feeding rate Q, furnace average temperature T, and
furnace pressure drop ΔP. Parameters characterizing the
combustion characteristics including combustion efficiency η,
carbon conversion rate ω, and NOx emission concentration C
are chosen as output data. Table 2 lists some of the input and
output operating parameters. There is no detailed research so
far on how to determine the optimal number nodes in the
hidden layer of the neural network structure, which plays a key
role on the training time and prediction performance.
Specifically, if the hidden layer node number is set reasonably,
the prediction accuracy of the model will be greatly improved.
Too few nodes can hinder the progress of the accurate
prediction process, and models without making an accurate
prediction have no research value. On the contrary, too many
hidden layer nodes will increase the training time of the model
greatly as the iteration proceeds and the final prediction effect
may also be not ideal owing to an allergic phenomenon.
Inspired by current research, the number of nodes in the
hidden layer is basically selected according to the historical
data analysis method. Therefore, in this study, the most
appropriate number of hidden layers is constantly explored
with only one hidden layer selected as the final neural network
subject investigated, which can make excellent predicted
results.
3.3. Workflow of the Methodology Overview. The

workflow of the methodology overview in this study is shown
in Figure 7. First, the gas−solid combustion process of the full-
loop S-CO2 CFB boilers with the capacity varying from 0.1 to
600 MW is simulated to obtain thorough combustion
characteristics and change regularities with the increase of
the boiler capacity. Second, the AGWO-SVM prediction
model is established. The simulated data including boiler
capacity, air flow rate, furnace temperature, and coal feeding
rate is set as the input data, and the parameters characterizing
combustion characteristics including combustion rate, carbon
conversion rate, and NOx emission concentration are chosen as
output data. Third, the combustion simulation of the 1000
MW S-CO2 CFB boiler is conducted to get new operating
parameters and combustion characteristic data results.
Combustion characteristic data are compared with the

prediction results to verify the accuracy of the prediction
results. The core research contents are to finish combustion
characteristic prediction of the S-CO2 CFB boiler based on the
novel AGWO-SVM model and to get prediction results with
higher accuracy compared with conventional SVM and GWO-
SVM prediction models.

4. RESULTS AND DISCUSSION
4.1. Simulation Results of Combustion Character-

istics. After the establishment of the 3D physical model of the
1000 MW S-CO2 CFB boiler mentioned in Section 3.1, the
full-loop gas−solid combustion process is simulated based on
multiphase particle in-cell (MP-PIC) scheme coupling
chemical reaction models introduced specifically for the
authors’ previous research.11 Detailed combustion character-
istics including furnace temperature distribution, gas emission
concentration distribution (CO2, CO, NO, and N2O) are
compared with those of other five boilers to enrich the research
of the combustion characteristics in industrial-scale S-CO2
CFB boilers. Besides, some key parameters representing
combustion characteristics are also calculated like the carbon
conversion rate (ωC‑CO2), combustion efficiency (η), and NOx
emission concentration (C) to verify the accuracy of the
combustion characteristic change regularity.

The CO2 and CO emission concentrations at the furnace
outlet of the 1000 MW S-CO2 CFB boiler are obtained by
simulation. Calculated using eq 22, the carbon conversion rate
(ωC‑CO2) of the 1000 MW S-CO2 CFB boiler is 95.78%, where
MCO2‑C, ωcoal‑C, and Q indicate the mass of C in gas CO2, the
mass fraction of C in coal, and coal feeding rate, respectively.

=
×

M

QC CO
CO C

coal C
2

2

(22)

The carbon conversion rate fitting curve with the increase of
the boiler capacity is given in Figure 8a. The value of the
carbon conversion rate of the 1000 MW S-CO2 CFB boiler is
compared with the fitting curve, and it is found that the value
coincides well with the fitting curve with the relative error not
exceeding 5.2%, proving that the simulated carbon conversion
rate fitting formula has acceptable accuracy and application
value. The concentration distribution of CO2 and CO is
illustrated in Figure 8b and c, respectively. The concentration
distribution of the two gases indicates similar regularity. For
industrial-scale S-CO2 CFB boilers, especially 1000 MW, CO
accumulates the most obviously near the coal feeding inlets
and drops the fastest along the height of the furnace, which is
because industrial-scale boilers will release more volatile
content and the rate of CO2 reduction reaction is the fastest.

According to the simulation results by the authors’ previous
research,11 the carbon conversion rate scale-up fitting formula
is calculated. In order to improve the accuracy of the carbon
conversion scale-up fitting formula, the value of the 1000 MW
S-CO2 CFB boiler is brought into the formula with the
updated fitting formula of the carbon conversion rate listed in
eq 23.40 The correction coefficients γ1, γ2, and γ3 are added to
the modified formula based on simulation data of the 1000
MW S-CO2 CFB boiler, where D represents thermal input; α1,
β1, and γ1 are 92.66, 497.3, and 1055, respectively; α2, β2, and
γ2 are 5.88, 30.05, and 28.94, respectively; α3, β3, and γ3 are
10.222, 108.7, and 119.5, respectively; and γ1, γ2, and γ3 are
1.945, 1.083, and 0.977, respectively.

Figure 6. AGWO-SVM network structure diagram.
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The gas phase temperature and solid phase temperature
distributions of the 1000 MW S-CO2 CFB boiler are obtained
by numerical simulation, and the combustion efficiency is
calculated using eqs 24−27.41

= q q100 3 4 (24)

= + + ×q
Q

V CO CH H1
(126.36 358.18 107.98 ) 1003

r
gy 4 2

(25)

= =q q
Q G

Q4 4
FA c c FA

net,ar (26)

=G G G GC FA C Fuel C Unburn C Gas (27)

where Qr is the thermal input to the furnace and Vgy is the
volume of the dry flue gas generated per kg of fuel combustion.
q4

FA represents the fly ash heat loss, and the bottom slag heat
loss is omitted because any slag discharge system is included in
the simulation of the S-CO2 CFB boiler. Qnet,ar and Qc
represent the net calorific value as received basis and the
carbon heating value, respectively. GC‑FA, GC‑Fuel, GC‑Unburn, and
GC‑Gas represent the carbon mass in the fly ash, fuel input,
unburned fuel, and the produced gas containing C,
respectively.

The combustion efficiency value of the 1000 MW S-CO2
CFB boiler is compared with the fitting curve, as displayed in
Figure 9a. The point representing the 1000 MW boiler

Table 2. Parts of the CFD Simulation Data in the Database

case
boiler capacity

W/MW
boiler volume

V/m3
heating surface area

A/m2
air flow rate
U/(kg/s)

coal feeding rate
Q/(kg/s)

furnace temperature
T/K

furnace pressure
ΔP/MPa

A1 0.1 0.1095 2.9202 0.00448 0.0049 1204 46,256
A2 0.1 0.1095 2.9202 0.00425 0.0051 1203 46,311
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
A300 0.1 0.1095 2.9202 0.00401 0.4889 1205 46,279
B1 10 224.3 275.656 0.436 0.5002 1206 45,986
B2 10 224.3 275.656 0.390 0.4895 1195 46,004
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
B300. 10 224.3 275.656 0.408 0.4890 1202 45,799
C1 100 3024 1368 12.17 14.702 1199 45,099
C2 100 3024 1368 12.06 14.697 1195 45,167
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
C500. 100 3024 1368 11.98 14.703 1190 45,233
D1 300 9360 2800 29.23 35.536 1188 44,795
D2 300 9360 2800 28.99 35.557 1197 44,699
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
D300. 300 9360 2800 29.14 35.579 1185 44,756
E1 600 29,346 8760 59.04 72.108 1190 42,854
E2 600 29,346 8760 61.23 72.116 1183 43,757
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
E300. 600 29,346 8760 59.56 72.121 1179 42,967

Case Combustion rate η/% Carbon conversion rate ω/% NOx emission concentration C/ppmv

A1 91.72 88.35 195.56
A2 90.96 89.39 196.23
⋮ ⋮ ⋮ ⋮
A300 91.14 89.24 197.71
B1 91.45 90.51 198.81
B2 92.04 91.09 199.75
⋮ ⋮ ⋮ ⋮
B300 91.78 9123 199.76
C1 92.73 93.67 183.45
C2 93.25 95.14 186.89
⋮ ⋮ ⋮ ⋮
C500 93.77 95.88 185.95
D1 94.14 96.43 183.53
D2 94.27 96.22 182.22
⋮ ⋮ ⋮ ⋮
D300 94.44 96.67 181.73
E1 94.67 96.78 178.42
E2 94.89 96.57 176.51
⋮ ⋮ ⋮ ⋮
E300 95.03 96.60 177.43
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combustion efficiency (94.23%) falls right on the fitting curve,
which is just slightly lower than the curve with the maximum
deviation of no more than 6.78%. This phenomenon suggests
that the change regularity of the combustion efficiency
obtained by S-CO2 CFB boilers with capacities varying from
0.1 to 600 MW is accurate. The furnace temperature
distribution of the six S-CO2 CFB boilers is illustrated in
Figure 9b. With the increase of thermal input, the gas phase
temperature of the furnace shows an overall downward trend
and the average temperatures are 1201, 1198.2, 1190.5, 1186.4,
1183.5, and 1182.9 K, respectively. Among them, the
temperature of laboratory-scale (0.1 MW) and pilot-scale (10
MW) boilers is particularly affected by coal feeding and
secondary air input, while industrial-scale boilers with more
uniform temperature distributions (100, 300, 600, 1000 MW)
are less affected. Higher temperature helps to improve the
combustion efficiency, and more uniform temperature
distribution favors combustion uniformity and stability.

In order to further improve the accuracy of the change
regularity of combustion efficiency, the numerical simulation
data of the 1000 MW S-CO2 CFB boiler is also taken into
account in the proposal of the fitting formula, which makes it
more consistent with reality by adding the correction
coefficient. The modified combustion efficiency scale-up fitting
formula is shown in eq 2828, where correction coefficients γ1,
γ2, and γ3 and are 0.984, 1.221, and 0.797, respectively.
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Similar to the exploration of the carbon conversion rate and
combustion efficiency discussed above, the NO and N2O
concentration distribution in the 1000 MW S-CO2 CFB boiler
furnace is obtained by numerical simulation, as shown in
Figure 10. Data points representing the NOx emission
concentration of the 1000 MW S-CO2 CFB boiler agree
with the deduced NOx emission concentration fitting curve
with the increase of the boiler capacity with the relative error of
7.32%, verifying its accuracy with acceptable precision. Figure

10b and c show the concentration distribution of NO and N2O
in the full-loop six-capacity boilers. Because the coal content of
industrial-scale S-CO2 CFB boilers is the highest, especially for
the 1000 MW one, more coal reacts with NO, which advances
the consumption of NO, so the NO concentration of
industrial-scale boilers is lower. The N2O concentration of
industrial-scale S-CO2 CFB boilers is high because the
concentration of CO in the furnace is too low to convert
excess N2O.

The NOx emission concentration value of 1000 MW S-CO2
CFB boiler (182.7 ppmv) is brought in to the obtained fitting
curve of the NOx emission change regularity to improve the
accuracy of the representation. The modified scale-up fitting
formula is listed in eq 29 with the correction coefficients ζ1, ζ2,
ζ3, and ζ4 of 1.022, 0.996, 1.115, and −0.0009, respectively.

= + + +C X W X W X W X1 1
3

2 2
2

3 3 4 4 (29)

4.2. Prediction Results of Combustion Character-
istics. In order to verify the effect of the S-CO2 CFB
combustion characteristic prediction model of AGWO-SVM
established in this study, it is compared with the conventional
GWO-SVM prediction model and the SVM prediction model.
The comparative prediction results of the 600 MW S-CO2
CFB boiler combustion efficiency based on each model are the
most representative, as shown in Figure 11a−c. Figure 11d
shows the prediction error of the three prediction models. It is
noted that the GWO-SVM and AGWO-SVM prediction
models fit quite well with the prediction accuracy improved
to varying degrees compared with the conventional SVM
prediction model. The relative error of the maximum pulsation
amplitude (δmax) of the AGWO-SVM prediction model is the
smallest of the three models (1.02%), and the number of
mismatch point pairs is much fewer than the other two
algorithms. On the one hand, this regularity reflects that GWO
algorithms have better power in searching for the optimal
parameters. On the other hand, the novel AGWO-SVM
prediction model corresponding to the S-CO2 CFB boiler can
better reflect the changing trend of combustion efficiency in
the boiler combustion process and obtain more ideal
combustion characteristics and regularity prediction results,
which has an excellent guiding significance for adjusting
parameters of industrial-scale S-CO2 CFB boilers in real time.

Figure 7. Workflow of the methodology overview.
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The comparison of prediction and results simulation on the
boiler carbon conversion rate is shown in Figure 12a−c. Figure
12d presents the corresponding prediction error. Compared
with the conventional GWO-SVM prediction model, the
AGWO-SVM prediction model obtains the carbon conversion
prediction curve fitting the best with the simulation curve, with
the matching points significantly reduced compared with the
other two algorithms. Meanwhile, the mismatching rate
dramatically declines, indicating a better prediction ability.
The relative error of the AGWO-SVM prediction model is

under 0.75%, which is less than that of the GWO-SVM
prediction model and the SVM prediction model, whose
relative errors are 1.34 and 2.56%, respectively. The prediction
results can also be a useful response to actual changing trends
especially in some situations when the fluctuation of the
furnace working conditions is relatively larger. This is because
the AGWO algorithm adjusts the inertial weight for chaotic
inertia, the learning factor is adaptively processed, and the
particles perform cross-variation operations. In this case, the
ability of the AGWO algorithm is strengthened and the

Figure 8. C-CO2 conversion rate verification by the 1000 MW S-CO2 CFB boiler: (a) C-CO2 conversion rate scale-up fitting curve, (b) CO2
concentration distribution in six-capacity boilers, and (c) CO concentration distribution in six-capacity boilers.
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prediction accuracy of the combustion characteristics of S-CO2
CFB boilers is improved.

Figure 13a−c shows the comparison of the prediction results
of the boiler NOx emission concentration and simulation data,
and the prediction errors of the three prediction models are
presented in Figure 13d. It is seen that the prediction results of
the three models are relatively stable with a relative error
within 10%. Among the three prediction models, the AGWO-
SVM algorithm best agrees with the simulated value, whose
relative error does not exceed 5.61%, indicating a quite high
accuracy in the NOx emission prediction of the S-CO2 CFB
boiler. The SVM prediction model indicates the largest relative
error of 9.23%, and the predictive ability of the GWO-SVM
prediction model is somewhere in between with the relative
error of 8.74%. The fitting degree of the AGWO-SVM
algorithm predicting NOx emission is slightly less than that
predicting the combustion efficiency and carbon conversion
rate, but the overall effect is satisfactory. Results show that the
generalization time and pattern recognition accuracy of the
AGWO-SVM algorithm model have great advantages, which
are competent for the prediction work and have fine stability.
Overall, the novel AGWO-SVM algorithm is an effective

method to predict the parameters related to the combustion
characteristics of the S-CO2 CFB boiler.

Three sets of critical data representing the combustion
characteristic parameters after the final output of the above
three prediction models, namely, the combustion efficiency,
carbon conversion rate, and NOx emission concentration, are
compared with the original simulation data. The comparison
results are presented in Table 3. According to the table, the
combustion efficiency, carbon conversion rate, and NOx
emission of the AGWO-SVM prediction model proposed in
this study are 96.78%, 94.56%, and 188.760 ppmv, which are
the closest to the original numerical simulation results
(96.55%, 94.76%, and 189.332 ppmv), with the error not
exceeding 0.85%, while the data obtained by the SVM model
differ greatly from the original data and the prediction results
obtained by the GWO-SVM prediction model are in between.
Besides, the AGWO-SVM prediction model presented in this
study optimizes combustion characteristic data of boilers to
obtain a higher combustion efficiency and carbon conversion
rate, as well as a lower NOx emission concentration, indicating
that the AGWO-SVM prediction model has an excellent
prediction and optimization effect.

Figure 9. Combustion efficiency verification by the 1000 MW S-CO2 CFB boiler: (a) combustion efficiency scale-up fitting curve and (b)
combustion distribution in six capacity boilers.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c07483
ACS Omega 2023, 8, 10160−10175

10170

https://pubs.acs.org/doi/10.1021/acsomega.2c07483?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c07483?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c07483?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c07483?fig=fig9&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c07483?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


5. CONCLUSIONS
A novel AGWO-SVM algorithm is proposed in this study to
further improve the performance of combustion characteristic
prediction models for S-CO2 CFB boilers. This new prediction
model solves the imbalance of local and global search abilities
in the conventional GWO algorithm, and the dynamic weights
are introduced to accelerate the algorithm convergence, which
can realize accurate combustion characteristics of the S-CO2
CFB boiler with high industrial application value. The main
findings are as follows:
(1) In the CFD numerical simulation, the MP-PIC method

and coal combustion model are used to simulate the

gas−solid flow and combustion process of the 1000 MW
S-CO2 CFB boiler, the calculation results are compared
with the data rule of the previous research, and the
errors on the carbon conversion rate, combustion
efficiency, and NOx emission concentration is less than
7.32%. Besides, the addition of 1000 MW S-CO2 CFB
boiler test data optimizes the proposed AGWO-SVM
prediction model.

(2) By establishing the novel AGWO-SVM algorithm, the
combustion characteristic and change regularities with
boiler capacities of 0.1, 10, 100, 300, 600, and 1000 MW
are predicted with acceptable accuracy. The AGWO-

Figure 10. NOx emission concentration verification by the 1000 MW S-CO2 CFB boiler: (a) NOx emission concentration scale-up fitting curve,
(b) NO concentration in six-capacity boilers, and (c) N2O concentration in six-capacity boilers.
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SVM prediction relative errors on combustion efficiency,
carbon conversion rate, and NOx emission concentration
are 1.02, 0.75, and 5.61%, respectively, compared with
simulation data.

(3) Compared with the conventional GWO-SVM and SVM
prediction models, the combustion efficiency, carbon

conversion rate, and NOx emission concentration of the
600 MW S-CO2 CFB boiler obtained based on the
AGWO-SVM algorithm best agree with the simulated
data with mismatch points less than the other two
algorithms, and the relative error of the pulsation
maximum amplitude does not exceed 6%. The proposed

Figure 11. Comparison between prediction and simulation results of
combustion efficiency for the 600 MW S-CO2 CFB boiler: (a) SVM
prediction model, (b) GWO-SVM prediction model, (c) AGWO-
SVM prediction model, and (d) prediction error.

Figure 12. Comparison between prediction and simulation results of
the carbon conversion rate for the 600 MW S-CO2 CFB boiler: (a)
SVM prediction model, (b) GWO-SVM prediction model, (c)
AGWO-SVM prediction model, and (d) prediction error.
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novel AGWO-SVM algorithm improves the reliability
and the prediction accuracy of the combustion
characteristics of the S-CO2 CFB boiler.
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■ NOMENCLATURE
AGWO-SVM adaptive gray wolf optimizer support vector
machine
EHE external heat exchanger
ESE evolutionary state estimation
IGWO-ELM improved gray wolf optimizer extreme learning
machine
LS-SVM least-square support vector machine

Figure 13. Comparison between prediction and simulation results of
the NOx emission concentration for the 600 MW S-CO2 CFB boiler:
(a) SVM prediction model, (b) GWO-SVM prediction model, (c)
AGWO-SVM prediction model, and (d) prediction error.

Table 3. Main Combustion Characteristic Parameters of
Compared Experiment Based on Original Data and the
Adaptive Method

original
simulation

data SVM
GWO-
SVM

AGWO-
SVM

combustion efficiency
(%)

96.55 89.43 92.31 97.38

carbon conversion rate
(%)

94.76 86.74 90.23 95.56

NOx emission
concentration

(ppmv)

189.332 213.565 197.843 188.760

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c07483
ACS Omega 2023, 8, 10160−10175

10173

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ying+Cui"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-0802-6793
mailto:cuiy@wxit.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wenqi+Zhong"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-0700-4592
https://orcid.org/0000-0003-0700-4592
mailto:wqzhong@seu.edu.cn
mailto:wqzhong@seu.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ye+Zou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shujun+Jiang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c07483?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c07483?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c07483?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c07483?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c07483?fig=fig13&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c07483?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


GWO gray wolf optimizer
a convergence factor
A furnace heating surface area (m2)
A′ coefficient vector
b constant
C NOx emission concentration
C′ coefficient vector
C″ penalty coefficient
D thermal input (MW)
K radial base nuclear function
k number of cyclic iterations
L fitness value
M mass (kg)
n particle number
Q coal feeding rate (kg/s)
Qr thermal input to the furnace (kJ/kg)
Qc carbon heating value (kJ/kg)
Qnet,ar thermal input of the coal (kJ/kg)
q3 combustible gases incomplete combustion heat loss (%)
q4 solid fuels incomplete combustion heat loss (%)
q4

FA efficiency loss related with the fly ash (%)
r random quantity between 0 and 1
t number of iterations
T furnace average temperature (K)
U air flow rate (kg/s)
V boiler volume (m3)
Vgy volume of the dry flue gas (m3)
v particle velocity
vi1 initial velocity
W boiler capacity (MW)
x location in space (m)
xi1 initial position
X positions of wolf
y location in space (m)

Greek letters
α α wolf
β β wolf
δ δ wolf
σ radial basis parameter
η combustion efficiency
ω carbon conversion rate
δmax elative error of maximum pulsation amplitude
ξ relaxation variable
γ carbon conversion rate correction coefficient
γ combustion efficiency correction coefficient
ζ NOx emission concentration correction coefficient

■ REFERENCES
(1) Li, H.; Zhang, Y.; Yang, Y.; Han, W.; Yao, M.; Bai, W.; Zhang, L.

Preliminary Design Assessment of Supercritical CO2 Cycle for
Commercial Scale Coal-fired Power Plants. Appl. Therm. Eng. 2019,
158, 1−10.
(2) Yu, A.; Su, W.; Lin, X.; Zhou, N. Recent trends of supercritical

CO2 Brayton cycle: Bibliometric analysis and research review. Nucl.
Eng. Technol. 2021, 53, 699−714.
(3) White, M. T.; Bianchi, G.; Chai, L.; Tassou, S. A.; Sayma, A. I.

Review of supercritical CO2 technologies and systems for power
generation. Appl. Therm. Eng. 2021, 185, No. 116447.
(4) Liu, X.; Zhang, M.; Zhang, S.; Ding, Y.; Huang, Z.; Zhou, T.;

Yang, H.; Yue, G. Measuring Technologies for CFB Solid Circulation
Rate: A Review and Future Perspectives. Energies 2022, 15, 417.
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