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ABSTRACT: In this paper, we study the solution quality of robust optimization problems when they are used to approximate
probabilistic constraints and propose a novel method to improve the quality. Two solution frameworks are first compared: (1)
the traditional robust optimization framework which only uses the a priori probability bounds and (3) the approximation
framework which uses the a posteriori probability bound. We illustrate that the traditional robust optimization method is
computationally efficient but its solution is in general conservative. On the other hand, the a posteriori probability bound based
method provides less conservative solution but it is computationally more difficult because a nonconvex optimization problem is
solved. Based on the comparative study of the two methods, we propose a novel iterative solution framework which combines the
advantage of the a priori bound and the a posteriori probability bound. The proposed method can improve the solution quality of
traditional robust optimization framework without significantly increasing the computational effort. The effectiveness of the
proposed method is illustrated through numerical examples and applications in planning and scheduling problems.

1. INTRODUCTION

Data uncertainty widely exists in realistic problems due to their
random nature, measurement errors, or other reasons. As a
result, decision making inherently involves consideration of such
uncertainties since the solution of an optimization problem often
exhibits high sensitivity to data perturbations, and ignoring the
uncertainty could lead to suboptimal or even infeasible solu-
tions. In past decades, developing optimization methods and
tools to facilitate decision making under uncertainty has be-
come one of the most important topics in both the operations
research community and also the process systems engineering
community.
Robust optimization belongs to an important methodology

for dealing with optimization problems with data uncertainty.
This type of method enforces the constraint satisfaction for all
possible realizations of uncertain parameters inside a predefined
uncertainty set. Comparing it to other methodologies that deal
with uncertainty, one major motivation of robust optimization is
that in many applications the data set is an appropriate notion of
parameter uncertainty, especially for those cases that the param-
eter uncertainty is not stochastic, or for instances where no
distributional information is available.
One of the earliest papers on robust counterpart optimization

is the work of Soyster,1 who considered simple perturbations in
the data and aimed to find a reformulation of the original linear
programming problem such that the resulting solution would be
feasible under all possible perturbations. The approach admits
the highest protection and is the most conservative one since it
ensures feasibility against all potential realizations. Thus, it is
highly desirable to provide a mechanism to allow for the trade-off
between robustness and performance. The work by Ben-Tal and
Nemirovski,2,3 El-Ghaoui et al.,4,5 and Bertsimas and Sim6

investigated the framework of robust counterpart optimization
by introducing different types of uncertainty sets. Ben-Tal and

Nemirovski3 proposed the ellipsoidal set based robust counter-
part formulation. El-Ghaoui and Lebret4 introduced a robust
optimization approach for least-squares problems with uncertain
data. Bertsimas and Sim6 studied robust linear programming
with coefficient uncertainty using an uncertainty set with
budgets. In this robust counterpart optimization formulation, a
budget parameter (which takes a value between zero and the
number of uncertain coefficient parameters in the constraints
and is not necessarily integer) is introduced to control the degree
of conservatism of the solution. Lin et al.7 and Janak et al.8

developed the theory of the robust optimization framework for
general mixed-integer linear programming problems and
considered both bounded uncertainty and several known
probability distributions. The robust optimization framework
was later extended by Verderame and Floudas9 and they studied
both continuous (general, bounded, uniform, normal) and dis-
crete (general, binomial, Poisson) uncertainty distributions and
applied the framework to operational planning problems. The
work was further compared with the conditional value-at-risk
based method in Verderame and Floudas.10 In the first two parts
of this paper series,11,12 we systematically studied the set induced
robust counterpart optimization technique for linear and mixed
integer linear optimization problems. Different uncertainty sets
were extensively studied, including those studied in literature and
novel ones were introduced in this work. The relationship
between different representative uncertainty sets was discussed,
and their corresponding robust counterpart formulations for
both linear optimization (LP) and mixed integer linear optimi-
zation (MILP) problems were derived. Probabilistic guarantees
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on constraint satisfaction for the robust solution of those
different uncertainty set induced robust counterpart optimiza-
tion models were derived, for both bounded and unbounded
uncertainty, with and without detail probability distribution
information.
A key element in applying the robust optimization framework

is the selection of the type and the size of the uncertainty set,
which is strongly related to the desired reliability of the solution
(i.e., the probability of constraint satisfaction). It is known that
chance constraint/probabilistic constraint is the most direct
way to enforce the reliability of the solution of an optimization
problem,13,18 where the reliability is expressed as a minimum
requirement on the probability of satisfying constraints. Chance
constrained optimization problems face a lot of challenges for
their solution. For example, even evaluating the distribution of a
sum of uniformly distributed independent random variables is
very difficult.19 When the program has structural properties that
allow for an equivalent deterministic formulation, a chance con-
strained problem can be converted to a deterministic problem
and can be solved directly.8 However, if the model does not
admit sufficient structure that can be exploited, an approximation
method has to be used. The various approximation methods
can be divided into sampling based methods and analytical
approximation based methods.
First, sampling based methods are designed based on the

assumption that it is possible to draw observations from the
distribution of the uncertainty. Sampling based methods fall
broadly into two categories: scenario approximation and sample
average approximation. For scenario approximation, it draws a
finite number of samples from a given distribution, and enforces
all sampled constraints to hold.14 Sample average approximation
refers to replacing the distribution with another “easy-to-use”
distribution, typically the empirical distribution determined from
a sample drawn from the original distribution.15 While solving
the approximation problem represents one aspect of complexity,
the size of the sample required to guarantee the quality of the
approximation is another important limitation.
Second, analytical approximation methods are based on either

robust optimization16 or well-known probability inequalities.17

Since the type and the size of the uncertainty set is determined
based on an initial assumption on the constraint satisfaction and
the a priori probability bound formulation,12 robust optimization
provides a safe approximation of probabilistic constraint. In
contrast to sampling based approximation, robust optimization
based approximation is a promising deterministic alternative for
certain classes of chance constrained problems. In addition, other
forms of deterministic analytical approximation use probability
inequalities, such as the Markov inequality, Chebyshev’s inequal-
ity, Bernstein’s inequality, Hoeffding’s inequality, etc.
Although robust optimization has been used widely in dif-

ferent areas to achieve solution robustness/reliability, the quality
of the solution is often ignored. In other words, while the desired
solution feasibility (i.e., desired probability of constraint satis-
faction) is met, how far is the solution from optimality? In this
work, we will first illustrate the above issues and then propose an
iterative strategy for improving the robust solution. In the
proposed method, the tight a posteriori probability bounds are
used to improve the robust solution within an iterative frame-
work. Compared to the single-step classical robust optimization
method, the quality of the robust solution can be improved. On
the other hand, compared to the pure a posteriori probability
bound based methods, the proposed method has the advantage

that it does not require the global optimization of nonconvex
problem.
The rest of the paper is organized as follows. In section 2, we

first present the problem of optimization with probabilistic
guarantee on constraint satisfaction, that is, probabilistically
constrained problem, and then introduce the traditional robust
optimization based approximation framework. Next, the a pos-
teriori probability bound based approximation framework is
presented in section 3. Both methods are studied through a
numerical example. In section 4, we present a novel iterative
framework which combines the advantage of the previous two
different methods. The proposed method and the traditional
methods are studied through production planning and process
scheduling problems in section 5, and the paper is concluded in
section 6.

2. FRAMEWORK FOR ROBUST OPTIMIZATION
2.1. Problem Description. Consider the following linear

optimization problem

∑ ∑+ ̃ ≤ ∀
∉ ∈

cx

a x a x b i

max

s.t.
j J

ij j
j J

ij j i

i i (1)

where x ∈ n and xj (j = 1, ..., n) can be either continuous or
integer variables, the left-hand-side (LHS) constraint coefficients
aĩj are subject to uncertainty, and Ji represents the index subset
that contains the variable indices whose corresponding coeffi-
cients are subject to uncertainty. The uncertainties in the con-
straint coefficients are normalized by aĩj = aij + ξijaîj ∀ j∈ Jiwith aij
being the nominal value and aîj being a constant perturbation
amplitude (a ̂ij > 0), {ξij}j∈Ji are random variables which are sub-
ject to uncertainty. With the above definition, the ith constraint
in problem 1 can be rewritten as the follows:

∑ ∑ ξ+ ̂ ≤
∈

a x a x b
j

ij j
j J

ij ij j i

i (2)

In many practical applications, enforcing constraint satisfaction
for all possible values of the uncertain parameters (i.e., worst-case
scenario) can be too costly or even impossible. Probabilistic
constraint (also called chance constraint) provides a compromise
to avoid this situation and ensures that the constraints are
satisfied under certain given probability. A probabilistic version
of the above constraint is written as follows so that a probabilistic
guarantee on constraint satisfaction is applied:

∑ ∑ ξ ε+ ̂ ≤ ≥ −
∈

a x a x bPr{ } 1
j

ij j
j J

ij ij j i

i (3)

or an upper bound on the probability of constraint violation is
applied

∑ ∑ ξ ε+ ̂ > ≤
∈

a x a x bPr{ }
j

ij j
j J

ij ij j i

i (4)

where ε (0 < ε < 1) is the allowed degree of constraint violation.
For instance, ε = 0.05 means that the constraint must be satisfied
with a probability larger than 0.95 or the probability of constraint
violation must be less than 0.05. While joint probabilistic con-
straints are alternative for modeling solution reliability, individual
probabilistic constraints are investigated in this paper.

Motivating Example. Consider the following linear opti-
mization problem
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+

̃ + ̃ ≤

̃ + ̃ ≤
≥

x x

a x a x

a x a x

x x

max 8 12

s.t. 140

72

, 0

1 2

11 1 12 2

21 1 22 2

1 2

and assume that the LHS constraint coefficients of the con-
straints are uncertain and subject to uncertainty with a1̃1 = 10 +
ξ11, a1̃2 = 20 + 2ξ12, a2̃1 = 6 + 0.6ξ21, and a2̃2 = 8 + 0.8ξ22 and ξ11,
ξ12, ξ21, ξ22 are independent uncertain parameters uniformly
distributed in [−1,1]. For the above problem, if we set the
allowed violation probability for each of the constraint as 0.05,
then the probabilistic constrained version of the problem is

ξ ξ

ξ ξ

+

+ + + > ≤

+ + + > ≤
≥

x x

x x x x

x x x x

x x

max 8 12

s.t. Pr{10 20 ( 2 ) 140} 0.05

Pr{6 8 (0.6 0.8 ) 72} 0.05

, 0

1 2

1 2 11 1 12 2

1 2 21 1 22 2

1 2

2.2. Traditional Application Framework of Robust
Optimization. In set induced robust optimization, the uncertain
data is assumed to be varying in a given uncertainty set and the
aim is to choose the best solution among those “immunized”
against data uncertainty. For constraint 2, the set induced robust
optimization method aims to find solutions that remain feasible
for any ξ in the given uncertainty setU so as to immunize against
infeasibility, that is

∑ ∑ ξ+ ̂ ≤ ∀
ξ∈ ∈

a x a x b imax
j

ij j
U j J

ij ij j i

i (5)

The corresponding robust optimization problem is

∑ ∑ ξ+ ̂ ≤ ∀
ξ∈ ∈

cx

a x a x b i

max

s.t. max
j

ij j
U j J

ij ij j i

i (6)

For different uncertainty sets, the robust counterpart formulation
is distinct. Furthermore, under specific probability distribution
assumption, the probabilistic guarantee on the constraint satis-
faction can be quantified using the size of the uncertainty set. In
our previous work, we have systematically derived the robust
counterpart formulations under different uncertainty sets11 and
also derived their probability bounds on constraint violation.12

For example, if the uncertainty set is given by a box

ξ ξ= || | ≤ Ψ ∀ ∈∞U j J{ , }j i (7)

where Ψ is the size of the box, then the robust optimization
counterpart constraint is

∑ ∑+ Ψ ̂ | | ≤ ∀
∈

a x a x b i
j

ij j
j J

ij j i

i (8)

If the uncertain parameters are subject to independent bounded
symmetric distribution, then the following a priori probability
bound is valid

Ψ = − Ψ⎛
⎝⎜

⎞
⎠⎟prob ( ) exp

2violation
prioriUB

2

(9)

A priori probability bound means that if the size of the box set is
Ψ, then the solution of the robust optimization problem will
ensure that the probability of constraint violation is less than or
equal to the following bound:

∑ ∑ ξ+ ̂ > ≤ Ψ ∀
∈

a x a x b iPr{ } prob ( )
j

ij j
j J

ij ij j i violation
prioriUB

i

(10)

In the literature, the traditional way of applying robust
optimization7,24 to solve the probabilistically constrained prob-
lem is as follows. First, the reliability level ε in the probabilistic
constraint is set, and the type of the robust optimization model
(i.e., uncertainty set) is selected by the distribution of the un-
certainty. Next, the size of the uncertainty set is evaluated based
on the a priori probability bounds. For example, assuming that
the box type uncertainty set is selected for applying robust
optimization, the size of the uncertainty set can be determined by
the following problem

ε

Ψ

− Ψ ≤
⎛
⎝⎜

⎞
⎠⎟

min

s.t.exp
2

2

(11)

Using the size parameter value determined from the above
problem, the robust counterpart optimization problem can be
solved and the solution ensures that the constraint is satisfied
with the desired probability 1−ε.

∑ ∑+ Ψ ̂ | | ≤ ∀
∈

cx

a x a x b i

max

s.t.
j

ij j
j J

ij j i

i (12)

As a summary, the traditional framework of applying robust
optimization to address the probabilistic guarantee on constraint
satisfaction is shown in Figure 1.

The robust optimization problem provides a safe and
conservative approximation of the probabilistically constrained
problem. Notice that theminimum possible value forΨ is used to
find the best possible solution within this framework. In the
following, we illustrate the approximation of the probabilistic

Figure 1. Traditional framework of applying robust optimization7,24 for
probabilistically constrained optimization problem.
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constrained problem using the robust counterpart optimization
through the motivating example.
Motivating Example (Continued). The “interval + ellipsoi-

dal” uncertainty set induced robust counterpart optimization
model is applied to solve the motivating example problem. The
robust counterpart optimization problem under the interval +
ellipsoidal uncertainty set is as follows

+

+ + + + Ω +
≤

− ≤ − ≤ − ≤ − ≤

+ + +
+ Ω + ≤

− ≤ − ≤ − ≤ − ≤
≥

x x

x x u u z z

u x z u u x z u

x x u u
z z

u x z u u x z u

x x

max 8 12

s.t. 10 20 2 4
140

,

6 8 0.6 0.8
0.36 0.64 72

,

, 0

1 2

1 2 11 12 1 11
2

12
2

11 1 11 11 12 2 12 12

1 2 21 22

2 21
2

22
2

21 1 21 21 22 2 22 22

1 2

where Ω1 and Ω2 are parameters determining the size of the
interval + ellipsoidal uncertainty set. Using the probability bound
on constraint violation for this type of robust counterpart opti-
mization model (under the assumption that the uncertainty is
bounded and symmetric which is satisfied in this example)

− Ω ≤ − Ω
| |

≤ | | Ω ≤
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟J

B Jexp
2

0.05, exp
2

0.05, ( , ) 0.05
i

i

2 2

we obtained the smallest possible value: Ω1 = Ω2 = 2.4477. The
above robust optimization problem is convex and can be effi-
ciently solved using convex nonlinear optimization solvers. With
this value, the robust counterpart optimization problem can be
solved, the optimal objective value is Obj* = 90.9091 and the
robust solution is x ̅= (7.2727, 2.7273). This solution ensures that
the constraints are satisfied with the desired probability 0.95 on
constraint satisfaction.
Once a robust solution is obtained, the probability of con-

straint violation can also be quantified by a posteriori probability
bound. In our previous paper,12 we studied those a posteriori
probability bounds. If the probabilistic distribution information
on the uncertain parameters is known, then the following rela-
tionship holds:12

∑ ∑ ∑

∑

ξ θ+ ̂ > ≤ − −

+ ∀θξ

∈

∈

̂

a x a x b b a x

E e i

Pr{ } exp( ( )

ln [ ])

j
ij j

j J
ij ij j i i

j
ij j

j J

a x

i

i

ij ij j

(13)

In the above derivation, θ is an arbitrary positive number.
As studied in our previous work,12 with the above probability
inequality, we can evaluate the a posteriori probability bound on
constraint violation as follows once we have a set of solution x,
(i.e., we have xj̅ as the solution):

∑ ∑

∑ ∑

ξ

θ

̅ + ̂ ̅ >

≤ − − ̅ + ∀
θ

θξ

∈

∈

̂ ̅

a x a x b

b a x E e i

Pr{ }

min exp( ( ) ln [ ])

j
ij j

j J
ij ij j i

i
j

ij j
j J

a x

i

i

ij ij j

(14)

Notice that in the above equation, a minimization with respect to
θ (i.e., only one variable) is performed to find the tightest
probability bound.
For the traditional robust counterpart optimization based

framework, the adjustable parameter defining the size of the un-
certainty set is initially selected based on the a priori probability
bound which is a function of the adjustable parameter. However,
usually, the resulting solution could be too conservative, since the
actual probability of constraint violation is much smaller than
the bound. For example, with the robust solution x ̅ = (7.2727,
2.7273) obtained for the motivating example, the probability of
constraint violation can be evaluated using the above a posteriori
probability bound 14, and the following upper bounds on con-
straint violation for the two constraints can be calculated:

ξ ξ

ξ ξ

̅ + ̅ + ̅ + ̅ >
≤ ×

̅ + ̅ + ̅ + ̅ >
≤ ×

−

−

x x x x

x x x x

Pr{10 20 ( 2 ) 140}
2.507 10

Pr{6 8 (0.6 0.8 ) 72}
3.455 10

1 2 11 1 12 2
6

1 2 21 1 22 2
6

which are far less than the desired violation probability 0.05. This
implies that the obtained robust solution is conservative and
there is room for improvement.

3. A POSTERIORI PROBABILITY BOUND BASED
SOLUTION METHOD

While the a posteriori probability bound can be used to check the
probability of constraint satisfaction with a given solution, it can
also be used in another way to formulate a safe approximation of
the probabilistic constraint. Using inequality 13, the following
safe approximation of 4 is obtained:

∑ ∑θ ε− − + ≤ ∀θξ

∈

̂b a x E e iexp( ( ) ln [ ])i i
j

ij j
j J

a x

i

i ij ij j

(15)

because for any feasible solution satisfying 15, it also satisfies the
constraint 4. Constraint 15 can be further rewritten as

∑ ∑θ ε− − + ≤ ∀θξ

∈

̂b a x E e i( ) ln [ ] lni i
j

ij j
j J

a x

i

i ij ij j

(16)

and finally the following safe approximation of the probabilistic
constrained problem is obtained:

∑ ∑θ ε− − + ≤ ∀

θ

θξ

∈

̂

cx

b a x E e i

min

s.t. ( ) ln [ ] ln

x

i i
j

ij j
j J

a x

,

i

i ij ij j

(17)

Note that while for any fixed value of θi > 0, 15 is an approxi-
mation of the original probabilistic constrained problem, here θi
is set as a decision variables in problem 17 so as to find the
tightest possible approximation and to seek the best possible
solution.
The a posteriori probability bound based framework ad-

dressing the probabilistic constraint can be represented using
Figure 2. It is seen that the approximation optimization problem
is constructed based on the selected a posteriori bound, in
comparison to the selection of uncertainty set in the traditional
robust optimization framework.
Defining ξ = ξijaîjxj, then the explicit formulation of above

approximation problem depends on the moment generating
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function E[eθξ]. For several known distributions, their probability
density functions and moment generating functions are listed in
Table 1, which can be substituted into 17 and the resulting
problem can be solved as a deterministic optimization problem.
The above probability inequality based approximation frame-
work is illustrated through the motivating example.
Motivating Example (Continued). Following the deriva-

tion in this section, the probability inequality based safe approxi-
mation of the probabilistic constrained problem of the moti-
vating example is obtained:

θ

θ

θ θ

+

− − − +
+ ≤

− − − +
+ ≤

≥ >

θ

θ ξ

θ ξ

θ ξ

θ ξ

x x

x x E e
E e

x x E e
E e

x x

max 8 12

s.t. (140 10 20 ) ln [ ]
ln [ ] ln 0.05

(72 6 8 ) ln [ ]
ln [ ] ln 0.05

, 0, , 0

x

x

x

x

x

,
1 2

1 1 2
2

2 1 2
0.6

0.8

1 2 1 2

1 11 1

1 12 2

2 21 1

2 22 2

Since the random variable ξ11 is subject to uniform distribution in
[−1, 1], we have

θ
= −θ ξ

θ θ−
E e

e e
x

[ ]
2

x
x x

1 1

1 11 1
1 1 1 1

Evaluate the expectation terms in the similar way and finally the
following problem is obtained:

θ
θ

θ
ε

θ
θ

θ
ε

θ θ

+

− − − + −

+ − ≤

− − − + −

+ − ≤

≥ >

θ

θ θ

θ θ

θ θ

θ θ

−

−

−

−

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

x x

x x
e e

x
e e

x

x x
e e

x
e e

x

x x

max 8 12

s.t. (140 10 20 ) ln
2

ln
4

ln

(72 6 8 ) ln
1.2

ln
1.6

ln

, 0, , 0

x

x x

x x

x x

x x

,
1 2

1 1 2
1 1

2 2

1 2

2 1 2

0.6 0.6

2 1
0.8 0.8

2 2

1 2 1 2

1 1 1 1

1 2 1 2

2 1 2 1

2 2 2 2

The above problem is a nonconvex optimization problem, which
can be solved through a deterministic global optimization ap-
proach. We solve the above problem through global optimization
solver ANTIGONE 1.123 in GAMS 24.2.2 (with relative opti-
mality gap tolerance optcr = 0 and resource limit reslim = 10000)
and obtain the following solution after 10 000 s (with a relative
gap 0.11% to the upper bound 92.33):

θ

* = * =

=

xObj 92.2292, (7.3588, 2.7799),

(0.9501, 1.938)

Comparing the above solution with the solution from the
traditional robust optimization framework, it is observed that
while both solutions ensure the desired probability on constraint
satisfaction, the a posteriori probability bound based method
generates a solution which is better than the classical method.
Note though that the computational effort increases since global
optimization is needed.

4. ITERATIVE SOLUTION STRATEGY
Comparing the previous two methods, the following observa-
tions can be made:

(1) In terms of the information needed, the a posteriori
probability bound based approximation method needs the
exact probability distribution function while the robust
optimization method only needs partial information. For
instance, in the studied robust optimization formulations,
the assumptions on uncertainty are only bounded and
symmetric so that a probabilistic guarantee is valid.

(2) In terms of the solution complexity, the probability in-
equality based approximation problem can be nonconvex
and global optimization is necessary (i.e., higher compu-
tation complexity). The robust optimization based ap-
proximation leads to convex problem which can be solved
very efficiently.

(3) In terms of the quality of the solution, the a posteriori
probability bound based approximation method leads
to less conservative solution because it is tighter than
the a priori probability bound as illustrated in previous
work.12

The aforementioned observations show that there is a trade-off
between the two different types of approximations. To fully take
advantage of both of them, an iterative solution framework,
which is also the major contribution of this paper, is proposed

Figure 2. Solution framework of a posteriori bound based method.

Table 1. Summary on the pdf and mgf of Some Distributions

distribution of ξ
probability density function

f(ξ)
moment generating function

E(eθξ)

uniform U(a,b) ξ− ≤ ≤
⎪

⎪⎧⎨
⎩

b a a b1/( ),

0, otherwise θ
−
−

θ θe e
b a( )

b a

triangular ξ ξ

ξ ξ

+ − ≤ ≤
− + ≤ ≤

⎧⎨⎩
1, 1 0

1, 0 1 θ
+ −θ θ−e e 2

2

exponential
exp(λ) λ ξ

ξ

≥
<

λξ−⎪

⎪

⎧
⎨
⎩

e 0

0 0

θλ λ θ− ≥− −(1 ) for1 1

normal N(μ,σ)

πσ

ξ μ
σ

− −⎛
⎝⎜

⎞
⎠⎟

1

2
exp

( )
22

2

2

θμ σ θ+e 0.5 2 2
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to combine the use of the traditional robust optimization
approximation and the a posteriori probability bound. The
objective is to improve the quality of robust solution while still
ensure the probabilistic guarantee of the robust solution. At the
same time, the computational complexity is decreased comparing
to the a posteriori probability bound based approximation
method.
The proposed solution framework is shown in Figure 3, which

can be detailed as follows. Initially, the type of the uncertainty set

(i.e., the robust optimization formulation) is selected. Based on
the desired degree of constraint satisfaction, the smallest
possible size of the uncertainty set is determined using the
specific a priori probability bounds (e.g.,exp(−Ω2/2),
exp(−Ω2/2|Ji|), etc.) of that type of robust formulation. With
the determined size of the uncertainty set, the robust coun-
terpart optimization problem is solved and the robust solution
is obtained. Then, an upper bound on the constraint violation
is evaluated using the derived solution and the a posteriori
probability bound. This probability value is compared to the
desired degree of constraint violation. If the gap between them
is larger than a certain predefined tolerance, the size of the
uncertainty set is adjusted and the robust optimization problem
is solved again.
The size adjusting is the important step in the algorithm. Based

on the fact that the a posteriori probability upper bound is
monotonically decreasing function of the set size,12 this
adjustment can be made heuristically: if the probability upper
bound exceeds the desired level, the set size should be decreased;
if the bound is below the desired level, the set size should be
increased. The above procedure is repeated until the gap between
the desired degree of constraint violation and the computed
upper bound on constraint violation is less than the tolerance.
Finally, the solution from the last round robust optimization step
is reported. A pseudo code of the iterative algorithm is given as
follows:

Notice that in the proposed iterative framework, the problem
of evaluating the a posteriori probability bound using the right-
hand side (RHS) of 14 is an optimization problem. Since any
feasible solution of the RHS of 14 will be a valid a posteriori
upper bound on the probability of constraint violation, it is not
necessary to obtain the global optimal solution here. Further-
more, since x is a known solution and taken fixed value, the RHS
of 14 is a single variable optimization problem, which can be
solved relatively efficiently.

Motivating Example (Continued). Applying the proposed
framework and using the interval + ellipsoidal uncertainty set
based robust counterpart optimization formulation, we obtain
the following results for the motivating example as shown in
Table 2 for different iterations (i.e., k stands for iteration):

The detailed solution procedure is explained as follows:

Step 1: Initialize Ω1
satisfy = 2.4477, Ω1

violate = 0, Ω2
satisfy =

2.4477, Ω2
violate = 0 using the a priori bound. Set tolerance

parameter δ = 0.01.
Step 2: Set Ω1 = Ω1

satisfy = 2.477, Ω2 = Ω2
satisfy = 2.477.

Iteration 1
Step 3: Solve the robust optimization problem and
obtain solution Obj* = 90.91, x1 = 7.2727, x2 =
2.7273.
Step 4: Compute the a posteriori probability bound
from solution P1 = 2.51 × 10−6, P2 = 3.46 × 10−6.
Step 5: Since the probability violation upper bound
is less than 0.05 for both constraints, there is room
to contract the uncertainty set and improve the
solution. So decrease the size of both uncertainty

Figure 3. Proposed iterative solution framework to improve the quality
of robust solution.

Table 2. Solution Procedure

k Ω1,Ω2 exp(−Ω2/2) Obj* (x1, x2) probviolation
posterioriUB

1 (2.4477,
2.447)

(0.05, 0.05) 90.910 (7.2727,
2.7273)

(2.51 × 10−6,
3.46 × 10−6)

2 (1.2238,
1.2238)

(0.4729,
0.4729)

91.807 (7.2745,
2.8009)

(0.0305, 0.0205)

3 (0.6119,
0.6119)

(0.8293,
0.8293)

95.695 (7.6045,
2.9049)

(0.5486, 0.5426)

4 (0.9179,
0.9179)

(0.6562,
0.6562)

93.685 (7.422,
2.859)

(0.222, 0.205)

5 (1.0709,
1.0709)

(0.5636,
0.5636)

92.712 (7.335,
2.836)

(0.105, 0.086)

6 (1.1474,
1.1474)

(0.5177,
0.5177)

92.236 (7.293,
2.824)

(0.062, 0.045)

7 (1.1856,
1.1474)

(0.4952,
0.5177)

92.153 (7.354,
2.777)

(0.045, 0.045)
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sets based on the value in iteration 1: Ω1 = Ω2 =
(0 + 2.4477)/2 = 1.2238.

Iteration 2
Step 3: Solve the robust model and obtain Obj* =
91.807, x1 = 7.2745, x2 = 2.8009.
Step 4: Compute the a posteriori probability bound
P1 = 0.0305, P2 = 0.0205.
Step 5: Since the probability violation upper bound
is still less than 0.05 for both constraints, it is nec-
essary to further decrease the size of both uncer-
tainty sets based on the size value in iteration 1Ω1 =
Ω2 = (0 + 1.2238)/2 = 0.6119.

Iteration 3
Step 3: Solve the robust model and get Obj* =
95.6954, x1 = 7.6045, x2 = 2.9049.
Step 4: Compute the a posteriori probability bound
P1 = 0.5486, P2 = 0.5426.
Step 5: Since the probability violation upper bound
becomes larger than 0.05 for both constraints, this
means the uncertainty set should be enlarged to
satisfy chance constraint. So we adjust the uncer-
tainty sets based on smallest size leading to con-
straint satisfaction so far (1.2238 in iteration 2) and
the size that leads to violation (0.6119 in iteration 3):
Ω1 = Ω2 = (0.6119 + 1.2238)/2 = 0.9179.

Iteration 4
Step 3: Solve the robust model and obtain Obj* =
93.685, x1 = 7.422, x2 = 2.859.
Step 4: Compute the a posteriori probability bound
P1 = 0.222, P2 = 0.205.
Step 5: Since the probability violation is still larger
than 0.05 for both constraints by using size 0.9179,
we need to further enlarge the uncertainty set to sat-
isfy chance constraint. We adjust the parameter
toward the smallest size leading to constraint satis-
faction (1.2238 in iteration 2):Ω1 =Ω2 = (0.9179 +
1.2238)/2 = 1.0709.

Iteration 5
Step 3: Solve the robust model and obtain Obj* =
92.712, x1 = 7.335, x2 = 2.836.
Step 4: Compute the a posteriori probability bound
P1 = 0.105, P2 = 0.086.
Step 5: Since the probability violation is still larger
than 0.05 for both constraints in the previous
iteration, we need to further enlarge the uncertainty
sets: Ω1 = Ω2 = (1.0709 + 1.2238)/2 = 1.1474.

Iteration 6
Step 3: Solve the robust model and obtain Obj* =
92.236, x1 = 7.293, x2 = 2.824.
Step 4: Compute the a posteriori probability P1 =
0.062, P2 = 0.045.
Step 5: Since the probability violation is larger than
0.05 for the first constraints and the second con-
straint is satisfied, we keep Ω2 unchanged and
further increase Ω1 as Ω1 = (1.1474 + 1.2238)/2 =
1.1856.

Iteration 7
Step 3: Solve the robust model and obtain Obj* =
92.153, x1 = 7.354, x2 = 2.777.
Step 4: Compute the a posteriori probability P1 =
0.045, P2 = 0.045; both are less than 0.05 and the
gap is smaller than δ = 0.01, so the iteration stops.

Step 6: Return the final solutionObj* = 92.153, x1 = 7.354,
x2 = 2.777.

The solution procedure of the above iterative method is
also illustrated in Figure 4, which shows how the constraint

satisfaction probability converges to the desired level and how
the quality of the robust solution is eventually improved com-
paring to the traditional framework.
Finally, solutions from three different methods for the

motivating example are summarized in Table 3. The columns

“traditional”, “a posteriori”, and “iterative” represent the tradi-
tional robust optimization framework, the a posteriori probability
bound based method, and the iterative method, respectively. The
row “Obj*” and “probviolation

posterioriUB ” represent the optimal objective
value of the robust optimization problem and the a posteriori
probability bound based on the robust solution obtained. The
percentage numbers represent the gaps between the traditional/
iterative method’s solutions and the a posteriori method’s
solution.
Comparing the traditional robust optimization based approx-

imation framework and the proposed iterative method, we
observed that it improves the quality of the solution while still
ensures the degree of constraint satisfaction. Notice that the
robust solution has been improved from 90.91 to 92.153. The
percentage gap to the a posteriori solution 92.2292 has been
decreased from 1.43% to 0.08% as shown Table 3. Comparing
the pure a posteriori probability bound based approximation

Figure 4. Iterative solution procedure for the motivating example:
(upper) a posteriori probability bound; (lower) optimal objective value
of robust solution.

Table 3. Comparing the Different Solutions for the
Motivating Example

traditional a posteriori iterative

Obj* 90.910 (1.43%) 92.2292 92.153 (0.08%)
probviolation

posterioriUB (2.51 × 10−6, 3.46 × 10−6) (0.05, 0.05) (0.045,0.045)
CPU time (s) 1.2 10000 8.4
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method and the proposed iterative method, we observed that its
computational complexity is decreased, since only a set of convex
robust optimization problem is solved. The global optimization
of the nonconvex optimization is avoided. In addition, when
the gap tolerance is defined small enough, the solution of the
proposed method will be close to the solution of the probability
inequality based method. Finally, we summarize the character-
istics of the three methods in Table 4.

5. CASE STUDIES
In this section, we apply the different methods to solve a
production planning problem and a process scheduling problem
to compare their performances and illustrate the effectiveness
of the proposed iterative method. All the optimization problems
are solved on a UNIX workstation with 3.40 GHz Intel Core
i7-2600 CPU and 8GB memory. The related global optimiza-
tion problems are solved via ANTIGONE 1.123 and the (mixed
integer) linear optimization problems are solved using CPLEX
12.0 in GAMS 24.2.2. Resource limit is set as 10 000 s for all
cases.
5.1. Example 1. This example was introduced by Li et al.,12

which addresses the problem of planning the production, storage
and marketing of a product for a company. It is assumed that the
company needs to make a production plan for the coming year,
divided into six periods of 2 months each, to maximize the sales
with a given cost budget. The production cost includes the cost of
raw material, labor, machine time, etc., and the cost fluctuates
from period to period. The product manufactured during a
period can be sold in the same period, or stored and sold later on.
Operations begin in period 1 with an initial stock of 500 tons of
the product in storage, and the company would like to end up
with the same amount of the product in storage at the end of
period 6. This problem can be formulated as a linear optimization
problem as follows:

∑ Pzmax
j

j j
(18a)

∑ ∑̃ + ≤C x V ys.t. 400 000
j

j j
j

j j
(18b)

+ − + =x y z500 ( ) 01 1 1 (18c)

+ − + = ∀ =−y x y z j( ) 0 2, ..., 6j j j j1 (18d)

=y 5006 (18e)

≤ ∀ =x U j 1, ..., 6j j (18f)

≤ ∀ =

≥ ∀ =

z D j

x y z j

1, ..., 6

, , 0 1, ..., 6

j j

j j j (18g)

In this example, it is assumed that the production costs C̃j are
subject to independent uncertainty distributions. The uncer-
tainty is normalized using 50% of the nominal valueCj as the base

perturbation amplitude. Then the original constraint 18b can be
rewritten as

∑ ∑ξ+ + ≤C C x V y( 0.5 ) 400 000
j

j j j j
j

j j

where ξj are independent random variables. To ensure the
reliability of the solution, the minimum probability for constraint
18b to be satisfied is set as 0.85 (i.e., the upper bound on the pro-
bability of constraint violation is set to 0.15), then the pro-
babilistic constrained version for this constraint is

∑ ∑̃ + > ≤C x V yPr{ 400 000} 0.15
j

j j
j

j j

In the sequel, this example is studied under different assumptions
on the uncertainty distributions.

(a) Uniform Distribution. In this case, it is assumed that the
production costs are subject to uniform uncertainty, that is, ξj
are random variables that uniformly distributes in [−1, 1]. The
traditional robust optimization method is applied first to solve
the probabilistically constrained optimization problem. Using
the interval + ellipsoidal type uncertainty set, the following ro-
bust counterpart optimization constraints can be formulated

∑ ∑ ∑ ∑+ + + Ω ≤

− ≤ − ≤

C x V y C u C v

u x v u

0.5 0.25 400 000
j

j j
j

j j
j

j j
j

j j

j j j j

2 2

The robust optimization problem is obtained by replacing the
original deterministic constraint 18b with the above constraints.
Using the a priori probability bound for the interval + ellipsoidal
set induced robust optimization model, the size of the uncer-
tainty set is computed as Ω = 1.9479. Then the robust opti-
mization problem is solved and the corresponding objective is
2 356 977. The corresponding robust planning solution is shown
in Figure 5.

The a posteriori probability bound based method is applied
next and the following constraint is applied to replace the original
constraint 18b:

∑ ∑ ∑θ− − − +

≤

θξC x V y E e(400 000 ) ln [ ]

ln 0.15

j
j j

j
j j

j

C x0.5 j j j

For the a posteriori probability bound based method, the
objective value is 2 550 538. It is seen that this solution is better
(higher sales) than that of the classical robust optimization
method. The robust planning solution is shown in Figure 6.

Table 4. Summary of Different Methodologies

traditional a posteriori iterative

uncertainty information needed partial full full
solution complexity low high low
solution quality conservative good good

Figure 5. Solution of traditional robust optimization method.
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Finally, the iterative framework is applied to solve the problem,
the solution procedure is shown in Table 5 and the robust
solution is shown in Figure 7.

In the above solution procedure, the parameter Ω is adjusted
as follows: Ω2 = 0.5Ω1, Ω3 = 0.5(Ω1 + Ω2), Ω4 = 0.5(Ω2 + Ω3).
Notice that although the parameter value is decreased in the
fourth step, it is still a conservative solution (0.0714 < 0.15), so
we do not adjust the parameter using Ω5 = 0.5(Ω3 + Ω4), but
rather Ω5 = 0.5(Ω2 + Ω4).
The solutions of different methods are summarized in the

following table. It is seen from Table 6 that while all the solutions

satisfy the probabilistic requirement on constraint satisfaction,
the solution of the a posteriori probability bound method (with
relative optimality gap tolerance optcr = 0 and resource limit

reslim = 10 000 s) is the best although global optimization is nec-
essary. If we compare the classical robust optimization method
and the iterative robust optimization method and consider the
difference between their solution and the best solution (i.e., the a
posteriori bound based solution), the gap has been decreased
from 193 561 to 13 679 (a percentage of 92.93%), and the solu-
tion has been greatly improved through the iterative framework.
Comparing the solution of the a posteriori probability bound
based method (Figure 6) and the iterative method (Figure 7), it
is seen that the difference between the solutions is very small.
Note that global optimization is not needed in the iterative
framework and only five convex robust counterpart optimization
problems are solved.

(b) Triangular Distribution. In this case, it is assumed that the
random variables ξj are subject to symmetric triangular distri-
bution with support on [−1,1]. Notice that this type of distri-
bution is bounded and symmetric, so we can still apply the a
priori probability bounds to determine the size of the uncertainty
set and then apply the traditional robust optimization framework.
Under the interval + ellipsoidal set induced robust optimization
model, the solution will be the same as the previous uniform
distribution since the a priori probability bound does not depend
on the distribution. On the other hand, the solution of the other
twomethods will change since they depend on the distribution of
the uncertainty. Specifically, while the a posteriori probability
bound based method is applied, the solution is 2 626 457 after
a 10 000 s resource limit reaches in GAMS (with a relative gap
of 7.52% to the upper bound 2 840 000). When the iterative
framework is applied, the final solution is 2 619 188 and the
solution procedure is shown in Table 7.

The results of three different methods are compared in Table 8.
While the traditional framework leads to an 11.4% difference to the
a posteriori method solution, the iterative method’s solution only
has 0.28% difference. This shows that the iterative framework
significantly improve the quality of the robust solution while the
reliability of the solution is satisfied.
In the above studies, it is assumed that the uncertainty

distribution is independent, bounded and symmetric, such that
we can apply the traditional robust optimization framework
based on only the a priori probability bounds. However, when
the uncertainty distribution does not fall into this characteristic,

Figure 6. Solution of the a posteriori probability bound based
approximation model.

Table 5. Solution Procedure of the Iterative Method for
Example 1 under Uniform Distribution

k Ωk exp(−Ω2/2) Obj* probviolation
posterioriUB

1 1.9479 0.15 2356977 1.66 × 10−4

2 0.9739 0.6224 2569021 0.2003
3 1.4609 0.344 2451636 0.0170
4 1.2174 0.4766 2506754 0.0714
5 1.0957 0.5487 2536859 0.1249

Figure 7. Solution of iterative framework.

Table 6. Results Summary of Example 1 under Uniform
Distribution

traditional a posteriori iterative

Obj* 2356977 (7.6%) 2550538 2536859 (0.54%)
probviolation

posterioriUB 1.66 × 10−4 0.15 0.1249
CPU time (s) 0.04 26.6 0.2

Table 7. Solution Procedure of Iterative Method for Example
1 under Triangular Distribution

k Ωk exp(−Ω2/2) Obj* probviolation
posterioriUB

1 1.9479 0.15 2356977 1.33 × 10−9

2 0.9739 0.6223 2569021 0.0404
3 0.4870 0.8882 2707219 0.4829
4 0.7305 0.7658 2636392 0.181
5 0.8522 0.6955 2602086 0.0903
6 0.7913 0.7312 2619188 0.1304

Table 8. Results Summary of Example 1 under Triangular
Distribution

traditional a posteriori iterative

Obj* 2356977 (11.4%) 2626457 2619188 (0.28%)
probviolation

posterioriUB 1.33 × 10−9 0.15 0.1304
CPU time (s) 0.06 10000 0.4

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie501898n | Ind. Eng. Chem. Res. 2014, 53, 13112−1312413120



there is no basis for determining the size of the uncertainty set.
Consequently, the traditional robust optimization framework
cannot be directly applied (i.e., if we still use the a priori bound to
determine the size, the solution will not ensure the probabilistic
guarantee). On the other hand, with the proposed iterative
framework, the robust optimization can still be applied to solve
the problem. Next, we study two cases where the distribution
does not satisfy the bounded or symmetric condition.
(c) Exponential Distribution. In this case, we assume the

random variables are subject to exponential distribution with rate
parameter λ = 1. Notice that this distribution is unbounded, so
we apply the “ellipsoidal” type uncertainty set induced robust
optimization model rather than interval + ellipsoidal type in this
study. With the a posteriori probability bound based method, the
final solution is 1 818 269. With the iterative solution framework,
the solution is 1 803 310 and the corresponding a posteriori
probability upper bound of constraint violation is 0.1474. The
solution procedure is listed in Table 9. Notice that we do not list

the a priori bound value here, since it is not applicable for the
asymmetric distribution in this case.
(d) Normal Distribution. It is assumed that each ξj is subject to

normal distributionN(0,0.5) in this case. Although for the case of
the normal distribution, it is not necessary to apply an approxi-
mation scheme to solve the probabilistically constrained problem
since analytical deterministic equivalent problem can be formu-
lated and solved, we study the robust optimization approx-
imation based method here to compare the solution quality. The
“ellipsoidal” type uncertainty set is also used in this case to deal
with the unbounded distribution. The a posteriori method
lead to solution of 2 569 004, and the iterative method leads to
2 563 734, with the constraint violation probability less than
0.1394 as shown in Table 10.

5.2. Example 2. In this example, a process scheduling
problem11,20−22 is studied. This example involves the scheduling
of a batch chemical process related to the production of two
chemical products using three raw materials. The mixed integer
linear optimization model for the scheduling problem is formu-
lated as follows, and the readers are directed to the paper11 for
the detailed mixed integer linear optimization formulation and
problem data

∑ ∑= + −
∈ ∈

d

max profit

s.t. profit price price (STI STF)
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In this example, we consider the demand uncertainty only and
the following constraints are affected:

∑̃ − ≤ ∀ ∈r d s S0s
n

s n P,

We assume independent uncertainty distributions on the pro-
duct demand parameters rs̃ and assign a base perturbation of 20%
of the nominal demand data (rP1 = 50, rP2 = 75): rs̃ = rs(1 + 0.2ξs).
We set the expected minimum probability level on constraint
satisfaction to 0.5 (i.e., set the upper bound on constraint vio-
lation to 0.5). Then the probabilistic constrained version is

∑̃ − > ≤ ∀ ∈r d s SPr{ 0} 0.5s
n

s n P,

Several different type of uncertainty distributions are considered
to study the proposed method.

Table 9. Solution Procedure of Iterative Method for Example
1 under Exponential Distribution

k Ωk Obj* probviolation
posterioriUB

1 1.9479 2350433 1.0
2 3.8958 1959758 0.3959
3 7.7916 1462763 0.0036
4 5.8437 1672734 0.05
5 4.8697 1806183 0.1505
6 4.8892 1803310 0.1474

Table 10. Solution Procedure of IterativeMethod for Example
1 under Normal Distribution

k Ωk Obj* probviolation
posterioriUB

1 1.9479 2350433 0.0005
2 0.9739 2569021 0.1505
3 0.9934 2563734 0.1394
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(a) Bounded Distribution.We consider a bounded symmetric
distribution first. Specifically, we assume a uniform distribution
on the product demand parameters rs̃ (i.e., ξs is uniformly distri-
buted in [−1,1]). Based on the traditional robust optimization
method, the robust counterpart optimization constraint is
formulated as follows:

∑− + Ψ ≤ ∀ ∈r d r s S(0.2 ) 0s
n

s n s s P,

which is equivalent for box, ellipsoidal, and polyhedral type of
uncertainty sets since the number of uncertain parameter in each
demand constraint is 1. From the desired bound on constraint
violation 0.5, we get the uncertainty set size value 1.1774. Since
the uncertainty is bounded, a set with size value 1 will cover the
whole uncertainty space. However, size 1 still makes the robust
optimization problem infeasible.
The a posteriori probability bound based method is applied

next and the following constraint is applied:

∑θ − + ≤ ∀ ∈θξr d E e s S( ) ln [ ] ln 0.5s s
n

s n
r

P,
0.2 s s s

The resulting nonconvex mixed integer nonlinear optimization
problem is solved using ANTIGONE 1.123 (with tolerance
parameter optcr = 0.01 and reslim = 10 000) and the objective is
1070.04 (with relative optimality gap 1.82% to the upper bound
1089.47 after 10 000 s). The corresponding schedule is shown
in Figure 8. Finally, we apply the iterative solution framework
to solve the problem. Since set size value 1 makes the robust
optimization problem infeasible, in the iterative framework, we
start from 0.5 for the parameterΨs to make the problem feasible.
The solution procedure is shown in Table 11. Notice that the

adjustments of the parameter values are based on the change of
the a posteriori bounds. For example, we realize that for the first
demand constraint is 0.6646 in the 2nd iteration and 0.3397 in
the third iteration. To move the bound close to less than 0.5, we

set the new parameter value ΨP1 in the fourth iteration as (0.5 +
0.75)/2 = 0.625, and the resulting solution lead to a new
probability bound 0.507. Notice in the sixth step, there is no
change on the objective solution, so the solution procedure is
stopped. The final optimal objective value is 1064.29, and the
corresponding schedule is shown in Figure 9. This solution has
only 0.54% difference to the a posteriori solution as shown in
Table 12.
Comparing the solution from all the three different methods

shown in Table 12, the following observations can bemade. First,
the traditional robust solution framework is conservative and
even leads to an infeasible problem. However, the iterative frame-
work successfully addresses the same problem and finds feasible
solution. The reason is that the iterative framework utilizes not
only the a priori probability bound but also the a posteriori
probability bound, thus avoids the conservative solution. Second,
comparing the a posteriori probability bound based method and
the iterative method, it is seen that the optimal solutions are very
close. However, with the iterative framework, we obtain a solution
with almost same quality but far less computational efforts. This
further validates the effectiveness of the proposed iterativemethod.

(b) Unbounded Distribution (Exponential and Normal). For
this scheduling example, two unbounded distributions are also
studied. The traditional framework is not applicable in this
situation because the a priori probability bound is based on the
bounded distribution assumption. We first study the exponential
distribution with parameter λ = 5. Box, ellipsoidal, and polyhedral
type of uncertainty set lead to same robust optimization formu-
lations here. The results of the different methods are summarized
in Table 13, and the solution procedure of iterative method is
given in Table 14. The iterative method’s solution has only 0.6%
difference to the a posteriori solution in this case.
Next, we study the case under normal distribution N(0, 0.5).

The results are given in Table 15, and the solution procedure of
iterative method is summarized in Table 16. The a posteriori
solution 1074.22 has a relative gap of 1.33% to the upper bound
1088.75 after 10 000 s. Iterative method’s solution has only 0.1%
difference when compared to the a posteriori solution.
From the above results, it is observed that while the traditional

method is not applicable to the unbounded distribution cases, the
iterative method applies the robust optimization approximation
and uses the a posteriori bound to check the solution reliability.
The solutions of iterative method are consistently very close to
the a posteriori bound based method in terms of the optimal
objective values while the computational complexity is greatly
reduced since only convex robust optimization problem is solved
in several iterations.

Figure 8. Schedule obtained from the a posteriori bound based method.

Table 11. Solution Procedure of IterativeMethod for Example
2 under Uniform Distribution

k Ψs exp(−Ω2/2) Obj* probviolation
posterioriUB

1 (1.0, 1.0) (0.6065, 0.6065) infeasible
2 (0.5, 0.5) (0.8825, 0.8825) 1081.25 (0.6646, 0.2039)
3 (0.75, 0.25) (0.7548, 0.9692) 1058.01 (0.3397, 0.3146)
4 (0.625, 0.375) (0.8226, 0.9321) 1070.57 (0.5070, 0.2531)
5 (0.6875, 0.25) (0.7895, 0.9692) 1064.29 (0.4240, 0.2839)
6 (0.6875, 0.125) (0.7895, 0.9922) 1064.29 (0.4240, 0.2839)
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6. CONCLUSION

The traditional robust optimization framework can be used to
approximate probabilistic constraints and provide safe solution.
However, the solution can be conservative. When a detailed pro-
bability distribution on uncertainty is available, the a posteriori
probability bound based method leads to less conservative
approximation, but the trade-off is that the resulting nonconvex
problem needs to be solved via a deterministic global opti-
mization approach. A novel solution framework combining
the robust optimization approximation and the a posteriori
probability bound evaluation is proposed to improve the solution
quality of traditional robust optimization framework without
significant computation effort. The effectiveness of the proposed
method has been illustrated through a motivating example, as
well as planning and scheduling problems. Further-
more, while the traditional robust optimization method requires
information on certain probability distribution on the uncer-
tainty such that the a priori probability bound is valid, the pro-
posed iterative framework extends the application to general
distributions since we can always use the a posteriori probability
bound to ensure the constraint is satisfied within desired pro-
bability. Finally, it is worth mentioning that the probability
bounds used in this work are derived based on the assumption of
independence on the uncertain parameters. One of the future
research directions will be to investigate the correlation between
uncertain parameters.
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