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ABSTRACT
The partitioning between tubulin dimers and microtubules is fundamental for the regulation of
several neuronal activities, from neuronal polarization and processes extension to growth cone
remodelling. This phenomenon is modulated by several proteins, including the well-known
microtubule destabilizer Stathmin. We recently demonstrated that a-Synuclein, a presynaptic
protein associated to Parkinson’s disease, shares structural and functional properties with Stathmin,
and we showed that a-Synuclein acts as a foldable dynamase. Here, we pinpoint the impact of wild
type a-Synuclein on the partitioning between tubulin dimers and microtubules and show that
Parkinson’s disease-linked mutants lose this capability. Thus, our results indicate a new role for
a-Synuclein in regulating microtubule system and support the concept that microtubules and
a-Synuclein are partners in the modulation of neuronal health and degenerative processes.
Furthermore, these data strengthen our hypothesis of the existence of a functional redundancy
between a-Synuclein and Stathmin.
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a-Synuclein (Syn) is a presynaptic unfolded protein,1 which
participates to many neuronal functions and whose muta-
tions are associated to synucleopathies, neurodegenerative
disorders including Parkinson’s disease (PD). Among the
multitude of cell processes in which Syn is involved there is
the modulation of synaptic function and plasticity, which
strictly depend on the fine tuning of the cytoskeleton. Inter-
estingly, it has been showed that Syn modulates actin
assembly,2 but controversial evidence has been published
about the interaction between Syn and microtubules
(MTs). Indeed, Alim and colleagues showed that wild type
(WT) Syn promotes MT assembly3 whereas Chen and col-
leagues claimed that neither monomeric nor oligomeric
Syn influences MT polymerization in vitro.4 Very recently,
we cleared the effects of WT Syn and PD-linked mutants
on the MT system.5 We demonstrated that WT Syn acts as
a foldable MT dynamase which regulates the nucleation,
the growth velocity and the catastrophe frequency (the shift
from a polymerizing to a shrinking phase) of individual
MTs, both in a purified system and in neuronal cells; fur-
thermore, we showed that PD-linked point mutations

corrupt these functions and lead to tubulin aggregation
instead of proper MT assembly. Due to the good alignment
of Syn with the members of the Stathmin (STMN1) family,
the same binding mode to tubulin tetramer and the partial
overlapping functions in inducing MT catastrophes, we
also proposed a functional redundancy of the roles played
by Syn and STMN15. STMN1 is ubiquitously expressed in
vertebrates and, through the induction of MT catastrophes,
it regulates the partitioning of tubulin, the building block of
MTs, between unassembled and polymerized forms.6

Accordingly, STMN1 loss resulted in higher MT mass and
in increased nucleation rate from centrosomes but little
changes in MT dynamics.7 Noteworthy, mutations of
STMN1 lead to loss of axonal MT integrity and to several
neurological phenotypes in Drosophila,8 as well as reduced
levels of STMN1 are associated to MT instability and to
neurological disorders like Down syndrome and Alz-
heimer’s disease.9

Keeping in mind all these intriguing evidences, here we
wonder if Syn is able to regulate the partition between tubu-
lin dimers and MTs at neuronal growth cone, the region
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where it is highly expressed.10 We assessed Syn ability in
modulating MT assembly in such neuronal compartment
using differentiated rat PC12 cells, which naturally express
rat Syn starting from 7th day of NGF treatment;11 therefore,
we transfected human WT or human mutant Syn and we
performed experiments at 5th day of NGF-induced differen-
tiation. Thereby, we analyzed the distal neurite of differenti-
ated PC12 cells expressing either WT GFP-Syn or GFP
alone under basal conditions (cells kept at 37�C), after MT-
destabilizing cold-treatment (30 min at 4�C), and during
MT (re)nucleation (15 and 60min at 37�C). a tubulin stain-
ing shows the presence of MTs in cells overexpressing WT
Syn after 15 min of re-warming unlike control cells
(Fig. 1A), suggesting that the recovery of MT network
occurs at earlier time point in the presence than in the
absence of WT Syn. In order to substantiate our observa-
tions, we next removed the pool of unassembled tubulin and
we measured the fluorescence of total a tubulin (Fig. 1B),
which is proportional to MT mass, and of tyrosinated (Tyr)
tubulin (Fig. 1C), which is associated with dynamic and
neo-synthetizedMTs12 and for which Syn has shown a high
affinity.5 The quantification was performed in the distal part
of the neurite, roughly the growth cone, measuring the total
fluorescence intensities inside comparable areas (data not
shown). Our analysis reveals that, after 15 min of re-warm-
ing, the presence of Syn significantly increases both total a
tubulin and Tyr tubulin fluorescence, highlighting that Syn
favors MT (re)nucleation. In parallel, we performed bio-
chemical analyses on cytoskeletal fractions obtained from
cells following destabilization and (re)nucleation of MTs, as
described above.Wemeasured the amount of a tubulin and
Tyr tubulin associated to cytosolic dimers and to polymeric
MTs under basal conditions, after MT-destabilizing cold-
treatment and during MT (re)nucleation (Fig. 1D-E). Our
results show a significant Syn-dependent increase of a tubu-
lin and Tyr tubulin incorporated into MTs. Since pathologi-
cal point mutations reduce the ability of Syn to interact with
tubulin and abolish its ability in inducing MT assembly,5 we
expect that PD-associated Syn mutants lead to tubulin
aggregation during the recovery after cold-induced depo-
lymerization. Indeed, the analyses of the distal neurite of dif-
ferentiated PC12 cells expressing either A30P or A53T PD-
linked Syns reveal that they cause MT bundling and aggre-
gation (Fig. 2) instead of the proper regrowth as we observed
with WT Syn (Fig. 1A). Thus, the present results confirm
thatWT Syn promotes MT nucleation in neuronal cells and
indicate that WT Syn modulates the partition of tubulin
between dimers andMTswhereasmutant Syns compromise
MT (re)assembly and, probably, growth cone remodelling
under stress condition, like aging is supposed to be.

Collectively our data show that Syn acts as foldable
dynamase5 which is able to modulate the partitioning
of tubulin at neuronal growth cone, either by setting

the number of MTs or regulating their length, and
reinforce our hypothesis of some redundancy between
Syn and STMN1 actions. Indeed, both STMN113 and
Syn14 are involved in the regulation of neuronal pro-
cess outgrowth, during which the fine tuning of tubu-
lin/MTs partitioning is of crucial importance, and
both Syn knockout15 and STMN1 knockout16 mice
develop normally and only with aging they show neu-
ronal defects or pathological phenotypes, such as
axonopathy and neuronal degeneration. Thus, Syn
and STMN1 can really be involved in the same pro-
cess, namely tubulin subunit partitioning, which may
be either global or spatially restricted. Indeed,
STMN1 is ubiquitously expressed, even though it is
brain enriched and developmentally regulated,17

whereas Syn is much more confined to the distal part
of the axons,10 a compartment where the regulation
of MT assembly becomes even more fundamental.

It has been proposed that the functions of MT
associated protein 4 (MAP4) and STMN1 are regu-
lated by cognate kinase systems that mediate phos-
phorylation and the activation of the counteractive
activities of the proteins, which regulate tubulin sub-
unit partitioning during interphase of the cell cycle.18

In neurons could be there the same situation for Syn
and Tau, two MT-interacting proteins with partially
redundant and partially counteractive actions and
which are partner in crime in the induction in neuro-
degenerative processes.19 Furthermore, in human
brain cytosol, they interact each other in a tubulin
concentration-dependent manner,20 which can be a
regulator of their actions and, thus, of MT assembly
itself. As for MAP4 and STMN1, both Syn and Tau
are phosphorylated by the same enzyme, namely glu-
tathione synthase kinase 3 b (GSK3b), a well-known
regulator of MT assembly throughout the modulation
of MT interacting proteins.21 Indeed, in transgenic
mice expressing a point mutant (S9A) of human
GSK-3b there are elevated levels of phospho-Syn and
phospho-Tau, as well as it has been demonstrated
that recombinant human GSK-3b directly phosphory-
lates Syn and Tau.22

Together, these data establish a novel role for Syn in
the regulation of partitioning between tubulin dimers and
MTs at neuronal growth cone, process in which it can be
helped by STMN1 or Tau. The system could be regulated
by free tubulin concentration, in a sort of vicious/virtuous
circle as we have already proposed,5 or by several kinases.
Abnormalities in the biological properties of recipient pro-
teins, i.e. tubulin or Syn, as well as in the regulators, as
GSK3b, would lead to alterations of the system, defective
regulation of MT assembly and growth cone remodelling
and, possibly, to neurological diseases including PD.
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Material and methods

Cell cultures and transfection

PC12 cells were maintained in cultures and differentiated
as previously described.5 PC12 cells were transiently

transfected using Lipofectamine 2000 (Invitrogen)
(1:3 DNA to Lipofectamine ratio), with GFP-fused WT
or mutated Syns or with GFP-containing control vector;
the quantity of DNA was chosen according to previously
reported data, as the Syn expression level was low and

Figure 1. WT Syn regulates the partitioning between tubulin dimers and MTs in differentiated PC12 cells. (A) Fluorescence microscopy
micrographs of PC12 cells differentiated 5 d with NGF expressing GFP-Syn chimera (Syn) or GFP control vector (GFP), fixed before
(BASAL), immediately after the MT destabilizing cold-treatment, 30 min at 4 �C (0), or at various times after rewarming (15 and 60 min
at 37 �C) and stained for a tubulin (a TUB). Insets represent the GFP channel, and the yellow boxes the magnified areas shown on the
right (GFP channel in green and a tubulin in red). Scale bar, 10 mm. Quantification of total fluorescence a tubulin (a TUB, B) and tyrosi-
nated tubulin (Tyr TUB, C) in PC12 cells expressing GFP-Syn chimera (Syn) or GFP (GFP), extracted and fixed after the treatment described
in (A). Values are expressed as mean § SEM, and the cells analyzed are at least 12 for each experimental condition. �p < 0.05 vs CONT,
according to Student’s t-test. Western blotting (D) and densitometric analyses (E) of a tubulin (a TUB) and tyrosinated tubulin (Tyr TUB)
associated to tubulin dimers (Dim) or to MTs (MT) in PC12 cells expressing GFP-Syn chimera (Syn) or GFP (GFP), treated as described
in A. In (E), values (mean § SEM) represent ratio between MTs and dimers of a tubulin (a TUB, white bars) and tyrosinated tubulin (Tyr
TUB, black bars) of Syn-transfected PC12 cells, and are expressed as control percentage (GFP-expressing PC12 cells). Data are obtained
from at least three independent experiments. �p < 0.05, according to Student’s t-test, performed on the rough data.
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comparable to the average physiological levels of the pro-
tein in the brain.2

Western blotting

Triton X-100 soluble and insoluble fractions of PC12
cells were made as previously reported.23 After SDS-
PAGE, proteins were transferred onto polyvinylidene
difluoride membranes and immunostained with the fol-
lowing antibodies: anti-a tubulin mouse IgG (clone B-
5–1–2, Sigma-Aldrich); anti-tyrosinated tubulin mouse
IgG (clone TUB-1A2, Sigma-Aldrich). Immunostaining
was revealed by enhanced chemiluminescence
Super-Signal West Pico Chemiluminescent, Pierce).
Quantification was performed by Image J software
(NIH) and subtracting the background around bands.

Immunofluorescence

Transfected PC12 cells were fixed with cold methanol
(6 min at ¡20�C); to remove unassembled tubulin,
before fixation, some slides were extracted in PEM buffer
(80 mM K-Pipes, 5 mM EGTA, 1 mM MgCl2, pH 6.8,
containing protease inhibitors) with 0.5% Triton X-100,
0.2 M NaCl and 10 mM Paclitaxel (Sigma-Aldrich).
PC12 cells were stained with anti-a tubulin mouse IgG
or anti-tyrosinated tubulin mouse IgG and Alexa Flu-
orTM 568 donkey anti-mouse. By using Image J software,
total fluorescence intensity was measured on the growth
cone area. The region of interest was manually drowned
and the analyses of the surface extension revealed that
there were no significant differences between control cul-
tures and WT-expressing PC12 cells (data not shown).
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