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A B S T R A C T   

White blood cell (WBC) classification is a valuable diagnostic approach for identifying diseases. 
However, conventional methods for WBC detection, such as flow cytometers, have limitations in 
terms of their high cost, large system size, and laborious staining procedures. As a result, deep 
learning-based label-free WBC image analysis methods are gaining popularity. Nevertheless, most 
existing deep learning WBC classification techniques fail to effectively utilize the subtle differ
ences in the internal structures of WBCs observed under a microscope. To address this issue, we 
propose a neural network with feature fusion in this study, which enables the detection of label- 
free WBCs. Unlike conventional convolutional neural networks (CNNs), our approach combines 
low-level features extracted by shallow layers with high-level features extracted by deep layers, 
generating fused features for accurate bright-field WBC identification. Our method achieves an 
accuracy of 80.3 % on the testing set, demonstrating a potential solution for deep-learning-based 
biomedical diagnoses. Considering the proposed method simplifies the cell detection process and 
eliminates the need for complex operations like fluorescent staining, we anticipate that this 
automatic and label-free WBC classification network could facilitate more precise and effective 
analysis, and it could contribute to the future adoption of miniatured flow cytometers for point- 
of-care (POC) diagnostics applications.   

1. Introduction 

Differential counts of white blood cells (WBCs) form a crucial factor for assessing the individual’s health status [1–3]., WBCs can be 
categorized into three subtypes, namely granulocytes, lymphocytes, and monocytes, based on their unique characteristics such as 
nucleolus morphology [4]. These subtypes maintain a specific proportion in a healthy state. Changes in the morphology and per
centage of various WBC subtypes are closely linked to disease diagnosis [5,6], such as leukemia and anemia. Therefore, accurate 
classification of WBCs is a prerequisite for precise treatment [7]. 

Typically, WBCs can be classified using two main approaches: manual and automatic. The traditional approach heavily relies on the 
expertise and experience of pathologists, making it a time-consuming and labor-intensive process. Importantly, although manual 
classification is the most direct approach, it is susceptible to inevitable errors. Consequently, the accuracy of this method heavily relies 
on the skills and knowledge of the pathologists. Automatic approaches for classifying WBCs may employ instruments such as flow 
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cytometers [8]. These instruments utilize laser beams to stimulate WBCs labeled with fluorescent markers and use the resulting 
photoelectric signals for analysis. While flow cytometers yield high-throughput and high-accuracy results, they encounter challenges 
in terms of popularity due to their high cost and bulky nature. Consequently, flow cytometers are currently limited in their appli
cability for point-of-care (POC) WBC classification and find primary usage in established laboratory settings [9–12]. Importantly, 
staining procedures represent a crucial concern for the aforementioned methods as they can lead to cellular damage due to photo
toxicity caused by fluorescent reagents, resulting in alterations in the morphology and physiological state of WBCs, such as the ex vivo 
activation of granulocytes. 

In the past few years, the advent of deep learning has facilitated the development of automated systems for classifying WBCs [13]. 
Nonetheless, effectively harnessing the intricate information for accurate WBC identification continues to pose a significant challenge. 
In previous research work, deep learning for cell classification has mostly been conducted on stained cell images, as they contain more 
features, making them easier to be classified. For example, Dong et al. proposed a WBC recognition algorithm that fuses deep learning 
features with artificial features, achieving high accuracy in classifying stained WBC images [14]. Girdhar et al. achieved an accuracy of 
98.55 % using custom-designed convolutional neural network (CNN) on a publicly available stained WBC dataset [15]. Jung et al. 
proposed a CNN model named W-Net to classify stained WBC images. It was first trained over a local dataset and then was used to 
classify the LISC dataset [16,17]. Wijesinghe et al. used k-means clustering for WBC nuclei segmentation from stained WBC images 
[18]. Thereafter, VGG-16 [19] classifier was used for putting WBC nuclei into their respective class. Gao et al. proposed a deep learning 
network similar to LeNet-5 for the successful classification of HEp-2 cells [20]. Similarly, Toratani et al. utilized VGG-16 [19] to 
differentiate between cancer cell lines and their corresponding radioresistant clones [21]. 

There are also some research work that focuses on label-free WBC classification. Li et al. achieved high accuracy in label-free WBC 
classification, but they utilized a complex holographic imaging system to obtain holographic cell images [22]. Nassar et al. also 
achieved an average F1 score of 97 % in label-free WBC classification and differentiated B and T lymphocytes with an average F1 score 
of 78 % [12]. However, they primarily relied on flow cytometry for the preceding steps and used machine learning for the final 
classification task. Ryu et al. proposed a rapid and accurate blood cell identification method exploiting deep leaning and label-free 
refractive index tomography and achieved high accuracy in classifying bone marrow WBCs. The refractive index tomograms of the 
images are acquired via Mach-Zehnder interferometer-based tomographic microscope [23]. In this study, we strive to minimize the 
incorporation of additional steps to streamline complexity, leveraging the strengths of neural network to accomplish label-free WBC 
classification. 

In order to leverage the subtle differences in the internal structures of WBCs captured through microscopy, this study proposes a 
neural network with feature fusion to enable label-free WBC detection. Unlike existing CNNs [19,24], this network fuses low-level 
features extracted by the shallow layers with high-level features extracted by deep layers into fused features for WBCs identifica
tion. This combination enhances the representation of WBCs by incorporating both detailed information from low-level features and 
semantic information from high-level features. In comparison to the previous immunofluorescence-based method [25], this work is 
promising as it eliminates the need for complex staining procedures and avoids the issue of photobleaching [26]. 

To evaluate the performance, we set the batch size to 128 images, then conducted 47 iterations to predict the subtype of the entire 
testing set, achieving an accuracy of 80.3 %. This achievement offers a promising solution for deep-learning-based biomedical di
agnoses. By leveraging the method proposed in this paper, which simplifies cell detection and circumvents complex procedures like 
fluorescent staining, we anticipate the development of an automatic, label-free, and non-invasive WBC classification network based on 
microscope images. Such advancements could facilitate the widespread adoption of miniatured flow cytometers for POC diagnostics 
applications, enabling more precise and effective analysis. 

2. Material and methods 

2.1. Label-free WBCs dataset generation 

As there is no recognized label-free WBCs dataset specifically designed for classification tasks, we need to custom-build our dataset 

Fig. 1. Example of (a) bright-field WBC image and corresponding (b) fluorescent image from the same field of view.  
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from scratch. The first step was to separate the WBCs from whole blood samples to reduce interference from red blood cells when 
imaging. The blood samples were obtained from Research Blood Components, LLC (Boston, MA, USA). The initial samples were 
sourced from healthy blood donors who underwent detailed health examinations before donation and had not used any prescription 
medications in the two weeks prior to donation. A multi-dimensional double spiral (MDDS) microfluidic cell separation device was 
utilized for WBC separation from blood, which can efficiently obtain high purity WBCs with minimum damages [27]. After the sep
aration process, the WBCs were fluorescently stained and imaged using a microscope with a 100 × objective lens, alternating between 
bright-field and fluorescence modes in the same field of view (FOV). Note that the purpose of fluorescence staining is to obtain the true 
labels of bright-field cell images. In fluorescence imaging, granulocytes exhibit multiple distinct streaky bright spots due to their 
prominent nuclear lobulation structure. Monocytes and lymphocytes, on the other hand, display a round bright spot in fluorescence 
imaging as their nuclear structures appear similar. However, due to differences in nuclear size, lymphocytes appear similar in size 
under both bright-field and fluorescence imaging, while monocytes exhibit smaller bright spots in fluorescence imaging compared to 
bright-field imaging. Fig. 1 shows an example of bright-field WBC image and the corresponding fluorescent WBC image from the same 
FOV. The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Ethics Committee of 
Westlake University (protocol code 20200608YY001) on June 06, 2020. 

Following imaging, based on the grayscale differences between the foreground WBCs and the background, an adaptive threshold 
segmentation algorithm OTSU [28] was used to segment the WBCs from the background, ensuring that each image contained only a 
single WBC. With these, the original bright-field microscopic WBC images could be segmented to single-cell images with 200 × 200 
pixel dimensions. We used the fluorescent images to manually label the subtypes of the bright-field images, ultimately dividing them 
into three categories: granulocyte, lymphocyte, and monocyte. To minimize the impact of fluorescent staining on cell viability as much 
as possible, we imaged the cells shortly after staining and manually selected well-shaped cells. This approach helps to exclude damaged 
cells or the cells in activation state, and reduce the influence of fluorescent staining process on the experimental results. The workflow 
for establishing the label-free WBC dataset is shown in Fig. 2(a–e). 

As the proportions of different subtypes of WBCs in human blood are varied, the number of WBC images can often be unbalanced 
among different subtypes. To improve training accuracy and prevent overfitting problems during the training phase, we performed 
further balancing of the WBC dataset during the preprocessing stage. Initially, the original dataset was divided into two parts, with 80 
% of the WBC images being used for training and validation, and the remaining 20 % for testing. Then, each independent dataset was 
enhanced to avoid any data leakage issue that could lead to overestimation of the test accuracy. Common data enhancement methods 
include rotation, flipping, scaling, color transformation, noise disturbance, etc. However, as the bright-field microscope images of 
WBCs are grayscale and rely on the morphological details of cells for classification, we only applied two enhancement methods of 

Fig. 2. (a) Whole blood samples. (b) MDDS separation device to separate blood samples into WBCs and RBCs. (c) fluorescently stain different 
subtypes of WBCs. (d) image WBCs with bright-field and fluorescence mode by turns. (e) segment WBCs from the background while manually mark 
the subtype of bright-field images. (f) Convolutional neural network structure diagram with feature fusion structure. 
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rotation and flipping to expand the dataset for all three types of WBCs. Moreover, we avoided using noise disturbance to prevent 
significant degradation of the images. We choose to use flipping and rotation as data augmentation methods based on their simplicity 
and effectiveness. Additionally, due to the minimal differences between unlabeled WBC images of various types, these methods do not 
lead to the loss of detail in cell images. This is because they solely perform geometric transformations on the images without altering 
their internal structure or features. In contrast, other augmentation techniques, such as blurring, distortion, or adding noise, may 
introduce more complexity and potentially degrade image quality or distort features. Therefore, we believe that flipping and rotation 
are simple yet effective methods that not only increase data samples but also preserve the integrity of image details, contributing to 
improved model performance and robustness. We left-right and up-down flipped all WBC images and rotated them by 90◦, 180◦, and 
270◦, leading to a 6 × increase in the number of granulocyte images. Nevertheless, since the number of lymphocytes and monocytes 
was less than that of granulocytes, we generated a more extensive range of reference images for these subtypes, applying fine rotation 
angles ranging from ±3◦ up to ±19◦ and ±4◦ up to ±25◦ for lymphocytes and monocytes, respectively [29]. The classification per
formance of the CNNs continuously improves when the rotation angle becomes finer, which shows the effectiveness of this 
rotation-based augmentation on cell images [20]. This approach resulted in increases of 24 × and 50 × in the number of lymphocyte 
and monocyte images, respectively. After data enhancement of the dataset, the three-type label-free WBCs dataset was established as 
shown in Table 1. Note that our work was label-free since in training and testing procedures we use bright-field images without any 
fluorescent tag. 

2.2. Label-free WBCs classification network construction 

To fully exploit the subtle differences in label-free WBC structures captured by microscopic imaging, this paper proposes a con
volutional neural network with a feature fusion architecture for the classification of label-free WBCs. In contrast to conventional neural 
networks, this convolutional neural network fuses the low-level features extracted by the shallow layers with the high-level features 
extracted by the deep layers, forming fused features for label-free WBC classification. Compared to high-level features, the low-level 
features extracted by the shallow layers undergo fewer non-linear operations and provide a more intuitive representation of label-free 
WBC details. In contrast, the high-level features extracted by the deep layers contain more semantic information in the high-level 
semantic space, better reflecting the types of WBCs. For the classification task of label-free WBCs, the fused features formed by the 
integration of the two are undoubtedly a better feature representation. On one hand, they compensate for the inadequacy of low-level 
features in terms of semantic expression, and on the other hand, they address the issue of insufficient distinction between similar but 
different classes in the semantic space when only using high-level features for the original images. 

As depicted in Fig. 2(f), the feature fusion neural network primarily comprises three convolutional parts. The input WBC images are 
convolved by thousands of kernels in these convolutional parts. The first part, comprising a convolutional layer and a maximum 
pooling layer, is used to extract low-level features. A larger convolutional kernel is adopted to gain as much overall information about 
the cell area as possible. The convolutional layer operates directly on the raw 3-channel input image, and the results are then activated 
by the ReLU activation function before being input to the maximum pooling layer [9]. To suppress overfitting, batch normalization 
(BN) is carried out after pooling. The convolutional layer comprises 96 convolutional kernels with a kernel size of 11 × 11, a stride of 4, 
and padding of 5. Given the larger size of the input images, we opt for larger convolutional kernels to achieve a broader receptive field, 
aiming to capture information across the entire cell region. With these larger kernels, using a larger stride does not lead to information 
loss. Moreover, it aids in reducing the number of model parameters. The second part follows a similar structure to the first one. In this 
section, 256 convolutional kernels are utilized for convolutional operations to extract additional intermediate features. Moreover, the 
sizes, strides, and padding of the convolutional kernels differ, specifically set to 5 × 5, 1, and 2, respectively. Despite the smaller size of 

Table 1 
Fluorescent and corresponding bright-field images of WBCs.  

Type Fluorescent WBC 
images 

Bright-field WBC 
images 

Number of images before data 
augmentation 

Number of images after data 
augmentation 

Granulocyte 1540 10,266 

Lymphocyte 444 10,392 

Monocyte 211 10,400  
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the convolutional kernels in this section compared to the first convolutional section, the 5 × 5-sized kernels effectively cover the entire 
region of a WBC, while also reducing the parameters in the model. The third part comprises three convolutional layers with 384, 384, 
and 256 convolutional kernels used for high-level feature extraction, as well as a maximum pooling layer. Considering that the size of 
the feature maps is already small, smaller convolutional kernels are utilized to reduce model parameters and prevent overfitting when 
the receptive field can cover a whole cell. A 3 × 3 max pooling operation with a stride of 2 and padding of 1 is applied at the end of each 
part to reduce the size of features. This helps retain important features while reducing the risk of overfitting. We all use smaller pooling 
sizes and strides to prevent the loss of too much detail information of label-free WBCs Moreover, the model has two skip paths to fuse 
all features of the three convolutional parts. After fusion, 608 feature maps representing the raw image from low-level to high-level, 
with a size of 7 × 7, are generated. 1 × 1 convolution is used to fuse and downscale these feature maps to form 256 feature maps with a 
size of 7 × 7. Following vectorization and fully connected layers, these are used to classify different classes of WBCs. 

3. Results and discussions 

During the model training process, the Adam optimizer [29] is employed for mini-batch stochastic gradient descent optimization, 
with the batch size and learning rate set to 32 and 10− 4, respectively. In addition, the coefficients for calculating the averages of 
gradients and their squares during training are set to 0.9 and 0.999, respectively. 

To evaluate the performance of the label-free WBC classification model, this paper employs several different metrics for multi- 
dimensional evaluation, including recall, precision, accuracy and F1-score. Recall indicates the probability of predicting correctly 
that a sample is positive among actual positive samples, as shown in (1). Precision indicates the probability of the samples predicted as 
positive that are actually positive, as shown in (2). Higher recall and precision indicate better classification results. F1-score is the 
harmonic mean of recall and precision, as shown in (3). As recall and precision only evaluate samples predicted as positive, accuracy 
can be used as an overall evaluation metric for model prediction performance, as shown in (4). In the formulae for the above metrics, 
TP, TN, FP, and FN respectively represent true positives, true negatives, false positives, and false negatives. True positive (TP) indicates 
the number of actual positive samples predicted as positive, true negative (TN) indicates the number of actual negative samples 
predicted as negative, false positive (FP) indicates the number of actual negative samples predicted as positive, and false negative (FN) 
indicates the number of actual positive samples predicted as negative. 

Fig. 3. (a) Training loss and (b) validation accuracy corresponding to different ablation experiments. (c) and (d) are the first 16-channel feature 
maps before vectorization for the control and ablation experiments, respectively. 
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Recall=
TP

TP + FN
(1)  

Precision=
TP

TP + FP
(2)  

F1score=
2 × Precision × Recall

Precision + Recall
(3)  

Accuracy=
TP + TN

TP + TN + FP + FN
(4) 

To validate the proposed label-free WBC classification network model based on feature fusion architecture, this paper initially 
conducted three ablation experiments, thoroughly demonstrating the effectiveness of the classification model based on feature fusion 
architecture in terms of classification accuracy. For the first ablation experiment, the skip path used for feature fusion following the 
first pooling layer was eliminated, and only the feature maps after the second and third pooling layers were fused. For the second 
ablation experiment, the configuration was opposite to the first one: the skip path after the first pooling layer was retained, the skip 
path after the second pooling layer was removed, and the feature maps after the first and third pooling layers were fused. For the third 
ablation experiment, the skip paths after both the first and second pooling layers were removed, leaving the entire network with a 
serial structure without any skip paths. The classification network with feature fusion architecture proposed in this paper was included 
in the experiments as a control experiment. 

From Fig. 3(a) and (b), it can be observed that after 25 epochs of training, the loss values of both the ablation experiment groups 
and the control experiment converge to the order of 10− 2. Comparing the validation accuracy, the ablation experiment 1 and 
experiment 2, which integrate some shallow features, and ablation experiment 3, which does not use feature fusion at all, all perform 
worse than the control experiment. The proposed feature fusion-based classification network, which serves as the control experiment, 
has a average validation accuracy that is 1.15 %, 0.33 %, and 1.31 % higher than that of ablation experiment 1, experiment 2, and 
experiment 3, respectively, indicating a better performance level. At the same time, the average validation accuracy of ablation 
experiment 2 is 0.82 % higher than that of ablation experiment 1. This advantage is due to the skip path post the first pooling layer 
providing feature maps with more original image detail information for feature fusion than the second pooling layer. After feature 
fusion, the classifier can better classify label-free WBCs. Comparing the loss values during the training process, the lowest training 
losses of the control experiment and ablation experiment 1, experiment 2, and experiment 3 are 1.2 × 10− 3, 6.6 × 10− 3, 3.2 × 10− 3, 
and 3.7 × 10− 3, respectively, which indicates that the control experiment can achieve lower training loss compared to the ablation 
experiment groups. Fig. 3(c) and (d) display the first 16 channels of feature maps before vectorization, using the feature fusion ar
chitecture and without using it, respectively. As seen in the visualized feature maps, the first 16 channel feature maps using feature 
fusion architecture contain richer information compared to those without feature fusion. The former exhibits distinctive features, 
while the latter only contains a small amount of high-level semantic information that is difficult for humans to comprehend at the cell 
locations. This difference indicates that the feature fusion model has an enhanced ability to recognize different features in cell images, 

Fig. 4. (a) Validation accuracy, (b) Training loss, and (c) Training accuracy. (d) Recall (e) Precision and (f) F1 score of different models.  
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enabling the model to capture richer information. This information will assist the model in accurately discerning the true category of 
images during final classification. While the feature maps without feature fusion display nearly identical features, indicating that the 
model fails to capture the differences between these diverse cell images. The fused features enable the classifier to not only utilize the 
semantic information extracted by the high-level network when discriminating between WBC types but also take full advantage of the 
original image detail information extracted by the shallow network to assist in classification. 

For a better comparative analysis, this paper compares the proposed label-free WBC classification model based on feature fusion 
with the label-free cell classification models proposed by Gao et al. [20], Toratani et al. [21], and ResNet-50 [24], which is widely used 
in various classification scenarios. In Fig. 4 (a), which presents a comparison of validation accuracies, it can be clearly observed that 
the label-free WBC classification network based on feature fusion architecture achieves higher validation accuracy compared to other 
deep learning cell classification works that do not use feature fusion structures. By averaging the validation accuracies during training, 
this paper outperforms other methods by 0.3 %, 10.5 %, and 0.3 %. This improvement in validation accuracy is attributed to the fusion 
of low-level features with more image detail information and high-level features with more semantic information during the training 
process, indicating that the proposed network with feature fusion architecture is more suitable for the classification task of label-free 
WBCs. At the same time, testing was conducted on the test dataset with an accuracy of 80.3 %. In Fig. 4(b), which illustrates a 
comparison of training loss values, the proposed model based on feature fusion architecture achieves the lowest training loss of 2 ×
10− 3, despite all models eventually reaching low training losses. Fig. 4(d)–(f) display comparisons of recall, precision, and F1 scores for 
the four experimental models, and it is evident that in terms of F1 scores for the three different categories of label-free WBCs, the 
network based on feature fusion proposed in this paper significantly outperforms other related works and obtains the highest F1 score. 
This excellent performance is not only due to the uniquely designed network structure but also the powerful feature representation 
constructed by the feature fusion architecture. 

4. Conclusions 

To address the problem of insufficient utilization of the detailed features of WBC images by the existing deep neural network, this 
work introduces a label-free WBCs classification network with feature fusion structure to classify them. The performance of our 
proposed model achieves an optimal accuracy of 80.3 %, surpassing other models that lack feature fusion capabilities. At the same 
time, our approach eliminates the need for costly and large sample volume, as required by flow cytometers, and avoids the necessity of 
fluorescent staining for cell labeling, which was previously employed in image analysis-based WBC classification using fluorescent 
images. By simplifying the cell detection process and eliminating complex procedures such as fluorescent staining, our proposed 
method offers a practical solution for precise and efficient WBC classification. Consequently, the development of an automatic, label- 
free, and damage-free WBC classification network for more precise and effective analysis holds significant potential to promote the 
popularization of a miniatured flow cytometer for POC diagnostic applications. 

At last, the limitations of this work and future directions of label-free WBC research are discussed. Firstly, how to conveniently and 
precisely obtain the true labels of unlabeled WBCs, completely eliminating the staining step is a key issue. Secondly, considering the 
introduction of more image augmentation methods to enhance the model’s robustness and improve its generalization ability across 
different datasets is also worth exploring. Additionally, the use of three-dimensional WBC images which containing more information 
for classification could be considered. Finally, it is important to note that WBCs may exhibit different morphologies under different 
immune states, and future research needs to address this issue to ensure their accuracy and reliability in medical applications. 
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