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Löffler et al., 2022, Cell Reports Medicine 3, 100677
July 19, 2022 ª 2022 The Authors.
https://doi.org/10.1016/j.xcrm.2022.100677
Authors

Martin Löffler, SethM. Levine, Katrin Usai,

Simon Desch, Mina Kandi�c, Frauke Nees,

Herta Flor

Correspondence
martin.loeffler@zi-mannheim.de

In brief

Corticostriatal pathways contribute to the

development of chronic back pain. In this

issue of Cell Reports Medicine, Löffler
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SUMMARY
Connectivity between the nucleus accumbens (NAc) and ventromedial prefrontal cortex (vmPFC) and reward
learning independently predict the transition from acute to chronic back pain (CBP). However, how these pre-
dictors are related remains unclear. Using functional magnetic resonance imaging, we investigate NAc- and
vmPFC-dependent reward learning in 50 patients with subacute back pain (SABP) and follow them over
6 months. Additionally, we compare 29 patients with CBP and 29 pain-free controls to characterize mecha-
nisms of reward learning in the chronic stage. We find that the learning-related updating of the value of rein-
forcement (prediction error) in the NAc predicts the transition to chronicity. In CBP, compared with controls,
vmPFC responses to this prediction error signal are decreased, but increased during a discriminative stim-
ulus. Distinct processes of reward learning in the vmPFC and NAc characterize the development and main-
tenance of CBP. These could be targeted for the prevention and treatment of chronic pain.
INTRODUCTION

Chronic pain is a debilitating health problem, and its treatment

and prevention are central challenges to the healthcare system.

Identifying predictors of chronic pain is essential for its preven-

tion, and learning is widely accepted as a major factor driving

the development and maintenance of primary chronic pain.1,2

More than 50 years ago, Fordyce3 proposed that operant condi-

tioning, defined as the learning of associations between behav-

iors and their consequences, instigates and maintains disabling

pain behaviors and thus chronicity. Since then, several studies

empirically supported a relationship between maladaptive be-

haviors in patients with chronic pain and positive and negative

reinforcement, i.e., by the appearance of desired consequences

or the removal of undesired consequences following maladap-

tive behaviors4–7 as well as their role in the transition to chronic

pain.

On the other hand, major contributions have been made to

understand the brain mechanisms that mediate the transition

from acute to chronic pain. In patients with subacute back

pain (SABP), Baliki et al.8 reported that increased functional

prefrontal-limbic (ventromedial prefrontal cortex [vmPFC]-nu-

cleus accumbens [NAc]) connectivity during phases of high

ongoing pain predicted the transition to chronic pain after

12 months.
Cell
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This vmPFC-NAc circuit was previously described as a com-

mon pathway of pain, reward processing, and reward

learning.9,10 More specifically, human,11,12 as well as rodent,13,14

studies showed that the NAc encodes prediction error signals

during reward learning, based on the difference between ex-

pected rewards and reward feedback.15 These predicted re-

wards may be positive reinforcers such as food but also pain re-

lief as a negative reinforcer.16 The vmPFC mainly encodes

discriminative stimuli during reward learning,17 i.e., stimuli that

precede operant behavior and increase or decrease the likeli-

hood for the respective behavior to occur. It also encodes the

expectation of positive events such as monetary rewards,

pleasant narratives, food rewards, or relief from a heat-pain

stimulus.9,18

Interestingly, the response of the NAc to positive and negative

reinforcers changes during the development of chronic pain.

While rats showed enhanced dopamine levels in the NAc during

pain relief as well as food reward 17 to 20 days after spinal nerve

ligation (SNL), no such response was reported 31 to 34 days19

later. Such brain changes in early pain stages have been linked

to maladaptive emotional learning;20,21 however, to what extent

learning processes contribute to alterations in this corticolimbic

circuit and thereby lead into chronicity needs to be examined.

Brain changes in chronic back pain include reduced gray mat-

ter volume in the vmPFC22 and the NAc, a loss of low-frequency
Reports Medicine 3, 100677, July 19, 2022 ª 2022 The Authors. 1
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fluctuation in the NAc,23 and a decline in functional resting-state

connectivity between the vmPFC and other brain regions,

including the NAc,24 which was related to increased behavioral

preference for monetary rewards compared with pain relief.25

Further, patients with chronic back pain (CBP) showed impaired

reward learning in the Iowa gambling task compared with con-

trols, and the number of perseverative errors during a modified

version of the Wisconsin card-sorting test increased with pain

duration.26 Further, patients with fibromyalgia showed reduced

vmPFC responses to reward anticipation,27 but it is unknown

so far if this extends to more localized CBP.

In summary, the vmPFC-NAc circuit plays a critical role during

reward learning by updating the association between behavior

and consecutive rewards (NAc) and by encoding anticipated

reward values and tracking the predictive value of environ-

mental/discriminative stimuli (vmPFC). These processes seem to

be differentially affected in early and late phases of the develop-

ment of chronic pain: while the chronic stage is characterized by

enhanced vmPFC responses to established signals in anticipation

of reward, the early stage seems to be characterized by overem-

phasizing the exploration of reward feedback. In other words,

there seems to be a shift from exploration to exploitation during

the development of CBP, but it is unclear if this exploration-exploi-

tation dilemma predicts the development of chronic pain.

We therefore sought to determine to what extent operant-

learning processes that are encoded in the vmPFC-NAc

pathway may explain the transition from subacute to CBP as

well as themaintenance of CBP.We hypothesized that increases

of the NAc response to reward prediction error signals predict

the development of chronic pain in patients with SABP, whereas

the chronic stage of back pain is characterized by reduced

vmPFC responses during reward expectation and in response

to discriminative stimuli. To test these hypotheses, we carried

out task-based functional magnetic resonance imaging (fMRI)

during an instrumental conditioning paradigm with money and

pain relief as positive and negative reinforcers (see Figure 1).

We followed up with patients with SABP after 6 months to test

if reward-learning processes in the NAc are involved in the devel-

opment of CBP. Additionally, we compared patients with CBP

with controls to test the role of vmPFC-dependent reward-

learning processes in themaintenance of chronic pain (see Table

1 for details on patients and controls). We used traditional univar-

iate analysis methods to test if the development and mainte-

nance are predicted by the magnitude of the learning-related re-

sponses in the NAc and vmPFC and learning-related

connectivity between NAc and vmPFC. Additionally, we used

multivariate pattern analyses (MVPA) to explore the role of

learning-related response patterns. To test if any connectivity-

based predictors are specific to the activations seen in the

learning task, we additionally examined if resting state vmPFC-

NAc connectivity mediates these predictions.

RESULTS

Reward learning and the transition to chronic pain: ROI
and connectivity analysis
To test if the transition from SABP to CBP can be predicted by

increased NAc responses to reward prediction errors, we ex-
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tracted parameter estimates from pre-defined regions of interest

(ROIs) of the bilateral NAc during reward feedback. Feedback

without reward delivery was used to estimate negative predic-

tion errors (NPE), and feedback with reward delivery was used

to estimate positive prediction errors (PPEs). To test if chronicity

was predicted by other aspects of instrumental learning than

PPE/NPE or if this was a specific learning-related factor driving

the development of chronic pain, we extracted parameter esti-

mates from the NAc and vmPFC during the presentation of the

discriminative stimuli, the anticipation of money and pain relief,

and the painful stimulus. Further, we tested if changes of the

vmPFC and NAc response to discriminative stimuli after the

acquisition or extinction are underlying the transition from sub-

acute to chronic pain by extracting the parameter estimates of

both types of discriminative stimuli during habituation and

extinction and calculated the contrast with the encoding of the

same stimulus during acquisition. These parameter estimates

were subsequently correlated with the percentage of change in

pain severity from baseline to the follow-up assessment, and

receiver operating characteristic (ROC) curves were created to

dissociate patients with persistent SABP from recovered pa-

tients with SABP, based on a pain reduction of 20%.8

Higher blood-oxygen-level-dependent (BOLD) responses to

monetary PPEs (r(46) = 0.61, p < 0.001) as well as in response

to monetary NPEs (r(46) = 0.55, p = 0.002) in the left NAc indi-

cated pain persistence. Binary classification analysis confirmed

these results and showed a classification accuracy that was

significantly higher than chance-level based on monetary PPE

(area under the curve [AUC] = 0.77, p = 0.021) and monetary

NPE (AUC = 0.83, p < 0.001) signals in the left NAc (see Figure

2). Contrary to our hypothesis, NAc responses to PPEs and

NPEs for pain relief did not significantly predict chronicity (all

r(46) < 0.19, p = 1.00, all AUC < 0.64, p = 1.00; see Table S4). En-

coding of the discriminative stimuli (all r(46) < 0.34, p > 0.82, all

AUC < 0.57, p = 1.00), the anticipation of reward (all

r(46) < 0.09, p = 1.00, all AUC< 0.54, p = 1.00), or the painful stim-

ulus (all r < 0.37, p > 0.55, and all AUC < 0.69, p > 0.80; for

detailed information on correlation coefficients, AUC in binary

classification, and significance values, see Table S4) also did

not significantly predict chronicity. Further, the encoding of the

discriminative stimuli during habituation (all r(46) < 0.34,

p > 0.55, and all AUC < 0.72, p > 0.15) or extinction (all

r(46) < 0.17, p = 1.00, and all AUC < 0.55, p = 1.00), as well as

the change in neural representation of the discriminative stimuli

from the habituation to the acquisition phase (all r(46) < 0.26,

p = 1.00, and all AUC < 0.73, p > 0.11), or from the acquisition

to the extinction phase (all r(46) < 0.28, p = 1.00, and all

AUC < 0.56, p = 1.00; for detailed information on correlation co-

efficients, AUC in binary classification, and significance values,

see Table S6) did not significantly predict chronicity.

In the next step, we tested if changes in functional connectivity

between vmPFC and NAc during reward learning predicted pain

persistence. We performed a psychophysiological interaction

analysis on the reward-learning data of the patients with SABP

with the vmPFC as a seed region. Pain persistence was pre-

dicted by higher functional connectivity between right NAc and

vmPFC during monetary NPEs (r(46) = 0.52, p = 0.006). Binary

classification of persistence by rNAc-vmPFC functional



Figure 1. Study design

All participants underwent three phases of the

experiment: habituation, acquisition, and extinction.

During the habituation and extinction phases, both

discriminative stimuli (DSpain and DSmoney, blue and

yellow arrows on black background, respectively,

duration: 6 s) were presented eight times each and

followed by an inter-trial interval of 8–10 s (random

jitter). During acquisition, twenty DS of each type

were presented for 6 s and followed by an anticipa-

tion phase of 4 s. In themonetary reward condition, a

monetary reward (1 V) or no reward (fixation cross)

was subsequently presented for 3 s. In the pain-re-

lief condition, the anticipation phase was always fol-

lowed by a painful stimulus lasting 1.5 s. During the

feedback phase of the pain-relief condition, partici-

pants received either pain relief (no pain) or pain

(pain for 1.5 s). Participants were instructed to press

a button with their index finger as soon as they saw

any of the two discriminative stimuli, with the goal of

winning a monetary reward or pain relief if they

pressed the button ‘‘fast enough.’’ In reality, both re-

wards were delivered in 50% of the trials. Partici-

pants never received rewards if they did not press

the button. The feedback phase was followed by

an inter-trial interval of 8–10 s (random jitter). Ratings

of the contingency between each DS and the re-

wards (numerical rating scale from 1 to 9) and the

arousal and valence associated with each DS (self-

assessment manikins converted to a scale from 1

to 9) were presented after the habituation, acquisi-

tion, and extinction phases.
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connectivity during monetary NPEs was also significantly higher

than chance-level classification (AUC = 0.78, p = 0.021; see Fig-

ure 2). Neither alterations in functional connectivity between

vmPFC and NAc during PPEs and NPEs for pain relief (all

r(46) < 0.42, p > 0.19, and all AUC < 0.67, p = 1.00) nor during

discriminative stimuli (all r(46) < 0.42, p > 0.16, and all

AUC < 0.55, p = 1.00), anticipation (all r(46) < 0.21, p = 1.00,

and all AUC < 0.65, p = 1.00), or the painful stimulus (all

r(46) < 0.14, p = 1.00, and all AUC < 0.47, p = 1.00) significantly

predicted the transition from subacute to chronic pain (see

Table S5).
Cell R
Resting-state prediction of the
transition to chronic pain
Next, we tested if functional vmPFC-

NAc connectivity per se, or specifically

related to PPEs/NPEs, predicted chro-

nicity. For this purpose, the functional

connectivity between vmPFC and

NAc was analyzed from a separate

resting-state acquisition at baseline.

We found that increased resting-state

functional connectivity between vmPFC

and left NAc (r(42) = 0.36, p = 0.035;

AUC = 0.68, p = 0.043), but not right

NAc (r(42) = 0.17, p = 0.53; AUC =

0.66, p = 0.071), significantly predicted

pain persistence after 6 months
(see Figure 3). We therefore tested if the encoding of

PPEs/NPEs in the vmPFC-NAc pathway that was predictive

for chronicity (see above) was mediated by resting-state

connectivity between vmPFC and left/right NAc but found

no significant mediation of the effect of task-based predic-

tion error encoding on pain chronicity via resting-state

vmPFC-NAc connectivity (indirect effect given as average

causal mediation effects [ACMEs]: all ACME < 0.05,

p > 0.36; see Figure S5). This suggests that the encoding

of PPEs/NPEs in the vmPFC-NAc pathway and resting-state

connectivity between vmPFC and lNAc independently
eports Medicine 3, 100677, July 19, 2022 3



Figure 2. Fronto-striatal encoding of predic-

tion error signal predicts the transition from

subacute to chronic pain

(Left) Correlations of the percentage of change in

pain severity from baseline to the 6 month follow up

and the BOLD response to prediction errors in the

NAc and vmPFC. The dashed vertical line indicates

the 20% cutoff that was used to binarize the change

in pain severity for the receiver operating charac-

teristic (ROC) curves on the right side. BOLD re-

sponses were extracted as parameter estimates

from predefined masks extracted from http://

neurosynth.org (see STAR methods). Correlations

are reported as Pearson’s correlation with Bonfer-

roni-corrected p values (corrected for 45 tests,

yielding a threshold of p < 0.001). (Right) We addi-

tionally divided patients in ‘‘recovered’’ if their pain

severity decreased by 20% or more between the

first examination and the follow-up assessment and

‘‘persistent’’ patients in all other instances. ROC

curves were created for classifying recovered and

persistent patients with the respective parameter

estimates extracted from the regions of interest. We

report the area under each ROC curve as an esti-

mate of sensitivity and specificity. Associated p

values for the comparison to a chance-level ROC

curve (i.e., AUC = 0.5) are reported as Bonferroni-

corrected p values (corrected for 45 tests, yielding a

threshold of p < 0.001). Boxplots additionally show

the distribution of patients who recovered (yellow)

and patients with persistent pain at follow up (blue).

The hinges of the boxplots represent the first and

third quartiles, and the whiskers extend to the last

value within 1.5 times the interquartile range. Single

data points are shown as circles. Outliers are de-

picted as empty circles and imputed values as tri-

angles. See Tables S4 and S5 for all other associa-

tions between reward-learning contrasts and

change in pain severity. vmPFC, ventromedial pre-

frontal cortex; lNAc, left nucleus accumbens; rNAc,

right nucleus accumbens; PPE, positive prediction

error; NPE, negative prediction error; BL, baseline;

FU, follow up; AUC, area under the curve; SABP,

patients with subacute back pain; SABPp/r, patients

with SABP with persistent pain or recovered pain

after 6 months, based on a pain reduction of 20%

from baseline to the follow-up assessment.
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predict chronicity. We therefore tested if adding resting-

state connectivity between vmPFC and left NAc (and the

interaction term with the respective task-based predictor)

to the regression models would improve the model fit. Add-

ing resting-state connectivity significantly improved the pre-

diction of chronicity with the encoding of NPEmoney in the

left NAc (original model: adjusted R2 = 0.290, new model:

adjusted R2 = 0.364, difference between models: F(2,44) =

3.67, p = 0.033) and the prediction of chronicity with func-

tional connectivity between right NAc and vmPFC during

NPEmoney (original model: adjusted R2 = 0.259, new model:

adjusted R2 = 0.356, difference between models: F(2,44) =

4.46, p = 0.017). Adding resting-state connectivity to the

prediction of chronicity with the encoding of PPEmoney in

the left NAc did not significantly improve model fit (original

model: adjusted R2 = 0.353, new model: adjusted R2 =
4 Cell Reports Medicine 3, 100677, July 19, 2022
0.409, difference between models: F(2,44) = 3.17, p =

0.052).

Reward learning and the transition to chronic pain:
Pattern decoding
We additionally performed an exploratory analysis to test if spe-

cific patterns in the vmPFC and bilateral NAc as well as patterns

of functional connectivity between vmPFC and NAc predict

chronicity. We used the same regressors as for the univariate

analysis and trained a linear discriminant analysis (LDA) classifier

and extracted the mean classification accuracy across folds for

each subject and found a pattern of activity in response to the

discriminative stimulus for pain relief in the right NAc, which clas-

sified patients into patients with persistent SABP and recovered

patients, with an accuracy of 71% (t(47) = 4.30, p = 0.004; AUC =

0.80, p = 0.009; see Figure 4). No other brain responses yielded

http://neurosynth.org
http://neurosynth.org


Figure 3. Functional connectivity of NAc and

vmPFC independent of learning (i.e., resting-

state functional connectivity) shows low pre-

dictive value of the transition from subacute

to chronic pain

(Left) Correlations of the percentage of change in

pain severity from baseline to the 6 month follow up

with the resting-state functional connectivity be-

tween vmPFC and bilateral NAc. The dashed vertical

line indicates the 20% cutoff that was used to bi-

narize the change in pain severity for the ROCcurves

on the right side. Resting-state functional connec-

tivity was extracted as the correlation between in-

dividual time series in predefinedmasks, whichwere

extracted from http://neurosynth.org (see STAR

methods). Correlations are reported as Pearson’s

correlation with Bonferroni-corrected p values

(corrected for 2 tests, yielding a threshold of p <

0.025). (Right) Corresponding ROC curves were

created for classifying recovered and persistent pain

patients with the functional connectivity between

vmPFC and NAc at rest. We report the area under

each ROC curve as an estimate of sensitivity and

specificity. Associated p values for the comparison

to a chance-level ROC curve (i.e., AUC = 0.5) are

reported as Bonferroni-corrected p values (cor-

rected for 2 tests yielding an uncorrected threshold

of p < 0.025). Boxplots additionally show the distri-

bution of recovered patients (yellow) and patients

with persistent pain at follow up (blue). The hinges of

the boxplots represent the first and third quartiles,

and the whiskers extend to the last value within 1.5 times the interquartile range. Single data points are shown as circles. Outliers are depicted as empty circles

and imputed values as triangles. vmPFC, ventromedial prefrontal cortex; lNAc, left nucleus accumbens; rNAc, right nucleus accumbens; BL, baseline; FU, follow

up; AUC, area under the curve; RS, resting state; PE, parameter estimates; SABP, patients with subacute back pain; SABPp/r: patients with SABPwith persistent

pain or recovered pain after 6 months, based on a pain reduction of 20% from baseline to the follow-up assessment.
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any pattern of activity (all t(47) < 2.49, p > 0.74; all AUC <0.69,

p > 0.84; see Table S7) or connectivity (all t < 3.17, p > 0.12; all

AUC < 0.74, p > 0.10; see Table S8) that significantly classified

patients into recovered and persistent patients above chance

level.

An additional whole-brain searchlight MVPA analysis did

not yield any significant predictions related to activations

in other brain regions for the transition from subacute to

chronic pain following appropriate multiple comparisons

corrections.

Reward-learning characteristics in chronic pain: ROI
and connectivity analysis
To check whether the vmPFC response during reward anticipa-

tion and discriminative signals is characteristic for the chronic

stage of back pain, we employed the same reward-learning

paradigm that we used for patients with SABP and compared

patients with CBP with controls. In patients with CBP, we found

significantly lower BOLD responses in the vmPFC compared

with controls during PPEs for monetary reward (cluster size =

7 voxels, coordinates [MNI] of peak voxel: x = �4.5, y = 49.5,

z = �2.5, p(FWE) = 0.04, t(max) = 3.48) and significantly higher

BOLD responses in the vmPFC in response to a discriminative

stimulus for monetary reward (cluster size = 48 voxels, coordi-

nates [MNI] of peak voxel: x = �0.5, y = 55.5, z = �8.5,

p(FWE) = 0.01, t(max) = 3.69). A very small cluster of voxels
in the left NAc further showed significantly higher functional

connectivity with the vmPFC in patients with CBP compared

with controls during PPEs for monetary reward (cluster size =

2 voxels, coordinates [MNI] of peak voxel: x = �12.5, y = 9.5,

z = �10.5, p(FWE) = 0.03, t(max) = 4.2; see Figure 5). Neither

activity in NAc, nor in vmPFC, nor functional connectivity be-

tween vmPFC and NAc significantly differed between patients

with CBP and controls during any other reward-learning

process.

To test if reward learning was associated with pain severity in

patients with CBP, we extracted parameter estimates from pre-

defined ROIs of the vmPFC and bilateral NAc for each contrast

and each individual. We then correlated ongoing pain severity

with those parameter estimates. Encoding of PPEs and NPEs

(all r(27) < 0.36, p = 1.00, and all AUC < 0.56, p = 1.00), discrim-

inative stimuli (all r(27) < 0.35, p = 1.00, and all AUC < 0.63, p =

1.00), the anticipation of reward (all r(27) < 0.37, p = 1.00, and

all AUC < 0.60, p = 1.00), or the painful stimulus (all

r(27) < 0.10, p = 1.00, and all AUC < 0.59, p = 1.00) was not signif-

icantly correlated to back-pain severity in patients with CBP (see

Figure 5 and Table S9). Also, functional connectivity between

vmPFC and NAc during PPEs and NPEs (all r(27) < 0.28, p =

1.00, and all AUC < 0.62, p = 1.00), discriminative stimuli (all

r(27) < 0.23, p = 1.00, and all AUC < 0.64, p = 1.00), anticipation

(all r(27) < 0.36, p = 1.00, and all AUC < 0.56, p = 1.00), or the

painful stimulus (all r(27) < 0.38, p = 1.00, and all AUC < 0.54,
Cell Reports Medicine 3, 100677, July 19, 2022 5
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A B Figure 4. Pattern of responses to the discrim-

inative stimulus for pain relief in the right NAc

predicts transition from subacute to chronic

pain

(A) Patterns of voxelwise t scores from the contrast

DSpain (SABPp > SABPr). Warm colors depict voxels

with higher responses in patients with persistent

pain, while cool colors depict voxels with higher

responses in recovered patients.

(B) The corresponding ROC curve for classifying

recovered and persistent-pain patients based on the

multivariate classifiers. We report the area under the

ROC curve as an estimate of sensitivity and speci-

ficity. Associated p values for the comparison to a

chance-level ROC curve (i.e., AUC = 0.5) are re-

ported as Bonferroni-corrected p values (corrected

for 45 tests, yielding a threshold of p < 0.001). The

boxplot additionally shows the probability of being

classified as a patient with persistent pain for

recovered patients (yellow) and patients with

persistent pain at follow up (blue). The hinges of the

boxplots represent the first and third quartiles, and

the whiskers extend to the last value within 1.5 times

the interquartile range. Single data points are shown

as black circles. rNAc, right nucleus accumbens;

DS, discriminative stimulus; AUC, area under the

curve; SABP, patients with subacute back pain;

SABPp/r: patients with SABP with persistent pain or

recovered pain after 6 months, based on a pain

reduction of 20% from baseline to the follow-up

assessment.
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p = 1.00) was not significantly correlated with pain severity in pa-

tients with CBP (see Figure 5 and Table S10).

Resting-state characteristics of chronic pain
We further tested if increased functional vmPFC-NAc connectiv-

ity per se, or specifically related to PPE/NPE, characterized chro-

nicity. For this purpose, we analyzed the functional connectivity

between vmPFC and NAc based on an initial MR session but

found no difference between patients with CBP and controls in

functional resting-state connectivity between vmPFC and left

(AUC = 0.42, p = 1.00) or right NAc (AUC = 0.47, p = 1.00; see

Figure 6).

DISCUSSION

This study investigated to what extent the encoding of operant-

learning processes in the vmPFC-NAc pathway can be utilized to

predict the development of CBP and to what extent it character-

izes the chronic stage of back pain. In patients with SABP, the

transition to chronic pain was best predicted by increased mon-

etary reward prediction error signals in the NAc as well as an in-

crease in functional connectivity between the vmPFC and the

NAc related to NPEs. In patients with CBP, compared with con-

trols, we found a reduced vmPFC response during encoding of

positive monetary reward prediction errors but an increased

vmPFC response to a discriminative stimulus of monetary re-

wards. Resting-state vmPFC-NAc connectivity predicted chro-

nicity independent of task-based prediction of chronicity but

was not characteristic for the chronic stage of back pain. This

supports the view of learning-related adaptations in the
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vmPFC-NAc pathway during the transition to chronic pain28

and also indicates a role of the vmPFC-NAc pathway in the tran-

sition to chronic pain that is independent of operant learning.

Reward prediction error signals serve as a teaching signal in

reinforcement learning to promote behavior that will maximize

future rewards.29 Together, the vmPFC and NAc represent a

fronto-striatal loop that is essential in coding rewarding events.30

Reward prediction errors are encoded by phasic dopamine

signaling in the NAc,14,31 while dopamine-dependent activity in

the vmPFC tracks the learned value of signals to evaluate the

likelihood of obtaining the reward after a given behavior.32 Baliki

et al. showed evidence of the predictive value of the vmPFC-NAc

pathway for the development of chronic pain.8 Our current data

confirm and extend these findings, suggesting that patients who

later develop chronic pain have a hyperactive reward updating

system during the subacute phase of their pain. This is in line

with the finding that food reward enhances dopamine levels in

the NAc in early stages of a rat SNL model but not in later

stages.19 Furthermore, negative reinforcement (analgesic treat-

ment with clonidine) in a similar time window after SNL promotes

conditioned place preference, mediated by enhanced dopamine

levels in the NAc.33 The same effect of negative reinforcement

(analgesic treatment via peripheral nerve block) on conditioned

place preference and increased dopamine levels in the NAc

was reported in a very early time window (24 h) but not 96 h after

incision injury in rats but was blocked after the injection of the se-

lective dopamine antagonist flupenthixol into the NAc.16 In light

of these findings and the data presented in the current study,

the vmPFC-NAc response to pain variations found by Baliki

et al.8 might have been related to an updating process of signals



A

B
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Figure 5. Patients with CBP are character-

ized by reduced vmPFC responses to predic-

tion error and increased responses to a

discriminative stimulus

(A–C) (Left) BOLD responses to (A) positive mone-

tary reward prediction error, (B) the discriminative

stimulus for monetary rewards, and (C) functional

connectivity between left NAc and vmPFC during

positive monetary reward prediction error are de-

picted as p maps and were calculated using non-

parametric two-sample t tests (CBP > HC shown in

red and yellow, CBP < HC shown in blue and light

blue) within a mask of vmPFC and NAc, with boot-

strapping, using 5,000 permutations (all reward-

learning contrasts that dissociated HC and CBP in

vmPFC and NAc are shown).

(Right) No significant correlations were found be-

tween pain severity in patients with CBP and the

BOLD response in predefined masks of the vmPFC

and NAc for the respective contrast. Outliers are

depicted as empty circles and imputed values as

triangles. See Tables S9 and S10 for all other as-

sociations between reward-learning contrasts and

pain severity. vmPFC, ventromedial prefrontal cor-

tex; lNAc, left nucleus accumbens; DS, discrimina-

tive stimulus; PPE, positive prediction error for

monetary rewards.
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for the negative reinforcement experienced during phases of

pain relief, which is in line with the idea that NAc activity predicts

reward (pain relief) magnitude at stimulus offset.34

Interestingly, in our study, we showed a hyperactive reward

updating system only for monetary rewards but not for pain relief

as a reward. This is contrary to the finding by Kato et al.,19 who

observed enhanced dopamine levels in the NAc in response to

pain relief in an early, but not in a later, time window after SNL.

This could have different reasons: first, the NAc response to

pain relief is enhanced in early time windows but has no effect

on the subsequent development of chronic pain. Second, the

feedback phase in our pain-relief condition was 50% shorter

than in the monetary reward condition, therefore lowering the

statistical power of the prediction error signal in this condition.

Indeed, increased connectivity between vmPFC and rNAc dur-

ing the encoding of NPEs for pain relief showed a small, but

non-significant, correlation (r = 0.41, p = 0.19; binary classifica-

tion: AUC = 0.66, p = 1.00). Third, in the current study, we

used relief from evoked pain as a negative reinforcement. In

such cases, the signal for pain relief cannot be as clearly disso-

ciated from the signal for pain, as in the case of ongoing pain.35 It
Cell R
is therefore possible that we rather showed

that updating a punishing pain signal was

not predictive of pain chronicity than

showing the same for a signal of pain relief.

Of note, vmPFC-NAc connectivity at

rest predicted chronicity independent of

learning-related responses in the

vmPFC-NAc pathway. This extends find-

ings from a spared nerve injury (SNI)

model of chronic pain showing no altered
fronto-striatal resting-state connectivity but decreased con-

nectivity of the NAc to the insular, primary, and secondary

sensory cortices, caudate, and putamen.36 Importantly,

these pathways were not tested in the current study, and

the differences between sham and SNI treated rats were

found 28 days after surgery and therefore represent alter-

ations at the chronic stage and not necessarily predictive

mechanisms. The absence of alterations in vmPFC-NAc con-

nectivity at rest is therefore in line with our negative finding in

patients with CBP compared with controls and a recent study

in humans showing decreased functional integration of the

vmPFC at rest, evidenced by lower global efficiency, degree,

and betweenness centrality in patients with CBP compared

with controls.24

Chronicity was further predicted by a pattern of activity in

response to a signal that contains previously acquired informa-

tion on the probability of pain/pain relief (discriminative stimulus)

but not by reward prediction error signals. Pattern analyses are

not sensitive to response magnitude in a cluster of voxels but

rather to the relative pattern of activity in different voxels within

this cluster. The absence of predictive value of reward prediction
eports Medicine 3, 100677, July 19, 2022 7



A B Figure 6. Functional connectivity of NAc and

vmPFC at rest does not dissociate patients

with chronic back pain and controls

(A and B) ROC curves were created for classifying

patients with chronic back pain and controls based

on the functional connectivity between vmPFC and

(A) right NAc and (B) left NAc, respectively. We

report the area under each ROC curve as an esti-

mate of sensitivity and specificity. Associated p

values for the comparison to a chance-level ROC

curve (i.e., AUC = 0.5) are reported as Bonferroni-

corrected p values (corrected for 2 tests, yielding an

uncorrected threshold of p < 0.025). Boxplots

additionally show the distribution of patients with

CBP (yellow) and controls (blue). The hinges of the

boxplots represent the first and third quartiles, and

the whiskers extend to the last value within 1.5 times

the interquartile range. Single data points are shown as circles. vmPFC, ventromedial prefrontal cortex; lNAc, left nucleus accumbens; rNAc, right nucleus

accumbens; BL, baseline; FU, follow up; AUC, area under the curve; RS, resting state; PE, parameter estimates.
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error patterns therefore does not contradict our results from the

univariate analysis but rather shows additional reorganization

within the NAc. The spatial distribution of this pattern does not

seem to represent a functional distinction of NAc core and shell

(see Figure 4), whichwas previously discussed to encode expec-

tancy of monetary reward and pain relief.37 Rather, distinct sub-

groups of neurons in the NAc respond to different functions dur-

ing reward learning, such as cue responses, motor-response

initiation, or the encoding of different reward intensities.38 Future

studies should therefore investigate spatial reorganization of

cue-responsive neurons in the NAc, as these may characterize

patients at risk for developing chronic pain.

We further found that, compared with controls, patients with

CBP showed increased vmPFC responses to the discriminative

stimulus of the monetary reward condition, while the monetary

reward prediction error signal in the vmPFC was decreased.

Therefore, patients with CBP showed increased vmPFC re-

sponses to a signal that contained previously acquired informa-

tion on reward probability but reduced activation to a signal con-

taining new information on stimulus-reward contingencies. This

is in line with a previous study in patients with CBP, which re-

ported that impaired explorative behavior was associated with

a loss of distinction between positive and negative feedback in

the P300 component and an inverted feedback-related nega-

tivity recorded at frontal electrodes (Fz) in the electroencephalo-

gram (EEG),26 two evoked potentials that were previously con-

nected to reward prediction error processing.39

Our results indicate that in the chronic stage of back pain, the

evaluation of an established reward signal is enhanced at the

cost of an updating of this signal to better adapt to a changing

environment, or, in other words, patients with CBP show

impaired vmPFC responses during learning from reward but

increased sensitivity to reward signals. This is in line with the

finding that patients with chronic pain are less responsive to re-

wards, while the drive to receive rewards is not decreased.40 On

the neurochemical level, this may be related to (tonic) hypodopa-

minergic states in chronic pain. Such a hypodopaminergic state

has been shown in patients with fibromyalgia, who showed

reduced L-Dopa uptake in the ventral tegmental area, thalamus,

hippocampus, anterior cingulate cortex, and the insular cortex,41
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in patients with CBP,who showed reducedD2/D3 receptor bind-

ing in the ventral striatum,42 and in patients with burning mouth

syndrome, who showed reduced striatal D1 receptor binding.43

While phasic dopamine activity in the NAc drives a reevaluation

of existing stimulus-reward contingencies, tonic dopamine

release modulates the responsiveness of NAc neurons to inputs

from medial prefrontal cortex.44

In summary, the way neural pathways respond to the explora-

tion-exploitation dilemma in reward learning predicts the devel-

opment of chronic pain and characterizes the chronic stage of

back pain. While the vmPFC-NAc pathway is highly sensitive

during the exploration of potential reward signals during the tran-

sition from subacute to chronic pain, the same pathway is more

sensitive during the exploitation of past stimulus-reward associ-

ations in patients with chronic pain, even if these contingencies

may no longer be appropriate. Increasing the variability of behav-

ioral responses and fostering explorative behavior may be a

valuable treatment target in patients with chronic pain.45 Behav-

ioral treatments targeting operant-learning mechanisms are

available,46,47 and Ashar et al.48 showed that brain connectivity

patterns may predict successful cognitive-behavioral treatment

of CBP. Moreover, the transition from subacute to CBP was pre-

vented in patients treated with Levodopa combined with nap-

roxen and was associated with a normalization of altered

vmPFC-NAc connectivity specifically in female patients with

SABP, while naproxen alone did not have beneficial effects.49

Therefore, treatment and prevention of CBP could be

improved by allocating patients to dopaminergic treatments, op-

erant therapies, or their combination based on behavioral and

vmPFC-NAc responses during reward learning. Identification

of risk groups may further be improved by studying the associa-

tion of fronto-striatal reward processing with genetic risk

factors.50

Limitations of the study
The present data need to be considered in the light of several lim-

itations. First, the aforementioned methodological consider-

ations do not allow final conclusions on the predictive role of

vmPFC-NAc processing of pain relief. Second, our follow-up

assessment in patients with SABP was carried out after



Table 1. Patient characteristics: All values show the mean and standard deviation for each individual group

SABP SABPp SABPr CBP HC Missings

N 48 21 27 29 29 NA

Age 35.0 (13.4) 36.6 (13.9) 33.8 (13.0) 38.7 (15.8) 35.7 (14.7) 0/0/0/0/0

Gender (m/f) 18/30 6/15 12/15 16/13 17/12 0/0/0/0/0

Number of

days with pain

during last

year

66.2 (42.9) 57.6 (32.6) 73.0 (49.1) 241 (92.3) NA 7/3/4/2/NA

Time since

first pain

episode

(months)a

25.2 [4.3,

119.9]

28.5 [4.4,

100.6]

21.8 [6.1,

119.9]

62.5 [18.8–

145.3]

NA 0/0/0/0/NA

Delta pain

severity (FU-

BL): absolute

�0.91 (1.19) 0.05 (0.69) �1.65 (0.93) NA NA 0/0/0/NA/NA

Delta pain

severity (FU-

BL):

percentage

�25.7 (35.9) 3.4 (20.4) �48.3 (28.1) NA NA 0/0/0/NA/NA

Pain severity

(MPI)

2.33 (0.93) 2.42 (0.92) 2.27 (0.95) 2.67 (0.85) NA 0/0/0/1/NA

Interference

(MPI)

1.81 (1.11) 2.05 (1.17) 1.63 (1.04) 2.47 (1.10) NA 4/2/2/4/NA

Negative

mood (MPI)

2.67 (1.18) 2.75 (1.16) 2.61 (1.21) 2.71 (1.03) NA 4/2/2/4/NA

Life control

(MPI)

3.92 (1.27) 3.88 (1.28) 3.96 (1.28) 3.92 (1.02) NA 4/2/2/4/NA

Support (MPI) 2.17 (1.82) 2.39 (1.92) 2.00 (1.76) 2.72 (1.67) NA 6/3/3/4/NA

CPGa 1.00 [0, 2] 2.00 [0, 2] 1.00 [0, 2] 2.00 [0.5,

3.00]

NA 6/4/2/6/NA

ÖMPQ 72.0 (31.1) 71.9 (34.1) 72.1 (29.2) 82.2 (35.9) NA 0/0/0/1/NA

Anxiety

(HADS)

7.23 (3.98) 7.06 (3.93) 7.36 (4.09) 7.32 (4.50) 3.54 (2.39) 5/3/2/4/3

Depression

(HADS)

4.81 (4.01) 4.33 (2.83) 5.16 (4.71) 5.59 (4.08) 2.96 (4.24) 5/3/2/4/3

Perceived

stress (PSS)

18.1 (6.84) 18.1 (7.19) 18.0 (6.70) 17.9 (7.63) 9.88 (5.76) 4/2/2/4/5

MPI, West Haven-Yale Multidimensional Pain Inventory; CPG, Chronic Pain Grade; ÖMPQ, Örebro Musculoskeletal Pain Questionnaire; HADS, Hos-

pital Anxiety and Depression Scale; HC, healthy control; CBP, chronic back pain; SABP, patients with subacute back pain; SABPp/r, patients with

SABP with persistent pain or recovered pain after 6 months, based on a pain reduction of 20% from baseline to the follow-up assessment; FU, follow

up after 6 months; BL, baseline assessment; SD, standard deviation.
aFor the Chronic Pain Grade and pain onset, the median and interquartile range are depicted.
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6 months. Previous research found gray-matter density changes

in the NAc after only 12 months and predicted pain severity on

the basis of functional connectivity between the vmPFC and

NAc after 12 months but not after 7 weeks or 6 months.8 Future

studieswill have to investigate if the predictive value of enhanced

updating processes in the vmPFC-NAc pathway is stable also in

later stages of chronicity. Third, we focused our hypotheses and

analyses on the role of the vmPFC-NAc pathway. This pathway is

not independent of other areas such as the dorsal parts of the

PFC, the ventral tegmental area (VTA), anterior cingulate cortex

(ACC), putamen, and caudate, which are involved in critical as-

pects of reward learning27,51–55 and need to be investigated for

their relevance to pain chronicity. Fourth, our limited sample
size precluded the consideration of several potential moderating

effects beyond brain functions such as peripheral, psychologi-

cal, and social factors. We would therefore like to emphasize

that additional variables not covered in this analysis may be

important contributors to pain chronicity in addition to the neural

response of the vmPFC-NAc pathway during reward learning.

Fifth, the results related to altered prediction error encoding in

patients with CBP compared with controls show only very small

clusters of reduced BOLD responses in the vmPFC and

increased vmPFC-NAc connectivity, and the predictive effect

of vmPFC-NAc connectivity at rest is small. These effects there-

fore require replication to estimate their robustness. Future

studies should aim for higher sample sizes to confirm our results
Cell Reports Medicine 3, 100677, July 19, 2022 9
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and to investigate the effects of moderating factors. Sixth, espe-

cially, our negative findings on neural response patterns have to

be viewed in light of the limited spatial resolution of our functional

images (2.3 3 2.3 3 3 mm).

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Subjects

B Clinical assessments

d METHOD DETAILS

B Experimental procedures

B Magnetic resonance imaging

B Regions of interest

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Preprocessing of magnetic resonance imaging data

B Anatomical data preprocessing

B Functional data preprocessing

B Outlier detection, imputation, and correction for multi-

ple comparisons

B Reward learning and the transition to chronic pain: ROI

and connectivity analysis

B Resting-state prediction of the transition to chronic

pain

B Reward learning and the transition to chronic pain:

Pattern decoding

B Reward learning characteristics in chronic back pain

d ADDITIONAL RESOURCES

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

xcrm.2022.100677.

ACKNOWLEDGMENTS

This work was supported by a grant from the Deutsche Forschungsgemein-

schaft (SFB1158/B03 to F.N. and H.F.).

AUTHOR CONTRIBUTIONS

Study concept and design, H.F., K.U., F.N., andM.L.; acquisition of data, M.L.,

K.U., and M.K.; analysis and interpretation of data, M.L., S.M.L., F.N., S.D.,

and H.F.; drafting of the manuscript, M.L., S.M.L., K.U., S.D., M.K., F.N.,

and H.F.; critical revision of the manuscript for important intellectual content,

M.L., S.M.L., K.U., S.D., M.K., F.N., and H.F.; obtained funding, H.F. and

F.N.; administrative, technical, or material support, M.L., S.M.L., and S.D.;

study supervision, H.F. and F.N.

DECLARATION OF INTERESTS

The authors declare no competing interests.
10 Cell Reports Medicine 3, 100677, July 19, 2022
Received: December 13, 2021

Revised: April 8, 2022

Accepted: June 13, 2022

Published: July 6, 2022

REFERENCES

1. Vlaeyen, J.W. (2015). Learning to predict and control harmful events:

chronic pain and conditioning. Pain 156, S86–S93. https://doi.org/10.

1097/j.pain.0000000000000107.

2. Main, C.J., Keefe, F.J., Jensen, M.P., Vlaeyen, J.W., Vowles, K.E., and

Fordyce, W.E. (2014). Fordyce’s Behavioral Methods for Chronic Pain

and Illness: Republished with Invited Commentaries (Wolters Kluwer,

IASP Press).

3. Fordyce, W.E. (1976). Behavioral Methods for Chronic Pain and Illness

(C.V. Mosby).

4. Flor, H., Knost, B., andBirbaumer, N. (2002). The role of operant condition-

ing in chronic pain: an experimental investigation. Pain 95, 111–118.

https://doi.org/10.1016/s0304-3959(01)00385-2.

5. Raichle, K.A., Romano, J.M., and Jensen, M.P. (2011). Partner responses

to patient pain and well behaviors and their relationship to patient pain

behavior, functioning, and depression. Pain 152, 82–88. https://doi.org/

10.1016/j.pain.2010.09.015.

6. Nees, F., Ditzen, B., and Flor, H. (in press). When shared pain is not half the

pain: enhanced central nervous system processing and verbal reports of

pain in the presence of a solicitous spouse. Pain.

7. Fordyce, W.E., Brockway, J.A., Bergman, J.A., and Spengler, D. (1986).

Acute back pain: a control-group comparison of behavioral vs traditional

management methods. J. Behav. Med. 9, 127–140. https://doi.org/10.

1007/bf00848473.

8. Baliki, M.N., Petre, B., Torbey, S., Herrmann, K.M., Huang, L., Schnitzer,

T.J., Fields, H.L., and Apkarian, A.V. (2012). Corticostriatal functional con-

nectivity predicts transition to chronic back pain. Nat. Neurosci. 15, 1117–

1119. https://doi.org/10.1038/nn.3153.

9. Leknes, S., Lee, M., Berna, C., Andersson, J., and Tracey, I. (2011). Relief

as a reward: hedonic and neural responses to safety from pain. PLoS One

6, e17870. https://doi.org/10.1371/journal.pone.0017870.

10. Seymour, B., Daw, N.D., Roiser, J.P., Dayan, P., and Dolan, R. (2012). Se-

rotonin selectively modulates reward value in human decision-making.

J. Neurosci. 32, 5833–5842. https://doi.org/10.1523/JNEUROSCI.0053-

12.2012.

11. Abler, B., Walter, H., Erk, S., Kammerer, H., and Spitzer, M. (2006). Predic-

tion error as a linear function of reward probability is coded in human nu-

cleus accumbens. Neuroimage 31, 790–795. https://doi.org/10.1016/j.

neuroimage.2006.01.001.

12. Pagnoni, G., Zink, C.F., Montague, P.R., and Berns, G.S. (2002). Activity in

human ventral striatum locked to errors of reward prediction. Nat. Neuro-

sci. 5, 97–98. https://doi.org/10.1038/nn802.

13. Nicola, S.M., Yun, I.A.,Wakabayashi, K.T., and Fields, H.L. (2004). Firing of

nucleus accumbens neurons during the consummatory phase of a

discriminative stimulus task depends on previous reward predictive

cues. J. Neurophysiol. 91, 1866–1882. https://doi.org/10.1152/jn.00658.

2003.

14. Hart, A.S., Rutledge, R.B., Glimcher, P.W., and Phillips, P.E.M. (2014).

Phasic dopamine release in the rat nucleus accumbens symmetrically en-

codes a reward prediction error term. J. Neurosci. 34, 698–704. https://

doi.org/10.1523/jneurosci.2489-13.2014.

15. Schultz, W. (2017). Reward prediction error. Curr. Biol. 27, R369–R371.

https://doi.org/10.1016/j.cub.2017.02.064.

16. Navratilova, E., Xie, J.Y., Okun, A., Qu, C., Eyde, N., Ci, S., Ossipov, M.H.,

King, T., Fields, H.L., and Porreca, F. (2012). Pain relief produces negative

reinforcement through activation of mesolimbic reward–valuation cir-

cuitry. Proc. Natl. Acad. Sci. U S A 109, 20709–20713. https://doi.org/

10.1073/pnas.1214605109.

https://doi.org/10.1016/j.xcrm.2022.100677
https://doi.org/10.1016/j.xcrm.2022.100677
https://doi.org/10.1097/j.pain.0000000000000107
https://doi.org/10.1097/j.pain.0000000000000107
http://refhub.elsevier.com/S2666-3791(22)00213-0/sref2
http://refhub.elsevier.com/S2666-3791(22)00213-0/sref2
http://refhub.elsevier.com/S2666-3791(22)00213-0/sref2
http://refhub.elsevier.com/S2666-3791(22)00213-0/sref2
http://refhub.elsevier.com/S2666-3791(22)00213-0/sref3
http://refhub.elsevier.com/S2666-3791(22)00213-0/sref3
https://doi.org/10.1016/s0304-3959(01)00385-2
https://doi.org/10.1016/j.pain.2010.09.015
https://doi.org/10.1016/j.pain.2010.09.015
https://doi.org/10.1007/bf00848473
https://doi.org/10.1007/bf00848473
https://doi.org/10.1038/nn.3153
https://doi.org/10.1371/journal.pone.0017870
https://doi.org/10.1523/JNEUROSCI.0053-12.2012
https://doi.org/10.1523/JNEUROSCI.0053-12.2012
https://doi.org/10.1016/j.neuroimage.2006.01.001
https://doi.org/10.1016/j.neuroimage.2006.01.001
https://doi.org/10.1038/nn802
https://doi.org/10.1152/jn.00658.2003
https://doi.org/10.1152/jn.00658.2003
https://doi.org/10.1523/jneurosci.2489-13.2014
https://doi.org/10.1523/jneurosci.2489-13.2014
https://doi.org/10.1016/j.cub.2017.02.064
https://doi.org/10.1073/pnas.1214605109
https://doi.org/10.1073/pnas.1214605109


Article
ll

OPEN ACCESS
17. Wunderlich, K., Rangel, A., and O’Doherty, J.P. (2010). Economic choices

can be made using only stimulus values. Proc. Natl. Acad. Sci. U S A 107,

15005–15010. https://doi.org/10.1073/pnas.1002258107.

18. Kim, H., Shimojo, S., and O’Doherty, J.P. (2011). Overlapping responses

for the expectation of juice and money rewards in human ventromedial

prefrontal cortex. Cerebr. Cortex 21, 769–776. https://doi.org/10.1093/

cercor/bhq145.

19. Kato, T., Ide, S., and Minami, M. (2016). Pain relief induces dopamine

release in the rat nucleus accumbens during the early but not late phase

of neuropathic pain. Neurosci. Lett. 629, 73–78. https://doi.org/10.1016/

j.neulet.2016.06.060.

20. Apkarian, A.V. (2008). Pain perception in relation to emotional learning.

Curr. Opin. Neurobiol. 18, 464–468. https://doi.org/10.1016/j.conb.2008.

09.012.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects
Participants were recruited through the outpatient pain clinic of the Institute of Cognitive and Clinical Neuroscience, general practi-

tioners, and physiotherapy practices as well as reports in local newspapers and through the institute’s website. We examined fifty pa-

tients with subacute back pain, 29 patients with chronic back pain and 29 healthy controls. Patients with CBP and controls were

matched for age and gender. Bayesian null-hypothesis testing with Jeffreys’s Amazing Statistics Program (JASP) version 0.14.0.0

and zero-centered standard medium-width priors showed anecdotal to moderate evidence for the null hypotheses, i.e. confirmed

that the age of patients with CBP did not differ from controls BF01 = 2.973) and that gender of patients with CBP did not differ from

controls (BF01 = 3.078). To meet inclusion criteria, participants had to be at least 18 years old. Healthy controls were included only if

they were free of pain. For the SABP group we included patients with a current back pain episode of 7–12 weeks of back pain. Patients

with a current backpain episode and additional backpain episodes in their historywere included aswell, if the episodesnever exceeded

a period of 12 weeks. For the CBP group we only included patients with a current back pain episode of more than 100 days. For partic-

ipant characteristics, see Table 1. Current and past medication was assessed as self-report prior to the experiment. Regular use was

reported for NSAIDs (5SABP, 3CBP), statins (1CBP), antihistamines (1CBP) angiotensin receptor blockers (2SABP), andproton-pump

inhibitors (1 SABP).Occasional usewas reported for NSAIDs (1HC, 2 SABP, 3CBP), antihistamines (1HC, 1CBP), angiotensin receptor

blockers (1 CBP) and benzodiazepines (1 CBP). Past medication was reported for NSAIDs (1 HC, 22 SABP, 14 CBP), opiates (2 CBP),

ACE inhibitors (1 CBP), benzodiazepines (1 SABP, 2 CBP) and cannabinoids (1 SABP).

Patients were assessed for general eligibility via self-report using a screening intake form, which covered co-morbid health and

psychological conditions, MRI safety, concomitant medication dosages and indications, current and previous illicit drug/alcohol

use, and pain levels. All participants passed the MRI safety screening requirements at each scanning visit. Informed consent was

obtained from all participants on their first visit. Participants were compensated with V10/hour. All procedures were approved by

the Ethics Committee of the Medical Faculty Mannheim of Heidelberg University and complied with the Declaration of Helsinki in

its most recent form. One patient with SABP was unavailable for the follow-up screening and therefore dropped out at follow-up,
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and one additional patient with SABP was excluded as an outlier because of an extreme increase in pain severity from baseline to

follow-up (466 percent, at a sample mean of �15.62 percent the subject was >6 standard deviations from the sample mean). We

could not acquire resting state scans from four patients with SABP, two patients with CBP and four HC.

We based our sample size calculation on the expected correlation between extracted beta values from the univariate analysis at

baseline and the change in pain severity from baseline to follow-up. Previous publications found high correlations between NAc con-

nectivity and pain measures at baseline (between r = 0.72 and r = 0.768 and r = 0.8634). We therefore expected a moderate to high

correlation of NAc connectivity with change in pain severity. A priori sample size estimation with GPower 3.1.9.256 for an a priori sam-

ple size calculation with an expected correlation of r = 0.7, a power of 0.90 and a p of 0.05, which was adjusted for multiple compar-

isonswith 3 regions of interest, 9 contrasts of interest (i.e. 27 tests) and task-based functional connectivity between vmPFC and bilat-

eral NAc for the 9 contrasts of interest (i.e. 18 tests), resulting in a corrected threshold of p = 0.001 and a required sample size of 27

patients. This is an interim evaluation of a larger ongoing project.

Clinical assessments
We employed the percentage change in the Pain Severity scale of the German version of theWest Haven-Yale Multidimensional Pain

Inventory at the beginning of the baseline assessment57 to the follow-up screening after 6 months using the following formula: DPS=
PSfollow�up�PSbaseline

PSbaseline
3100 as an indicator of pain persistence.

At the beginning of the baseline assessment, the participants additionally completed the German versions of the Chronic Pain

Grade (CPG),58 the Örebro Musculoskeletal Pain Questionnaire (YF),59 the Hospital Anxiety and Depression Scale (HADS),60 and

the Perceived Stress Scale (PSS).61 All sample characteristics are depicted in Table 1.

To assess comorbid mental disorders, all participants were interviewed by a psychologist using the German version of the Struc-

tured Clinical Interviews (SCID I) for the Diagnostic and Statistical Manual of Mental Disorders (DSM IV),62 see Table S1 for all current

or past disorders.

METHOD DETAILS

Experimental procedures
A differential operant conditioning paradigm was carried out during fMRI. Participants were able to win money (1V) or pain relief

(reduce pain duration from 3 to 1.5 s) via button presses in response to two colored arrows that served as discriminative stimuli

(DS). The color (blue/yellow) of the arrows indicated the type of potential reward. Reward was not given if participants reacted too

slowly (>6 s). In all other trials the reinforcement rate was predefined, and participants received the respective reward with a 50%

reinforcement schedule. Discriminative stimuli were presented for 6 s, followed by an anticipation phase (4 s), and the feedback

phase. In the monetary reward condition, an image of a 1V coin was presented during the entire feedback phase (3 s). In the pain

relief condition the painful stimulus was always presented for 1.5 s and continued for another 1.5 s in trials without pain relief, whereas

it stopped after 1.5 s in pain relief trials. The inter trial interval was randomly jittered between 8 and 10 s, see Figure 1.

For stimulus delivery Presentation� software (Version 18.3, http://www.neurobs.com/) was used. Visual stimuli were presented to the

subjects via goggles. Painful stimuli were applied via copper surface electrodesat the left thumbwith a stimulusduration of 2msand at a

frequencyof12Hz, usingaconstantcurrent stimulator (modelDS7A;Digitimer,Hertfordshire,England). Prior to theexperiment, thestim-

ulus intensitywas calibrated to a perceived pain intensity rating of 7-8 on a numeric rating scale (endpoints 0 = ‘‘no pain’’ and 10= ‘‘worst

pain imaginable’’). This stimulus intensity was used for all further procedures (stimulus intensities usedwere HC: mean = 6.32mA, stan-

dard deviation = 5.29mA; CBP:mean= 5.30mA, standard deviation = 7.27mA; SABP:mean = 5.46mA, standard deviation = 4.55mA).

The experiment consisted of three phases. During habituation participants would undergo 8 trials of each type, but without monetary

reward, pain, or pain relief. The acquisition phase consisted of 20 trials of each condition. During extinction DSmoney and DSpainrelief were

presented 8 times again, but without painful stimulation, pain relief ormonetary reward. At the end of each phase participants performed

ratings of perceived valence, pain, and contingencyof the discriminative stimuli. Ratings of valence and arousalwere assessedusing the

self-assessment manikins,63 asking: ‘‘How pleasant/unpleasant was the blue/yellow arrow?’’ and ‘‘How arousing did you find the blue/

yellowarrow?’’. Theywere later converted toa 1 to9 scale.Contingency ratingsweregiven ona scale from1 to9, asking ‘‘How likelywas

theblue/yellowarrow followedbyamonetary reward/painful relief?’’, ranging from‘‘highlyunlikely’’ to ‘‘highly likely’’.Weemployedsepa-

rate analyses of variance to test main effects of group (persistent versus recovered patients with SABP or CBP versus HC respectively)

and interaction effects for group and phase (habituation versus acquisition versus extinction). None of these variables significantly

differedbetweenCBPandcontrolsorpatientswithpersistent and recoveredSABP.Additionally,wecorrelated thechanges inperceived

valence/arousal/contingencyand reaction times fromhabituation toacquisitionand fromacquisition toextinctionwith thechange inpain

severity (in patients with SABP), or the pain severity at baseline (in patients with CBP). None of these parameters showed any significant

association with severity of pain (CBP) or changes in pain severity (SABP), see Tables S2 and S3 and Figures S1, S2, S3, and S4).

Magnetic resonance imaging
Magnetic resonance imaging was performed on a 3 Tesla Tim TRIO whole body scanner (SIEMENS Healthineers, Erlangen, Ger-

many), equipped with a 12-channel head coil. For visual presentation we used goggles (see above). To be able to comfortably fit
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these into the head coil for participants with large head sizes we used a 12-channel head coil. Shimming of the scanner was done to

account for maximum magnetic field homogeneity and a standard gradient field map was recorded at the beginning of each

measurement.

For the task-based functional protocol, 40 contiguous axial slices (slice thickness: 2.3 mm, slice gap: 0.7 mm) were acquired using

a T2*-weighted gradient-echo echo-planar imaging (EPI) sequence with GRAPPA technique (acceleration factor 2, repetition time

(TR) = 2350 ms, echo time (TE) = 22 ms, matrix size = 96 3 96, field of view (FoV) = 220 3 220 mm2, flip angle (a) = 90�, bandwidth

(BW) = 1270 Hz/px).

For the resting-state functional protocol, 36 contiguous axial slices (slice thickness: 3 mm, slice, in-plain voxel size: 2.33 2.3 mm,

no gap) were acquired using a T2*-weighted gradient-echo echo-planar imaging (EPI) sequence with GRAPPA technique (acceler-

ation factor 2, repetition time (TR) = 2100 ms, echo time (TE) = 23 ms, matrix size = 963 96, field of view (FoV) = 2203 220 mm2, flip

angle (a) = 90�, bandwidth (BW) = 1370 Hz/px). Two-hundred-and ten volumes were acquired in a total of 7 min and 21 s. Resting-

state scans were acquired on a separate experimental day. Subjects were asked to lay still with their eyes closed, remain awake and

try not to think about anything specific.

For structural reference, we used a T1-weighted magnetization prepared rapid gradient echo (MPRAGE) sequence (TR = 2300ms,

TE = 2.98ms, matrix size = 2403 256, field of view (FoV) = 2403 256mm2, flip angle (a) = 9�, bandwidth (BW) = 240 Hz/px) recording

with 192 sagittal slices.

Regions of interest
Masks for bilateral NAc and vmPFC for task-based and resting state fMRI were identified by extracting uniformity maps from the

meta-analysis tool Neurosynth.org,64 which identified 194 PubMed studies for the term ‘‘nucleus accumbens’’ and 333 PubMed

studies for the term ‘‘ventromedial prefrontal’’ (as of January 2021). Individual thresholds of these maps were determined by visual

inspection, to cover the anatomical region aswell as possible. Final thresholds were z values larger than 20 for NAc and larger than 10

for vmPFC. Afterwards, themaps were correctedmanually for voxels not belonging to the respective regions but representing voxels

of associated regions as defined by the meta-analysis tool. Finally, the NAc mask was split up into separate masks for right and left

NAc.

QUANTIFICATION AND STATISTICAL ANALYSIS

Preprocessing of magnetic resonance imaging data
Results included in this manuscript come from preprocessing performed using fMRIPrep version 20.0.7. The following boilerplate

text was automatically generated by fMRIPrep:

Results included in this manuscript come from preprocessing performed using fMRIPrep 20.0.7,65,66 which is based on Nipype

1.4.2.67,68

Anatomical data preprocessing
The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection,69 distributed with ANTs

2.2.0,70 and used as T1w-reference throughout the workflow. The T1w-reference was then skull-stripped with a Nipype implemen-

tation of the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of ce-

rebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast (FSL 5.0.971).

Volume-based spatial normalization to one standard space (MNI152NLin2009cAsym) was performed through nonlinear registration

with antsRegistration (ANTs 2.2.0), using brain-extracted versions of both T1w reference and the T1w template. The following tem-

plate was selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c72 TemplateFlow ID:

MNI152NLin2009cAsym.

Functional data preprocessing
For each of the 4 BOLD runs found per subject (across all tasks and sessions), the following preprocessing was performed. First, a

reference volume and its skull-stripped version were generated using a custom methodology of fMRIPrep. A B0-nonuniformity map

(or fieldmap) was estimated based on a phase-difference map calculated with a dual-echo GRE (gradient-recall echo) sequence,

processed with a custom workflow of SDCFlows inspired by the epidewarp.fsl script (http://www.nmr.mgh.harvard.edu/greve/

fbirn/b0/epidewarp.fsl) and further improvements in HCP Pipelines.73 The fieldmap was then co-registered to the target EPI

(echo-planar imaging) reference run and converted to a displacements field map (amenable to registration tools such as ANTs)

with FSL’s fugue and other SDCflows tools. Based on the estimated susceptibility distortion, a corrected EPI (echo-planar imaging)

reference was calculated for a more accurate co-registration with the anatomical reference. The BOLD reference was then co-regis-

tered to the T1w reference using flirt (FSL 5.0.974) with the boundary-based registration75 cost-function. Co-registration was config-

ured with nine degrees of freedom to account for distortions remaining in the BOLD reference. Head-motion parameters with respect

to the BOLD reference (transformationmatrices, and six corresponding rotation and translation parameters) are estimated before any

spatiotemporal filtering using mcflirt (FSL 5.0.976). BOLD runs were slice-time corrected using 3dTshift from AFNI 20160207.77 The

BOLD time-series (including slice-timing correction when applied) were resampled onto their original, native space by applying a
e3 Cell Reports Medicine 3, 100677, July 19, 2022
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single, composite transform to correct for head-motion and susceptibility distortions. These resampled BOLD time-series will be

referred to as preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD time-series were resampled into stan-

dard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped

version were generated using a custom methodology of fMRIPrep. Several confounding time-series were calculated based on the

preprocessed BOLD: framewise displacement (FD), DVARS and three region-wise global signals. FD and DVARS are calculated

for each functional run, both using their implementations in Nipype (following the definitions by Power et al.78). The three global sig-

nals are extracted within the CSF, theWM, and the whole-brain masks. Additionally, a set of physiological regressors were extracted

to allow for component-based noise correction (CompCor79). Principal components are estimated after high-pass filtering the pre-

processed BOLD time-series (using a discrete cosine filter with 128 s cut-off) for the two CompCor variants: temporal (tCompCor)

and anatomical (aCompCor). tCompCor components are then calculated from the top 5% variable voxels within a mask covering

the subcortical regions. This subcortical mask is obtained by heavily eroding the brain mask, which ensures it does not include

cortical GM regions. For aCompCor, components are calculated within the intersection of the aforementioned mask and the union

of CSF and WM masks calculated in T1w space, after their projection to the native space of each functional run (using the inverse

BOLD-to-T1w transformation). Components are also calculated separately within the WM and CSF masks. For each CompCor

decomposition, the k components with the largest singular values are retained, such that the retained components’ time series

are sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM, combined, or temporal). The remaining com-

ponents are dropped from consideration. The head-motion estimates calculated in the correction step were also placed within the

corresponding confounds file. The confound time series derived from headmotion estimates and global signals were expanded with

the inclusion of temporal derivatives and quadratic terms for each.80 Frames that exceeded a threshold of 0.5 mm FD or 1.5 stan-

dardized DVARS were annotated as motion outliers. All resamplings can be performed with *a single interpolation step* by

composing all the pertinent transformations (i.e. head-motion transformmatrices, susceptibility distortion correction when available,

and co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings were performed using antsApplyTrans-

forms (ANTs), configured with Lanczos interpolation to minimize the smoothing effects of other kernels.81 Non-gridded (surface) re-

samplings were performed using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.6.2,82 mostly within the functional processing workflow. For more details of the

pipeline, see the section corresponding to workflows in fMRIPrep’s documentation.

The above boilerplate text was automatically generated by fMRIPrep with the express intention that users should copy and paste

this text into their manuscripts *unchanged*. It is released under the creative commons (https://creativecommons.org/publicdomain/

zero/1.0/) license.

Outlier detection, imputation, and correction for multiple comparisons
Observations with a Cook’s distance of 4/(n – k - 1), where n is the sample size and k is the number of independent variables, were

defined as influential outliers and removed from the respective analysis. Missing values were imputed using the MICE package

version 3.13.0, in R, applying predictive mean matching for numeric variables and a proportional odds model for ordered variables.

All tests are reported with Bonferroni-corrected p values.

Reward learning and the transition to chronic pain: ROI and connectivity analysis
FMRI data processing was carried out using FEAT (FMRI Expert Analysis Tool) Version 6.00, part of FSL (FMRIB’s Software Library,

www.fmrib.ox.ac.uk/fsl). The first 3 volumes were discarded to account for scanner saturation effects. The following pre-statistics

processing was applied: spatial smoothing using a 5-mm full width at half maximum Gaussian blur (only for univariate analyses,

not for multivariate pattern analysis), grand-mean intensity normalization of the entire 4D dataset by a single multiplicative factor.

Time-series statistical analysis was carried out using FILM with local autocorrelation correction83 with nine regressors of interest:

1) DSmoney, 2) DSpain relief, 3) anticipationmoney, 4) anticipationpain relief, 5) feedback money without reward (NPEmoney: negative predic-

tion error money), 6) feedback money with reward (PPEmoney: positive prediction error money), 7) feedback pain relief with pain

(NPEpain relief: negative prediction error pain relief) 8) feedback pain relief without pain (PPEpain relief: positive prediction error pain relief)

9) USpain. DSmoney andDSpain relief weremodelled as the entire 6 s of the presentation of the respective stimulus. Anticipationmoney and

anticipationpain relief were modelled as the entire 4 s between the respective discriminative stimulus and the onset of the USpain or

NPEmoney/PPEmoney. PPEmoney was modelled as the entire 3 s of the presentation of the monetary reward and NPEmoney as the

3 s during the same time period, but when no monetary reward was presented. USpain was modeled as the first 1.5 s of painful stim-

ulus that were always presented in the pain relief condition. PPEpain relief was modelled as the absence of pain during the 1.5 s

following the USpain. NPEpain relief was modelled during the 1.5 s after the USpain in case of persistent pain.

We includednuisance regressors for framewise displacement (FD), global signal, and the first fivewhitematter and first fiveCSF com-

ponents derived from CompCor regressors for white matter signal and five CompCor regressors for CSF signal, for time points that ex-

ceededa thresholdof0.5mmFDor1.5standardizedDVARS,asextractedby fMRIPrep (seeabove).BOLDsignals (parameterestimates)

were extracted for the three regions of interest left NAc, right NAc and vmPFC for each participant. A psychophysiological interaction

analysis (PPI) was used to determine which voxels in the bilateral NAc alter their relationship (connectivity) with a seed region of interest

(the vmPFC) in a given condition. PPI parameter estimates were extracted from the left and right NAc for each participant.
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To predict the transition from subacute to chronic pain, parameter estimates extracted from vmPFC and left and right NAc, as well

as PPI parameter estimates extracted from left and right NAc, were correlated with the percentage change in pain severity (DPS =
PSfollow�up�PSbaseline

PSbaseline
3 100 ) from baseline to the 6 months follow-up. To show a measure of sensitivity and specificity and to allow for

comparisons to previous work,8 which binarized the data to patients with pain that persisted over time (DPS > �20%, n = 21) and

patients that recovered (DPS < �20%, n = 27), we followed this procedure with a classification analysis. We present receiver oper-

ating characteristic (ROC) curves with recovered and persistent pain patients as binary classes and the respective parameter esti-

mates as classifying variable. The area underneath each ROC curve was calculated following the process outlined inMason andGra-

ham,84 with a p value calculated using the Wilcoxon test addressing the null hypothesis that the area under the ROC curve is 0.5 (i.e.

the forecast is not predictive).

Resting-state prediction of the transition to chronic pain
Resting state scans were preprocessed, using the same pipeline and nuisance regressors as for the task-based scans. Additionally,

we applied a low-pass filter at 0.2 Hz using the fslmaths function of FSL version 5.0.11. Time series were extracted for each partic-

ipant from the three regions of interest. Pearson’s correlation between time series of the vmPFC and bilateral NAcwere used to derive

an estimate of functional connectivity at rest.

We additionally tested if the task-based prediction of chronicity was mediated by resting-state connectivity between vmPFC and

lNAc/rNAc by carrying out mediation analyses using the ‘‘mediation’’ package version 4.5.0, in R.85 Unstandardized indirect effects

were computed for each of 10000 bootstrapped samples, and the 95% confidence interval was computed by determining the indirect

effects at the 2.5 th and 97.5th percentiles.

Reward learning and the transition to chronic pain: Pattern decoding
With the goal of predicting the eventual recovery status of the patients with subacute back pain from cortical activity patterns, we

additionally used the CoSMoMVPA toolbox86 to carry out multivariate pattern analysis (MVPA)87 in our three regions of interest

(vmPFC, left NAc and right NAc). Within a given region, we trained a linear discriminant analysis (LDA) classifier on themean-centered

multivoxel patterns of t-scores from the unsmoothed first-level contrasts of interest (1. DSmoney, 2. DSpain relief, 3. anticipation money,

4. anticipation pain relief, 5. negative prediction error money, 6. positive prediction error money, 7. negative prediction error pain relief

8. positive prediction error pain relief 9. USpain) that corresponded to these labels for all but two patients (i.e., one recovered and one

persistent patient) and then tested the classifier on the activity patterns of these two left-out patients. This procedure was repeated

via exhaustive cross-validation of splitting the 48 patients into all possible unique training sets of 46 and the corresponding test sets of

2 (always ensuring that the test set contained one recovered and one persistent patient), which yielded 567-folds. The same proced-

ure was carried out for the pattern of functional connectivity to the vmPFC in the bilateral NAc. Subject-wise accuracy was extracted

as the average accuracy across folds for a given subject. We created receiver operating characteristic (ROC) curves for the individual

probability (across folds) of being classified as a persistent patient. The respective area under the curve was tested against chance

level (see above).

Reward learning characteristics in chronic back pain
To check whether neural representations of reward learning that predicted chronicity are specific for the transition from acute to

chronic pain or persist in the chronic stage, we employed permutation testing to reveal locations within amask of vmPFC and bilateral

NAc, where BOLD differed between HC and CBP (non-parametric two-samples t-test using ‘randomize’ function;88 5,000 permuta-

tions). Family-wise error rate was controlled using threshold-free cluster enhancement as implemented in FSL (p < 0.05). In patients

with CBP, we additionally extracted parameter estimates from vmPFC and left and right NAc aswell as PPI parameter estimates from

left and right NAc and correlated them with pain severity as assessed by the West Haven-Yale Multidimensional Pain Inventory. To

show a measure of sensitivity and specificity for the classification of controls versus patients with CBP, we followed the same pro-

cedure as for the binary classification approach of patients with persistent SABP and patients with SABP who recovered, presenting

ROC curves classifying controls and patients with CBP.

For the resting state scans, the same procedure that was used to identify patients with SABP that develop chronic pain was applied

to test if vmPFC-NAc functional connectivity at rest distinguishes between patients with chronic pain (n = 27) and controls (n = 25) and

if the pain severity of these patients was associated with higher vmPFC-NAc connectivity.

ADDITIONAL RESOURCES

The study has been registered on the ‘‘German Clinical Trials Register’’ the registration ID is DRKS00008835. The access website is

as follows: https://www.drks.de/.
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https://www.drks.de/
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