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EDITORIAL COMMENT
Predicting Left Ventricular Dysfunction
in Childhood Cancer Survivors
In Search of the Echocardiography Holy Grail*
William L. Border, MBCHB, MPH,a Karen E. Effinger, MD,b Kasey J. Leger, MD, MSc
I n the United States, an estimated 9,910 children
younger than 15 years of age will be diagnosed
with cancer in 2023. With contemporary treat-

ment approaches, the 5-year overall survival rate is
approximately 85%.1 However, despite significant
therapeutic advances in the field of pediatric
oncology, these high survival rates do not come
without cost. Long-term cardiovascular toxicity is
the leading noncancer cause of late morbidity and
mortality in childhood cancer survivors (CCS),2 with
left ventricular (LV) dysfunction and heart failure be-
ing among the most significant contributors.3

Individualized heart failure risk prediction models
informed by treatment exposures, age, gender, and
even cardiometabolic risk factors in CCS have been
developed using longitudinal cohort data from the
Childhood Cancer Survivor Study and validated in
other cohorts of CCS.4,5 However, the quest for a
complementary screening predictor, particularly an
echocardiographic predictor, to inform risk more
precisely for cardiac dysfunction remains elusive.
This ideal echocardiographic “holy grail” would
consist of a noninvasive imaging modality and/or
index that is readily available, affordable, highly
reproducible and able to accurately predict risk for
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future progressive cardiac dysfunction in an indi-
vidual CCS. Early identification prior to progressive
cardiac remodeling and dysfunction may provide a
critical window for secondary prevention to
ameliorate the disease process. Myocardial defor-
mation indexes such as global longitudinal and
circumferential strain have been proposed as early
markers of regional cardiac dysfunction predictive
of subsequent declines in LV ejection fraction
(LVEF).6 Studies performed in a variety of heart
failure populations suggest that global longitudinal
strain (GLS) is the first dimension of myocardial
deformation to become impaired, potentially
reflecting vulnerability of the subendocardium.7

Cohort studies in adult oncology have reported the
association of early declines in GLS with subsequent
decrease in LVEF.8-10 However, its predictive role in
CCS is unclear.

In this issue of JACC: CardioOncology, Merkx
et al11 present their findings from a cardiac substudy
of the nationwide Dutch Childhood Cancer Survivor
Study (DCCSS LATER 2 CARD). They performed a
nationwide, prospective, cross-sectional outpatient
clinic evaluation of $5-year CCS treated before the
age of 18 years between January 1, 1963, and
December 31, 2001. They used contemporary 2-
dimensional echocardiographic techniques to eval-
uate cardiac function (LVEF using Simpson’s
biplane method and LV GLS) and diastolic function
(LV diastolic function grade on tissue and pulsed-
wave Doppler).12 Because of the cross-sectional
design of the study, the investigators focused on
the prevalence and risk factors of cardiac dysfunc-
tion detected by their comprehensive echocardio-
graphic protocol.

They evaluated 1,397 CCS at a median age of 34.5
years and median time from cancer diagnosis of 26.7
years. This is similar to the population evaluated
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using echocardiography in the SJLIFE (St. Jude Life-
time) cohort study (1,820 CCS at a median age of 31
years and a median time from cancer diagnosis of 22.6
years).13 In the Dutch study, Merkx et al11 found that
the prevalence of abnormal LVEF in CCS was 24.2%,
which is significantly higher than the 5.8% prevalence
reported in the SJLIFE study. However, some of this
difference may be explained by the use of 3-
dimensional LVEF in the SJLIFE study and their
definition of LV dysfunction of LVEF < 50% for both
sexes, whereas Merkx et al11 used LVEF cutpoints
of <52% in men and <54% in women. In addition, the
Dutch cohort had a higher proportion of patients
treated with very high dose anthracycline and
mitoxantrone. Interestingly, the prevalence of
abnormal GLS was similar in both studies, at 29.8% in
the DCCSS LATER 2 CARD study compared with 31.8%
in the SJLIFE study. Even more intriguing, the study
by Merkx et al11 revealed that 20.2% of CCS with
normal LVEFs had abnormal GLS, but also, 39.1% of
CCS with abnormal LVEFs had normal GLS. This
finding of an abnormal LVEF with normal GLS directly
contradicts the current perception that abnormal GLS
precedes abnormal LVEF and can be used as an early
indicator of impending LV dysfunction. Merkx et al11

found that the distributions of abnormal GLS and
abnormal LVEF were not equal and that risk factors
differed, indicating potentially different types of
cardiac injury. For example, although the combina-
tion of abnormal LVEF and GLS was associated with
all cardiotoxic exposures, LVEF abnormalities were
associated primarily with anthracycline dose.
Conversely, GLS showed a strong association with
radiation dose. This may indicate that isolated ab-
normalities in LVEF or GLS may in fact be reflective of
different pathophysiological mechanisms. The in-
vestigators suggest that these 2 measures of LV sys-
tolic function may not be interchangeable but rather
complementary and emphasize the importance of
further work to elucidate this complex relationship in
CCS.

Merkx et al11 should be commended for their
extremely detailed and meticulous assessment of
cardiac function in their cohort of CCS. They have
shed light on the impact of childhood cancer therapy
on various measures of cardiac function and the in-
fluence of risk factors on each. Their findings add
depth to our current understanding of cardiotoxicity
in CCS treated with older treatment modalities.
However, if we zoom out to the 10,000-foot view,
how close are we to truly reaching the “holy grail” of
finding that predictive echocardiographic marker of
future cardiac dysfunction? A systematic review and
meta-analysis of the assessment of prognostic value
of LV GLS for the early prediction of chemotherapy-
induced cardiotoxicity showed a high risk for bias in
the published studies and limited data on the incre-
mental value of GLS or its optimal cutoff values.6 New
echocardiographic technologies are prone to early
adoption and enthusiasm, especially in the realm of
novel functional measures. However, if indeed our
true aim is to find early signals of impending cardiac
dysfunction, we must be wary of placing undue
emphasis on the “newest and shiniest” measure of LV
function. By remaining relatively agnostic in our se-
lection of echocardiographic indexes, we may avoid
“new technology bias” and perhaps find more helpful
echocardiographic signals hiding in plain sight. This
requires large cohort studies of CCS treated with more
contemporary therapies that include detailed echo-
cardiographic follow-up and the creation of robust
echocardiographic biorepositories. In fact, in a study
of younger CCS, longitudinal decline in many stan-
dard echocardiographic parameters of cardiac func-
tion were found years prior to crossing the
traditionally defined threshold of LV dysfunction.14

Perhaps if we can detect a slope of progression in a
given echocardiographic index or set of indexes
highly predictive of subsequent cardiac dysfunction,
we may have the ability to change the trajectory of
cardiotoxicity in CCS and prevent progression toward
clinically relevant cardiac morbidity and mortality.
Then, existing CCS cardiovascular risk calculators
could be enhanced with early echocardiographic in-
dexes to estimate cardiovascular risk, allowing more
accurate individualized surveillance and together
with the incorporation of longitudinal echocardio-
graphic data improve early detection and positively
influence outcomes. If we can get to that point, then
perhaps we have truly attained the echocardiographic
“holy grail” for survivors of childhood cancer.
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