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Abstract
During the development of urinary stone disease, the formation of tiny crystals that adhere to the renal tubular epithelium 
induces epithelial cell damage. This damage and repair of the epithelium is associated with the establishment of more crystal 
adhesion sites, which in turn stimulates further crystal adhesion and, eventually, stone formation. Deposited crystals typically 
cause changes in epithelial cell gene expression, such as transcriptome changes and alternative splicing events. Although 
considered important for regulating gene expression, alternative splicing has not been reported in studies related to kidney 
stones. To date, whether alternative splicing events are involved in the regulation of stone formation and whether crystallo-
graphic cell interactions are regulated by alternative splicing at the transcriptional level have remained unknown. Therefore, 
we conducted RNA sequencing and alternative splicing-related bioassays by modeling the in vitro stone environment. Many 
alternative splicing events were associated with crystallographic cell interactions. Moreover, these events regulated tran-
scription and significantly affected the capacity of crystals to adhere to renal tubular epithelial cells and regulate apoptosis.
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Introduction

The incidence of renal stone disease has more than dou-
bled in the past 40 years, with between 7 and 11% of the 
population at risk of kidney stone-related symptoms each 
year [1]. The formation of urinary stones involves several 
microscopic processes, such as crystal formation, adhesion 
and growth [2]. During these processes, renal tubular epi-
thelial cells closely interact with adherent crystals, which 
affect cell adhesion, apoptosis, and inflammatory responses 
[3–5]. These interactions play important roles in the eventual 
formation of stones.

Alternative splicing events (ASEs) have been widely 
reported to be of importance for the regulation of gene 
expression, but related results exhibit some differences in 
kidney stones and kidney stone-related injury. Previously, 
the specific impact of selective splicing associated with dam-
age caused by crystal deposition was unknown; however, 
we carried out relevant RNA sequencing (RNA-seq) analy-
ses, focusing on splicing. We used calcium oxalate nodule 
nanocrystals to treat renal tubular epithelial cells, after har-
vesting the cells, performed high-throughput sequencing. 
The aim was to discover associations between differential 
ASEs occurring at the transcriptional level and differentially 
expressed genes (DEGs). The analysis revealed an alterna-
tive splicing (AS) regulation mechanism during crystal–cell 
interactions. We identified many ASEs and their important 
roles in CaOx-induced anomalous transcriptional regulation, 
particularly related to cell adhesion and apoptosis.
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Methods

Modeling and RNA sequencing

We used calcium oxalate stones previously collected in 
the clinic to obtain calcium oxalate stone nanocrystals by 
a process comprising ball milling and pulverization [6]. 
Calcium oxalate nanocrystals were subsequently cultured 
with renal tubular epithelial cells at a concentration of 
100 µg/ml for 24 h (3 replicates) to establish a treatment 
group. Renal tubular epithelial cells grown normally for 
24 h (3 replicates) were used as the control group. HK-2 
cells were purchased from Nanjing Institute of Biology, 
Chinese Academy of Sciences, and cultured in Dulbecco's 
modified Eagle medium–nutrient mixture F-12 (DMEM-
F12) with 10% fetal bovine serum in an incubator at 37 °C 
with 5%  CO2. The RNA-seq data obtained from the treat-
ment and control groups were evaluated to identify ASEs 
and DEGs. Moreover, functional clustering analyses (Gene 
Ontology [GO] and Kyoto Encyclopedia of Genes and 
Genomes [KEGG]) of DEGs were performed.

Read alignment and differentially expressed gene 
analysis

Clean reads were aligned to Genome Reference Consor-
tium Human Build 38 (GRch38) by TopHat2 [7], which 
revealed 4 mismatches. Uniquely mapped reads were ulti-
mately used to calculate the read number and reads per 
kilobase of exons per million fragments mapped (RPKM) 
for each gene. The expression levels of DEGs were 
assessed based on RPKM. EdgeR software [8], specifically 
designed for the analysis of differential gene expression, 
was applied to screen the RNA-seq data for DEGs. The 
results were analyzed using fold change (FC) ≥ 2 or ≤ 0.5 
and false discovery rate (FDR) ≤ 0.05 criteria to identify 
DEGs.

Validation of differentially expressed genes 
by RT‑qPCR

The specificity of the primers was verified by Prime-Blast, 
which is a tool designed for identifying significantly dif-
ferentially expressed RNAs. Total RNA was extracted 
from HK-2 cells and control cells treated with calcium 
oxalate stone nanocrystals. The concentration and purity 
of RNA were found to meet the established requirements. 
A Takara-series RT-qPCR kit was used for reverse tran-
scription and quantitative amplification. The cycle thresh-
old (CT) values were corrected by the -ΔΔ CT method. 

Subsequently, relative RNA expression and significant dif-
ferences in expression were calculated (P < 0.05).

Alternative splicing analysis

Inter-sample alternative splicing events and regulated alter-
native splicing events (RASEs) were identified and quanti-
tated using the ABL pipeline, as described previously [9, 
10]. In brief, the ABL pipeline enables the detection of ten 
types of ASEs based on splice junction reads, namely exon 
skipping (ES), alternative 5' splice site (A5SS), alternative 
3' splice site (A3SS), intron retention (IR), mutually exclu-
sive exon (MXE), mutually exclusive 5' untranslated region 
(UTR; 5pMXE), mutually exclusive 3' UTR (3pMXE), cas-
sette exon, A3SS&ES and A5SS&ES ASEs. For sample pair 
comparisons, Fisher’s exact test was used to determine sta-
tistical significance based on the alternative reads and model 
reads of the samples used as input data. We calculated the 
change ratio of alternatively spliced reads and constitutively 
spliced reads between compared samples, which was defined 
as the RASE ratio. A RASE ratio ≥ 0.2 and p value ≤ 0.05 
were set as thresholds for RASE detection. For comparisons 
of repeated analyses, Student’s t test was used to evaluate 
significant changes in the RASE ratio. Events that were 
found to be significant at the p value cut-off of 0.05 were 
considered RASEs.

Functional enrichment analysis

To sort DEGs, Gene Ontology (GO) terms and KEGG 
pathways into functional categories, the KEGG Ortholog-
Based Annotation System (KOBAS) 2.0 server was used 
[11]. Hypergeometric tests and Benjamini–Hochberg-based 
false discovery rate (FDR) control procedures were used to 
determine the enrichment of each term. Reactome (http:// 
react ome. org) pathway profiling was also performed in the 
functional enrichment analysis of selected gene sets.

Other statistical analyses

Principal component analysis (PCA) was performed with 
the R package factoextra (https:// cloud.r- proje ct. org/ packa 
ge= facto extra), which shows the clustering of samples with 
the first two components. After normalizing the reads of 
each gene in the samples by tags per million (TPM), an in-
house script (Sogen) was used to visualize next-generation 
sequence data and genomic annotations. The pheat map 
package in R was used to perform clustering (https:// cran.r- 
proje ct. org/ web/ packa ges/ pheat map/ index. html) based on 
Euclidean distances. Student’s t test was used to compare 
two groups. We used the global test [12, 13] to determine 
the association of the normalized gene expression levels of 

http://reactome.org
http://reactome.org
https://cloud.r-project.org/package=factoextra
https://cloud.r-project.org/package=factoextra
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html
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RNA-binding proteins (RBPs) in different samples with dif-
ferent phenotypes.

Results

Crystal stimulation leads to significant alterations 
in gene expression

Analysis of DEGs in calcium oxalate stone nanocrystal-
treated renal tubular epithelial cells compared with control 
cells revealed significant alterations in gene expression.

A total of 33,205 genes were identified, of which 416 
were significantly upregulated and 108 were downregu-
lated (Fig. 1A). The results of GO and KEGG enrichment 
analyses revealed that most DEGs were associated with cell 
adhesion, inflammatory responses, inflammatory mediator 
(e.g., arachidonic acid) secretion and other processes (Figs. 1 
and 2) as well as with human autoimmune diseases such as 
systemic lupus erythematosus and rheumatoid arthritis. The 
cell adhesion pathway, which was significantly associated 
with upregulated genes, was the focus of our attention. In 

previous studies, cell crystal adhesion was found to play an 
important role in the development of kidney stones, acting 
as a key factor in the stone formation process. Upregulated 
genes were mostly involved in cellular activities such as 
the regulation of intracellular factor receptors, activation of 
RNA enzymes, and methylation of DNA (Fig. 2C). These 
genes might have a regulatory role at the cellular transcrip-
tional level in promoting the deposition of kidney crystals.

Genes associated with the negative regulation of apopto-
sis and cell adhesion pathways were downregulated, indicat-
ing decreased expression of genes associated with apoptosis 
inhibition. These events might be associated with the regula-
tion of renal tubular epithelial injury. Apoptosis, as a type 
of programmed death, enables the body to clear damaged 
or senescent cells without inducing an acute inflammatory 
response. Accordingly, downregulation of genes involved in 
local negative apoptosis regulation may amplify the inflam-
matory response and the deposition of crystals. Further-
more, these downregulated genes may significantly affect 
the expression of cell adhesion molecules (CAMs) and the 
processing of mitochondrial tRNAs and rRNAs (Fig. 2D). 
These observations are in line with previous results that 

Fig. 1  Transcriptome analysis of differentially expressed genes 
(DEGs) between renal tubular epithelial cells in which sodium oxa-
late crystallization was induced and control cells. A Volcano plots 
showing DEGs between SY and Ctrl samples. A false discovery rate 
(FDR) ≤ 0.05 and a fold change (FC) ≥ 2 or ≤ 0.5 were the criteria for 
DEG identification. B Principal component analysis (PCA) of SY 

and control (Ctrl) samples in human renal tubular epithelial cells was 
based on the fragments per kilobase of transcript per million reads 
(FPKM) values of all DEGs. The ellipse of each group is the con-
fidence ellipse. C Heat map of 3SY and 3Ctrl samples based on all 
DEG FPKM values. D, E. Gene Ontology (GO) analysis of DEGs 
categorized into upregulated genes (D) and downregulated genes (E)
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showed changes in cellular function during crystal deposi-
tion and oxidative damage to mitochondria.

RT‑qPCR experiments revealed the accuracy 
and consistency of the sequencing results

For validation of the results, we randomly selected two genes 
that were significantly differentially expressed. Real-time 
fluorometric qPCR was used to amplify and obtain CT val-
ues, and the relative expression of RNA was calculated by 
the -ΔΔCT value-correction method. The RT-qPCR results 
were found to be in general agreement with the sequencing 
results (Fig. 3B). The results from the experiments showed 
that differences in gene expression were reasonably consist-
ent and provided a basis for further research.

Identification of many alternative splicing events

We identified many differential ASEs. These differential 
ASEs were analyzed to determine how effectively they 
distinguished the treatment group from the control group 
(Fig. 4B, C). Among the nine differential splicing events 
that we evaluated, ASEs were most frequent for A5SSs and 
A3SSs (Fig. 5), and among the DEGs, most ASEs involved 
ES (exon skipping), an A5SS (alternative 5' splice site) or 
an A3SS (alternative 3' splice site) (Fig. 4A). Genes that 

underwent selective splicing were most commonly enriched 
in transcriptional regulation, mismatch repair and related 
pathways.

Target genes of transcription factors (TFs) that undergo 
differential AS were extracted from the Ensembl database 
and Transcriptional Regulatory Relationships Unraveled by 
Sentence-based Text mining (TRRUST) database. Then, the 
target genes that overlapped with DEGs were identified, and 
many of these DEGs were found to be potentially regulated 
by the assessed TFs (Fig. 4E, F).

TF (with RAS) targets that overlap DEGs 
in functional enrichment analysis

We selected a set of genes from the larger group of genes 
with expression affected by TFs in which variable splicing 
events had been identified. We analyzed this gene set, TF 
gene targets that had undergone RASEs and DEGs by gen-
erating a Venn diagram. We found many intersecting genes, 
suggesting that these variable splicing events influenced the 
differential expression of related genes (Fig. 4F). GO and 
KEGG analyses revealed that these overlapping genes regu-
lated by variable splicing events were highly enriched in 
cell adhesion, cellular response, inflammatory response, cell 
migration and other pathways associated with renal calculi.

Fig. 2  Functional pathway analysis of differentially expressed genes 
(DEGs) in SY and Ctrl samples of human renal tubular epithelial 
cells. A, B Kyoto Encyclopedia of Genes and Genomes (KEGG) 

analysis of the DEGs categorized into up- and downregulated genes. 
C, D Reactome analysis of DEGs categorized into up- and downregu-
lated genes
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Furthermore, we established the regulatory net-
work of TFs that undergo variable splicing and medi-
ate DEG expression (Fig. 6). Additionally, we identified 
and demonstrated the involvement of important TFs in 

the regulatory network (for instance, IRF3, STAT fam-
ily members, TBP, ZNF143, and NR2F2) with DEGs 
in the regulatory processes of cell adhesion, inflamma-
tory response, extracellular matrix composition, cell 

Fig. 3  Validation of the expression of important genes involved in 
nephrolithiasis. A Box plot showing the expression levels of differ-
entially expressed genes (DEGs) involved in cell adhesion, extracel-
lular matrix organization, extracellular matrix disassembly, inflam-
matory responses, and negative regulation of apoptosis, as indicated 

by term annotation analysis. B Scatter plot showing the results of 
RNA sequencing and RT-qPCR as the means ± standard deviations, 
with indicated statistically significant differences between groups 
(p < 0.05)
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migration, etc. Pathways involved in cell adhesion (CD22, 
SPP1, AEBP1, etc.) and the inflammatory response 
(GPR68, S100A9, FOS, etc.) were significantly upregu-
lated, while those involved in cell migration-related genes 
(THBS1) were significantly downregulated, suggesting an 
altered functional state of the cells.

Discussion

ASEs exert important effects on the regulation of gene 
expression and contribute to the diversification of gene 
expression and protein properties. ASEs have also been a 

Fig. 4  Global features and enriched functions of deregulated alterna-
tive splicing events between treated and control samples. A Classi-
fication of all regulated alternative splicing events (RASEs). X-axis: 
Number of RASEs. B Principal component analysis (PCA) of SY and 
control (Ctrl) human renal tubular epithelial cells based on the per-
centage of spliced (PSI) values of all nonintron-retained (NIR) splice 
events. The ellipse for each group is the confidence ellipse. C PSI 
heat map of all NIR RASEs in SY samples compared to Ctrl sam-
ples. The filtration criteria used to identify an ASE were detectable 
splice junctions in all samples and at least 80% of the samples having 
10 or more splice junction reads. D Gene ontology (GO) analysis of 

regulatory alternatively spliced genes (RASGs) in SY samples com-
pared to Ctrl samples. E Classification of RASEs in transcription fac-
tors (TFs). X-axis: number of RASEs. F Venn diagram of TF targets 
with regulated alternative splicing and up- and downregulated genes. 
TF targets were identified using the Ensembl database and TRRUST 
database (https:// www. grnpe dia. org/ trrust/). G Top 10 GO biological 
process terms most enriched by upregulated DEGs overlapping with 
TF (with RAS) target genes. H Top 10 GO biological process terms 
most enriched by downregulated DEGs overlapping with TF (with 
RAS) gene targets

https://www.grnpedia.org/trrust/
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Fig. 5  Global features and enriched functional terms associated with 
dysregulated alternative splicing events (ASEs) between treated and 
control samples. A Bar plot showing the number of known and novel 
detected ASEs, which were classified into 9 types. B Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) analysis of regulatory alter-

natively spliced genes (RASGs) in SY samples and control (Ctrl) 
samples. C Top 10 KEGG terms most enriched by upregulated DEGs 
overlapping with TF (with RAS) target genes. D Top 10 KEGG terms 
most enriched by downregulated DEGs overlapping with TF (with 
RAS) target genes

Fig. 6  Transcription factor–differentially expressed gene (TF–DEG) 
network comprising TFs (middle) and DEGs. A Differences in the 
expression of different spliceosomes of TFs with regulated alterna-
tive splicing. B TFs were significantly associated with cell adhesion, 
inflammatory responses, extracellular matrix organization, positive 
regulation of cell migration and other processes. Differences in spli-

ceosomes are expressed as T values, and P < 0.05 was considered sig-
nificant for the experimental group compared with the control group. 
Only TF–DEG connections found in the Ensemble or TTRUST data-
base were included in the network. DEGs were classified according to 
Gene Ontology (GO) terms. Red circles indicate upregulated genes, 
and blue circles indicate downregulated genes
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hot spot in the field of RNA-seq analysis and drug develop-
ment [14, 15]. Studies on renal ASEs have been reported, 
for instance, by Jing et al., regarding the involvement of 
alternative splicing of circular RNAs (circRNAs) in the 
regulation of renal cancer specificity [16]. Wineberg et al. 
studied the regulatory role of mRNA AS at the single-cell 
level in kidney development and differentiation [17]. How-
ever, few ASEs have been reported in studies on urinary 
stones, which characterize a major kidney disease. Our 
study aimed to fill this gap.

In previous studies on the effects of crystal deposition on 
gene expression in renal tissue, Khan et al. used the ethyl-
ene glycol (EG) model and found that crystal retention may 
cause genetic alterations in inflammatory factors [18]. Koul 
et al. showed that HK-2 cells undergo compositional changes 
and altered biological processes when stimulated with differ-
ent oxalates [19]. Recently, a data set from Randall's plaque 
also showed that CaOx causes pro-oxidative and pro-dam-
age gene expression alterations [20]. We believe that the 
differences in our data are due to the different choices of 
mold-making methods. We innovatively used nanocrystals 
formulated from clinical stones to stimulate renal tubular 
epithelial cells and investigated the effects of this stimulation 
on genomic changes and selective splicing events. Interest-
ingly, we found that crystal deposition can cause changes in 
renal tubular epithelial adhesion processes as well as inflam-
matory damage to renal tissue, which is consistent with the 
previous studies.

Based on RASE analysis and functional clustering analy-
sis of associated genes, we established a network map show-
ing the regulation of gene expression by ASEs and found 
that AS genes are highly concentrated in transcriptional 
regulatory pathways. In stone formation, ASEs in TFs can 
regulate cell adhesion, apoptosis (particularly affecting neg-
ative regulation), and tissue inflammatory responses. Crys-
tallographic cell adhesion remains an important process in 
the development of renal calculi [2, 5, 21]. Crystallization 
stimulation may induce an immune response in renal tubular 
epithelial cells and affect changes in cellular functions [22]. 
Among these changes, oxidative damage has been reported 
most frequently. Increased intracellular generation of reac-
tive oxygen species (ROS) can induce changes in gene 
expression and even lead to DNA damage [23]. Oxidative 
stress may be the cause of increased ASEs. The transcrip-
tion factors identified herein, such as IRF3, STAT3, TBP, 
SIN3A, and PAX8, have been reported to be involved in 
transcriptional regulation [24–28]. For example, STAT3 and 
IRF3 can affect human immune processes and the cell cycle 
through transcriptional regulation [24, 29].

In injury caused by renal stone crystal deposition, we 
reported that AEBP1, SPP1, THBS1, ITGA11, and SOCS2 
may be involved in transcriptional regulation. Based on 

previous studies, we determined that injury caused by 
crystal deposition is frequently accompanied by renal 
fibrosis and that THBS1, ITGA11, and SOCS2 can affect 
the fibrotic process [30–32]. Moreover, Murphy et  al. 
found that THBS1 promoted tissue fibrosis by activation of 
the TGF-B pathway [33]. We were particularly intrigued 
by the study by Cao's team, which showed that THBS1 
increased cell adhesion and migration via the YAK/FAK 
signaling pathway [34]. The downregulation of THBS1 
expression was inferred as a possible protective factor 
against injury by renal stone crystal deposition, protecting 
the renal tubular epithelium from crystal damage, promot-
ing fiber repair and reducing the cell adhesion capacity. 
However, further experiments are needed to confirm this 
inference. In contrast, Liu et al. found that AEBP1 acti-
vated the NF-kB pathway and affected the growth state of 
cells [35, 36]. In addition, Deng, Wang et al. found that 
SPP1 promoted cell proliferation and migration through 
the NF-kB pathway [37, 38]. Overall, all identified genes 
regulated by ASEs affect cell adhesion, damage repair, 
inflammatory signaling activation and other cellular activi-
ties associated with kidney stones.

In the TF–DEG regulatory network, CD22 was differ-
entially expressed. CD22 is a cell-surface B cell-specific 
receptor involved in cell adhesion and signaling pro-
cesses [39]. In the development of kidney stones, CD22 
may be involved in recruiting leukocytes and triggering 
the inflammatory response [40]. This study is the first to 
describe CD22 involvement in kidney stone disease. Pre-
viously described adhesion molecules in renal stone dis-
ease include CD44, HA, and OPN [21, 41]. In our study, 
the involvement of CD22 might be related to leukocyte 
chemotaxis and in vivo clearance of crystals, which are 
possibilities that need to be further investigated.

In summary, our report of selective splicing events in 
kidney stone formation fills a gap in the field of AS in 
basic research on kidney stones. The analytical results 
provide new insights into the mechanism of urinary stone 
formation and provide a basis for subsequent research on 
the specific regulatory mechanism(s) of ASEs and kidney 
stone formation.
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