
RESEARCH ARTICLE

Influence of Interleukin-1 Beta on Platelet-
Poor Plasma Clot Formation: A Potential
Impact on Early Bone Healing
XinWang1,2,3,4☯, Yan Luo2,3☯, Paul P. Masci4, Ross Crawford2,3, Yin Xiao2,3*

1 Department of Spine, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou Province, China,
2 Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane,
Queensland, Australia, 3 Australia-China Centre for Tissue Engineering and Regenerative Medicine,
Queensland University of Technology, Brisbane, Queensland, Australia, 4 Translational Research Institute,
School of Medicine, The University of Queensland, Brisbane, Queensland, Australia

☯ These authors contributed equally to this work.
* yin.xiao@qut.edu.au

Abstract

Objectives

Hematoma quality (especially the fibrin matrix) plays an important role in the bone healing

process. Here, we investigated the effect of interleukin-1 beta (IL-1β) on fibrin clot formation

from platelet-poor plasma (PPP).

Methods

Five-milliliter of rat whole-blood samples were collected from the hepatic portal vein. All blood

samples were firstly standardized via a thrombelastograph (TEG), blood cell count, and the

measurement of fibrinogen concentration. PPP was prepared by collecting the top two-fifths

of the plasma after centrifugation under 400 × g for 10 min at 20°C. The effects of IL-1β cyto-

kines on artificial fibrin clot formation from PPP solutions were determined by scanning elec-

tronic microscopy (SEM), confocal microscopy (CM), turbidity, and clot lysis assays.

Results

The lag time for protofibril formation was markedly shortened in the IL-1β treatment groups

(243.8 ± 76.85 in the 50 pg/mL of IL-1β and 97.5 ± 19.36 in the 500 pg/mL of IL-1β) com-

pared to the control group without IL-1β (543.8 ± 205.8). Maximal turbidity was observed in

the control group. IL-1β (500 pg/mL) treatment significantly decreased fiber diameters

resulting in smaller pore sizes and increased density of the fibrin clot structure formed from

PPP (P < 0.05). The clot lysis assay revealed that 500 pg/mL IL-1β induced a lower suscep-

tibility to dissolution due to the formation of thinner and denser fibers.

Conclusion

IL-1β can significantly influence PPP fibrin clot structure, which may affect the early bone

healing process.
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Introduction
Fracture hematoma (blood-clot) that is formed immediately after injury is suggested to play an
important role in fracture union, because the removal of a blood-clot during operative stabili-
zation can impair the initial phase of healing [1]. Fracture healing is a unique physiologic pro-
cess characterized by three overlapping stages: fracture hematoma formation and the initial
inflammatory response, callus formation, and early bony union and bone remodeling [2].
Although numerous studies have focused on bone biology and fracture healing, to our knowl-
edge, little reported literature is available on early bone healing, such as studies characterizing
the fracture hematoma fibrin network and the factors that impact fibrin clot quality. Hemosta-
sis (blood coagulation) is initiated by platelets; however, stabilized fibrin formation throughout
hematoma development involves several other components, such as immune cells and inflam-
mation cytokines [3, 4]. Therefore, the importance of hematoma at a fracture site is increas-
ingly being recognized for its supportive role in providing a transient fibrin matrix to allow cell
infiltration, proliferation, and differentiation, as well as serving as a short-term ‘reservoir’ for
growth factors released from activated platelets and adjacent tissues [5].

To better facilitate biocompatibility for bone regeneration, a wide range of autologous blood
products, such as platelet-rich plasma (PRP) and platelet-rich fibrin (PRF), have been
employed in a clinical setting [6–8]. Indeed, PRP or PRF is a fraction of plasma enriched with
activated platelets connected with fiber filaments, serving as a functional source of growth fac-
tors [9]. However, the use of PRP to stimulate new bone regeneration has been controversial,
owing to its rapid release of growth factors from the fibrin network [10, 11]. A more reasonable
assumption for PRP not being suitable for bone-defect healing is its relatively denser fibrin net-
work that impedes the cellular infiltration from surrounding tissues [12, 13]. Alternatively, arti-
ficial fibrin scaffolds with a small pore size, formed by the extensive application thrombin, have
also been reported to delay natural healing process in a rat model [14], indicating that fibrin
structure alterations (fiber diameter, density, pore size, porosity, branch points, and branch
junctions) can considerably influence the bone healing process. It has been revealed that hema-
tomas composed of loosely-woven fibrin structure with thicker fibers can better expedite the
egress of mesenchymal stem cells (MSCs) and endothelial cells into injured sites, diffusion of
oxygen and nutrients, and removal of metabolic waste [15, 16].

Acute phase response (APR) is the earliest response to vascular injury at fracture sites, char-
acterized by the generation of acute phase proteins, such as fibrinogen and cytokines [17].
After vascular compromise, activation of blood coagulation occurs quickly when whole blood
interacts with the surface of broken bone fragments. The adsorption of plasma proteins is
deemed to initiate platelet reaction and an extrinsic coagulation cascade, resulting in thrombin
enzyme and fibrin formation, and finally a hematoma at the fracture sites [18]. Currently, a
growing body of evidence indicates that inflammation and hematoma formation are closely
intertwined [3, 4]. It has been demonstrated that IL-1β, a major inflammatory cytokine
released from activated platelets and immune cells, can bind to fibrinogen thus preserving its
activity [19], but its impacts on fibrin clot structure has garnered little attention. Notably, the
expression of IL-1 beta, especially with the simulation of lipopolysaccharides (LPS), has been
documented in early bone fracture healing (day 3) [20]. Studies with mice tibial fractures
showed that the local administration of IL-1β exerted an inhibitory effect on proliferation of
MSCs [21], and IL-1β antagonist can facilitate fracture restoration in rat model [22]. While
most investigators used the dose of IL-1β ranging from 10 pg/mL to 1000 pg/mL [23], our
recent study (unpublished data) also revealed that the levels of IL-1β were significantly higher
in delayed bone healing defects (745.40 ± 99.19 pg/mL) than ones in natural bone healing
defects (57.46 ± 4.72 pg/mL). Therefore, we selected 50 and 500 pg/mL as experimental
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concentrations to observe whether IL-1β is a major determinant of altering clot construct, thus
influencing the healing process of large bone defects.

PPP is the supernatant of plasma with low amounts of platelets and blood cells, which con-
tains elevated levels of fibrinogen to generate a non-turbid fibrin-rich clot once activated [24].
Moreover, fibrin clot formed from PPP could be used as an autologous degradable scaffold for
tissue engineering [25]. Exempt from disturbances of other blood plasma components (plate-
lets and blood cells), PPP on behalf of whole blood is often used to investigate the inherent
architecture of fibrin clots [26, 27]. Therefore, this study aimed to determine whether IL-1β
could influence the fibrin structural properties in PPP clots.

Materials andmethods

2–1 Reagents
Human Alpha Thrombin (HT 1002a) and human plasminogen (HPg 2001) were acquired
from the Enzyme Research laboratories (Bulimba, Australia). Human Fibrinogen (Oregon
Green™ 488 Conjugate) and Interleukin-1β were purchased from Invitrogen (Victoria, Austra-
lia). Recombinant tissue-type plasminogen activator and D-Dimer (D2D) ELISA Kit were
ordered from antibodies-online Inc. (Atlanta, United States).

2–2 Standardization of blood sampling
Blood was preserved by collecting 900 μL of blood from the hepatic portal vein of Fisher rats in
100 μL of 4% tri-sodium citrate (9:1). Blood samples were mildly inverted 6 times, and kept
upright for at least 30 min. For the TEG test, 320 μL of blood was transferred gently into a dis-
posable plastic TEG cup (Haemoscope Corporation) containing 20 μL of 0.2 M CaCl2 solution,
and the assay was performed on a TEG1 5000 Series Haemostasis Analyser at 37°C within 1 h
of blood collection. The parameters were automatically traced with TEG, including reaction
time (R, seconds), coagulation time (K, seconds), angle (α, degrees), and maximum amplitude
(MA, mm). Details of this method are described in a previous report [28].

Two-hundred microliters of citrated rat whole blood volume was analyzed with the Haema-
tology Analyser (XT-2000i) to measure red blood cell (erythrocyte), white blood cell (leuko-
cyte), and platelet populations. Additionally, 2 mL of citrated blood volume was centrifuged at
10,000 rpm (1300 × g) for 15 min at room temperature. Then, a 100 μL aliquot of the superna-
tant was transferred to a 1.5 mL plastic tube for analysis using the ACL TOP CTS Haemostasis
Analyser, which detected the fibrinogen concentration in the plasma.

2–3 PPP preparation
PPP was prepared according to previously published protocols [8, 29]. Briefly, 5 mL of blood
drawn from hepatic portal vein were added to 15 mL Falcon tubes. The fresh blood samples
were immediately transferred into a centrifuge. After the centrifugation at 3000 rpm (400 × g)
for 10 min at 20°C, the mixture was divided into three layers: the upper layer was acellular
plasma (PPP), the lower layer was red blood cells (RBC), and the middle layer was a buffy coat
layer (PRF) that was rich in platelets and had a paucity of leucocytes. PPP was completely
decanted and stored at -80°C. Fibrinogen concentration in PPP solutions was measured by the
ACL TOP CTS Haemostasis Analyser and 1 mg/mL was used in this study.

2–4 Turbidity
Fibrin polymerization in PPP clots was monitored in a 96-Well MicroWell Plate (Thermo Sci-
entific, USA) by tracing alterations in turbidity at 405 nm (A405) every 15 s for 50 min, at 37°C
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using a Microplate Absorbance Reader (Bio-Rad X-Mark spectrophotometer) as described pre-
viously [30, 31]. The 100 μL PPP solution (1 mg/mL) with IL-1β (0, 50, or 500 pg/mL) in
HEPES buffer (20 mMHEPES, 150 mMNacl, pH = 7.4) was preincubated for 10 min at 37°C.
The PPP solution mixed with only HEPES buffer instead of IL-1β was defined as the control.
Additionally, thrombin (0.1 U/mL) and CaCl2 (10 mM) were blended and preincubated for 10
min at 37°C. The lag time represented the rate of protofibril formation and the size and num-
ber of fibers were typified by the maximal turbidity.

2–5 Scanning electron microscopy (SEM)
SEM studies for blood clot characterization was carried out as described previously [32, 33]
with the following minor modifications. PPP clots were formed by the PPP (1 mg/mL) with IL-
1β (0, 50, or 500 pg/mL), thrombin (1 U/mL), and CaCl2 (10 mM) in HEPES buffer. The PPP
solution in HEPES buffer without IL-1βmixed with thrombin and CaCl2 was defined as the
control. After 2 h at room temperature, clots were rinsed with phosphate buffer saline (PBS)
(pH = 7.4) at least 3 times, and then fixed in 3% glutaraldehyde overnight. Thereafter, clots
were transferred to a cacodylate buffer (0.1 M), post-fixed with 4% osmium, and dehydrated
with an ethanol gradient. Specimens were mounted on carbon tabs, and sputter coated with
gold-palladium. All specimens were analysed under a Zeiss SEM (FEI, USA) at a magnification
of 10,000 ×, which could detect an individual fiber. Fiber structural parameters (thickness and
density) were further measured using the Image J software (version 1.43) according to a modi-
fied method of Undas et al [34]. For quantitative analysis of the pore sizes in fibrin clots, the
thresholding algorithm (0, 60) was run to highlight the black areas (no fibres). The black
(space) portions of the images were quantified and defined as 2-D percentage porosity. Pore
area was obtained using the performing particle analysis function in Image J [35, 36].

2–6 Confocal microscopy (CM)
PPP solutions (100 μL, 1 mg/mL) with IL-1β (0, 50, or 500 pg/mL) in HEPES buffer was cou-
pled to the Oregon Green™488 fibrinogen (0.1 mg/mL) on the coverslips (Thuringowa, Austra-
lia). After the addition of thrombin (1 U/mL) and CaCl2 (10 mM), PPP clots were formed in a
moist atmosphere at room temperature overnight. Clots were prepared for observation using a
Nikon A1R Confocal Microscope with a 40 × 1.3 NA oil objective as described previously [30,
37] with following modifications. The scans were taken using the 6 × zoom-in mode. After
acquisition of PPP clot morphological images, maximum intensity projections (MIP) images
were analyzed. Fiber size was measured by drawing a perpendicular line across the fiber, avoid-
ing any junctions. Moreover, the fiber density was counted by drawing a 50-μm line across the
middle transections of the scanned MIP image. The representative morphologies of fibrin clot
were captured.

2–7 Clot lysis assay
Clot lysis is strongly correlated with fiber thickness and density [24]. The effect of various con-
centrations of IL-1β on overall clot degradability was evaluated and its association with the
fibrin architecture was investigated. The fibrinolytic process was evaluated by detecting the
amounts of fibrin degradation product (D-dimer) when the fibrin clots were dissolved by the
plasmin, which yielded activation of plasminogen in the presence of tissue-type plasminogen
activator.

A suspended clot system was applied in this study as described previously [33, 38]. PPP
solutions (100 μL, 1 mg/mL) with IL-1β (0, 50, or 500 pg/mL) in HEPES buffer, thrombin
(1 U/mL), and CaCl2 (10 mM), were simultaneously added to the vials for 2 h at 37°C to allow
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complete clot formation. Clots were transferred into the new vials and suspended in 3 mL of
PBS buffer containing human plasminogen (Glu-plasminogen, 5.4 μg/mL final concentration;
American antibodies-online Inc., USA). The clot lysis process was initiated by adding tissue
plasminogen activator (tPA, 0.25 μg/mL final concentration; Australia Enzyme Research labo-
ratories Inc., AU) at 37°C with gentle agitation. Aliquots of the supernatant (100 μL) were
pipetted at timed intervals (1, 4, 8, 18, and 24 h) and centrifuged at 1000× g for 3 min for D-
dimer detection. The extent of clot lysis was detected by measuring the amounts of D-dimer by
use of a D-dimer ELISA kit (American antibodies-online Inc., USA). In addition, weight losses
of clots were also recorded at the indicated time points.

2–8 Ethics statement
Ethic approval was granted for this study from Queensland University of Technology
(approval number: 1400000023).

2–9 Statistical analyses
Results were represented as the means ± standard derivation. For statistical evaluation, Stu-
dent’s t-test was used for two group differences and one-way analysis of variance (ANOVA)
was used for three group differences, followed by post-hoc test. A p value<0.05 was considered
statistically significant.

Results

3–1 Standardization of blood collection using hematological parameters
by the analysis of TEG, Haematology, and Haemostasis Analyser
From panel A in Fig 1, the TEG parameters from the collected blood were detailed as follows:
mean reaction time (R, 548.3 ± 95.09, s), mean coagulation time (K, 233.8 ± 52.27, s), angle
value (α, 45.8 ± 6.71, degrees), and mean maximum amplitude (MA, 63.3 ± 5.9, mm). In panel
B and C, the outcomes of hematology parameters were consistent with the described literature
using Haematology and Haemostasis Analyser measurements [28, 39, 40]. The performance of
TEG was aimed to standardize the constituents of whole blood within the biological range,
which minimized blood sample variation between individuals and ensures that PPP solution
made from whole blood was at an identical level.

3–2 Fibrin polymerization
Fig 2 showed that variations of thrombin concentration (more than 0.1 U/mL) can significantly
affect lag time and maximal turbidity during PPP clot polymerization process compared with
control (0.01 U/mL) (P< 0.01) (B, C), suggesting that clot kinetics (lag time and maximal tur-
bidity) were inversely proportional to increases in thrombin concentrations. Furthermore, the
dynamic of fibrin polymerization in PPP solutions was characterized by measurement of tur-
bidity curves by the addition of thrombin (0.1 U/mL) and CaCl2 (10 mM) with or without IL-
1β (A). Lag time was detected from the turbidity curve to be 543.8 ± 205.8 s in control groups,
which was significantly longer than the IL-1β groups (D) (243.8 ± 76.85 s in the 50 pg/mL and
97.5 ± 19.36 s in the 500 pg/mL) (P< 0.01). Maximal turbidity, the final optical density, was
determined from the turbidity curve to be 0.0778 ± 0.0052 in control group, while it was
0.0773 ± 0.001 in the 50 pg/mL groups and 0.0683 ± 0.0023 in the 500 pg/mL groups (E)
(P< 0.05).
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3–3 Fibrin architecture
As evident from the graphs shown in Fig 3, PPP clots formed in the absence of IL-1β (A) or in
the presence of IL-1β (B, C) revealed a multitude of individual fibres in the fibrin networks.
The mean diameters of fibers in PPP clots were 192.6 ± 46.84 nm in the control groups, and
181.6 ± 47.40 nm in the 50 pg/mL IL-1β groups (D). Fiber diameters decreased dramatically in
the 500 pg/mL IL-1β treatment group with fiber diameters ranging 74.70 ± 14.27 nm (D)
(P<0.01). In contrast, there was a higher density of fibers in the 500 pg/mLIL-1β groups
(19.50 ± 2.22) compared to the other groups (E) (11.00 ± 2.26 and 11.30 ± 1.70 in the control
groups and 50 pg/mL IL-1β groups, respectively). Mean pore areas of 500 pg/mL IL-1β group
were significantly (P<0.05) smaller (range, 4.053 to 4.289 μm2) than that of the control groups
(range, 5.219 to 6.787 μm2) and the 50 pg/mL IL-1β groups (range, 4.854 to 6.172 μm2) (F).

3–4 Fibrin clot structure
The results in Fig 4 indicated that the denser fibrin structure with thinner fibers was formed in
the 500 pg/mL IL-1β groups. The oversaturated color and noise were minimized by the

Fig 1. Profile of TEG parameters (A, B), blood cell count, and fibrinogen concentration (C). This profile comprised two processes, namely, thrombosis
and fibrinolysis. Thrombosis was described by four important parameters: R time; which was calculated from the time that the blood was pipetted into the
TEG analyzer till initial fibrin clot formation. K time was the time at which clot formation reached amplitude of 20 mm, representing clot formation speed. In
addition, α angle denoted the level of fibrinogen. MA value was a reflection of platelet function and aggregation, which indicated that clot strength (stiffness)
reached the maximum amplitude.

doi:10.1371/journal.pone.0149775.g001
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application of look-up tables (LUTs), and, consequently, the measurements of fiber parameters
would be more reliable. Fiber diameters were 671.4 ± 93.71 nm in the control groups and
605.7 ± 100.8 nm in the 50 pg/mL IL-1β groups. However, fiber widths were merely
448.6 ± 57.57 nm in the 500 pg/mL IL-1β groups. Using the Intensity Profile and Object Count
tools, the amounts of fibers were found to be 12.00 ± 2.45,14.20 ± 2.59,20.20 ± 1.92 in the 0, 50,
and 500 pg/mL IL-1β groups, respectively.

3–5 Fibrinolytic assay
To evaluate the effect of various concentrations of IL-1β on fibrinolysis, D-dimer levels and
weigh losses from the clots were compared in one-way ANOVA (Fig 5). At 1 h, all clots
revealed significant increase of D-dimer, reflecting the fibrinolytic activity has commenced. The
50 pg/mL IL-1β groups initially underwent a relatively slower rate of fibrinolysis (P< 0.05).
However, no significant differences were found at the following 4 and 8 h. At 18 and 24 h, the
concentrations of D-dimer rapidly increased in the control groups compared to IL-1β groups,
suggesting that fibrin fibers in the control group were subjected to dissolution. This was also in
line with the outcomes from weight losses among the three groups.

Fig 2. The effect of IL-1β on fibrin polymerization of PPP clots. Effect of IL-1β on polymerization of PPP clots (A, D, E) and effect of different
concentrations of thrombin on PPP clots (B, C). In figure B and C show the lag time when turbidity absorbance starts to rise to 0.001 and maximal turbidity in
PPP solutions with thrombin (0.01, 0.02, 0.04, 0.1 or 0.5 U/mL) and CaCl2 (10 mM) in HEPES buffer (pH = 7.4). In figure A, fibrin polymerization was plotted
using three different colors: dark (control group), dark gray (50 pg/mL IL-1β group), and light gray (500 pg/mL IL-1β group). Figure D and E represent lag time
and maximal turbidity in PPP solutions by addition of thrombin (0.1 U/mL) and CaCl2 (10 mM), respectively. Data from 5 replicates were analyzed by unpaired
Student t-tests. NS indicated no significant differences.

doi:10.1371/journal.pone.0149775.g002
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Discussion
The prevalence of complications from bone fracture treatments for large bone defects, such as
delayed bone union and bony non-union, continue to be clinical challenges. Although an accu-
mulating number of traditional approaches, such as bone substitutes, have been introduced in
implantology, the use of these therapies is often unpredictable and complicated with potential
safety issues, such as a foreign body reaction, which leads to fibrotic encapsulation and implant
dysfunction [41, 42]. When vascular injury occurs at a fracture site, platelets and the fibrin-pro-
ducing clotting system, which mediate hemostasis, produce a functional fracture hematoma
that seals the bone broken fragments and re-constructs vascular continuity [43]. While platelet
aggregation provides temporary closure of the defect, the initiation of a multistep coagulation
reaction in a highly efficient manner ensures that it remains mechanically stable via generation
of the glue-like fibrin within a growing fracture hematoma [44]. Parallel with the recruitment
of platelets, a large number of platelet-related molecules, such as, fibrinogen, growth factors,
and pro-inflammatory cytokines, are produced or activated, thereby participating in fibrin gen-
eration [45]. During the dynamic process of fibrin polymerization, the concomitant activation
of blood coagulation and inflammation has been suggested to be closely linked [46]. It is well-
known that the fibrin structure determines cell migration and proliferation during the healing
process.

Fig 3. The effect of IL-1β on fibrin architecture of PPP clots.Morphology of PPP clots (n = 3) architecture (A, B, C) formed by different concentrations of
IL-1βwere analyzed using Zeiss SEM. Fiber diameter (D) (n = 150), density (E), and pore size (F) were measured using the Image J software. Fibers appear
significantly different in the IL-1β groups at the concentration of 500 pg/mL with a thinner diameter, denser, and lower porosity (scale bar = 2 μm).

doi:10.1371/journal.pone.0149775.g003

Blood Clot on Bone Healing

PLOS ONE | DOI:10.1371/journal.pone.0149775 February 24, 2016 8 / 13



In this study, in order to maintain consistency among blood samples collected from rats, all
samples were first subjected to standardization using the TEG, Haematology, and haemostasis
analyser. By means of the formulation of artificial PPP clots in vitro, we observed from turbid-
ity measurements that the lag time (97.5 ± 19.36 s) in the 500 pg/mL IL-1β group was markedly
shortened compared with the control groups (543.8 ± 205.8 s; P< 0.01). This indicated that
the single application of IL-1β (500 pg/mL) can yield the formation of PPP clots with high den-
sity of fibers, possibly owing to expedition of the γ-γ crosslinking between protofibrils [47].
Accordingly, there was a remarkable decrease in maximal turbidity in the 500 pg/mL IL-1β
groups, implying that the fiber size became thinner than the control groups (P< 0.05). Fur-
thermore, morphological parameters of the fibrin fiber (diameter and density) were character-
ized using SEM and CM, which implied that IL-1β (500 pg/mL) with thrombin could
dramatically alter the structural properties of artificial fibrin clots (P< 0.01). IL-1β affects fiber
size, possibly by directly affecting the carboxyl-terminal site of the γ chain in fibrinogen [48],
which has a close relation to the γ-γ crosslinking in fibrin polymerization [47, 49].

Clot fibrinolytic activity using a suspended clot system revealed that the IL-1β groups ini-
tially experienced a relatively slower rate of fibrinolysis according to the detection of D-dimer

Fig 4. The effect of IL-1β on fibrin clot structure of PPP clots. Structural morphology of PPP clots formed by 500 pg/mL IL-1β (n = 3) (A, C). In 0, 50, 500
pg/mL IL-1β groups, using the function of Annotations and Measurements, fiber diameters were determined frommaximum intensity projections (MIP) (B).
Fiber densities were counted in the Intensity graph obtained by calculating the peaks (the number of fibers) that cross a line of 50 μm (D). Scale bars
represent 10 μm.

doi:10.1371/journal.pone.0149775.g004
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amounts and weight loss. At 18 h of clot lysis, the D-dimer concentration significantly increased
in the control groups compared to IL-1β groups, which was in accordance with the loose and
thicker clot network observed in the control groups under SEM and CM. This is further evi-
denced by the literature, which shows that fibrinolysis occurs much faster on a loose and
thicker fibrin network rather than on a tight and thinner one [50, 51].

The main limitation of this study is that a PPP clot does not completely stand for a whole
blood clot (hematomas). However, the advantage of using PPP is that exposure of individual in
the clots fibrin fiber becomes evident for characterization under observations of SEM and CM.
Currently, to our best knowledge, few literature reporting how to detect and measure fibrin
parameters of whole blood clots under CM. Given that thrombin produced by remaining plate-
lets in PPP solutions is insufficient to initiate coagulation cascade, addition of exogenous throm-
bin is requisite for PPP clot formation as described by Gersh et al [27] and Talens et al [52].

Fracture hematoma is widely believed to be a biologically active tissue where thrombin, the
major end product of the coagulation cascade, is activated in the event of an injury to hemosta-
sis. In addition, a diverse subset of other cellular and molecular elements including

Fig 5. The effect of IL-1β on fibrinolytic activity of PPP clots. A PPP clot formed by the addition of thrombin (1 U/mL) and CaCl2 (10 mM) for 2 h at 37°C
(A), after 18 h of lysis, the size of the clot showed a notable decrease (B). Releases of D-dimer and weight loss were measured during PPP clot lysis over 24 h
(C, D). The D-dimer levels of clots formed by various concentrations of IL-1β (C) and the percentage of weight losses denoting the lysis of clots (D). *
P� 0.05, **P� 0.01.

doi:10.1371/journal.pone.0149775.g005
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proinflammatory cytokines is also recognized as being essential to exploit their procoagulant
repertoire, thereby propagating coagulation [53]. The clarification of specific underlying rela-
tionship between proinflammatory cytokines, such as IL-1β and fiber structure, in this study
expands our understanding of its thrombogenesis, and should consequently facilitate develop-
ment of a novel strategy for treatment of large bone defect via alteration of fiber structures in
hematomas.

Conclusion
In summary, this study confirmed that by simply varying the IL-1β concentration in a PPP
solution, the lag time of protofibril formation and maximum turbidity without additional
fibrinogen or thrombin can be significantly reduced. Therefore, controlling proinflammatory
cytokines such as IL-1β concentration may present a novel intervention for tailoring fibrin clot
architecture to improve the repair and regeneration of skeletal tissues.
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