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Abstract: As a response to environmental changes driven by the Earth’s axial rotation, most organisms
evolved an internal biological timer—the so called circadian clock—which regulates physiology and
behavior in a rhythmic fashion. Emerging evidence suggests an intimate interplay between the
circadian clock and another fundamental rhythmic process, the cell cycle. However, the precise
mechanisms of this connection are not fully understood. Disruption of circadian rhythms has
a profound impact on cell division and cancer development and, vice versa, malignant transformation
causes disturbances of the circadian clock. Conventional knowledge attributes tumor suppressor
properties to the circadian clock. However, this implication might be context-dependent, since,
under certain conditions, the clock can also promote tumorigenesis. Therefore, a better understanding
of the molecular links regulating the physiological balance between the two cycles will have potential
significance for the treatment of cancer and associated disorders.
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1. Introduction

From the dawn of life on our planet, various organisms have been exposed to periodic variations in
different environmental factors, such as sunlight or temperature. The evolutionary advantage of being
able to estimate the duration of the day and to predict the occurrence of daily events, has triggered the
development of the circadian clock [1]. This idea is supported by laboratory experiments with different
strains of the cyanobacterium Synechococcus elongatus demonstrating that internal circadian period
resonating with exogenous light-dark regimes confers substantial benefits in cellular growth [2].

Circadian clocks are considered to regulate cell division (or reproduction in the case of unicellular
organisms) at early evolutionary stages [3]. According to the “escape from light” hypothesis, ancient life
forms developed the clock to avoid harmful radiation emitted by the sun [4]. It is quite conceivable
that by restricting replication events to the night, the clock would help to avoid the deleterious
effects of ultraviolet (UV) light on DNA integrity [5–7]. In agreement with this, circadian rhythms in
the susceptibility to UV radiation were reported in single-cellular algae (Chlamydomonas reinhardtii)
as well as in the skin of mammals [7–10]. Subsequently, as protection to UV-induced DNA
damage, different organisms developed specific blue light sensors that are also capable of DNA
repair, named photolyases. Interestingly, in many species, a subfamily of enzymatically inactive
photolyase homologs, the cryptochromes, are involved in light resetting of the circadian clock [11,12].
Another observation supporting this hypothesis is that UV light can act as a clock entrainment signal,
by inducing phase shifts of circadian rhythms in different biological systems [13,14]. Remarkably,
a family of tryptophan-based UV receptors (UVR8) identified in plants was demonstrated to mediate
synchronization of the Arabidopsis thaliana circadian clock to UV light [15–18].
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An alternative hypothesis suggests that the link between the circadian clock and the cell
cycle is required to temporally separate DNA replication from oxidative metabolic reactions.
Metabolic rhythms in the budding yeast are characterized by respiratory fluctuations with a period
of 40 min to 4 h (dependent on strain genotype). They are often considered as a timing mechanism,
analogous to the circadian clock [19–21]. In order to maintain genome integrity, yeast cells restrict their
DNA replication (S) phase exclusively to the reductive stage of the metabolic cycle and allow no DNA
biosynthesis during the oxidative stage, when mutagenic reactive oxygen species are produced. In line
with this, mutant strains that permit DNA synthesis during the oxidative stage show increased rates of
spontaneous point-mutations [22].

Taken together, both scenarios provide plausible explanations for DNA damage acting as the
driving force to synchronize the circadian clock and cell cycle regulation [23].

2. The Circadian System in Mammals

The circadian timing system in mammals is organized in a hierarchical manner, with a central
oscillator in the brain and peripheral oscillators in virtually all cells of the body. In mammals, the central
clock is located in neural networks of the hypothalamic suprachiasmatic nuclei (SCN) which receive
photic information from the retina and synchronize peripheral clocks with external light/dark cycles
via neural and humoral pathways [24]. On the cellular level, the molecular clockwork in plants,
fungi, and metazoans is based on transcriptional/translational feedback loops (TTFLs) compiled
of so-called clock genes [25,26]. In the center of mammalian TTFLs, there are two E-box specific
transcription factors, CLOCK (Circadian locomotor output cycles kaput, which can be replaced
by NPAS2 (Neuronal PAS domain protein 2)) and BMAL1 (Brain and muscle Arnt-like protein-1),
which, at the beginning of the day, form heterodimers, and bind and activate transcription of target
genes (Figure 1). Their targets include a small group of genes encoding transcriptional repressors,
the Period (Per1/2/3) and Cryptochrome genes (Cry1/2). Freshly translated PER and CRY proteins
form heterocomplexes, which gradually accumulate in the cytoplasm and interact with casein kinase I
(CkIδ and CkIε) and 5′ AMP-activated protein kinase (AMPK). Subsequently, phosphorylated CRYs
and PERs are degraded via the proteasome pathway to ensure a required temporal delay of the
negative arm of the TTFL. Later in the evening, PER/CRY complexes enter the nucleus and inactivate
CLOCK/BMAL1 dimers, thus inhibiting the transcription of their own genes and closing the loop.
In addition to Pers and Crys, CLOCK/BMAL1 drive rhythmic expression of many clock-controlled
genes (CCGs) directly or via transcription factors of secondary loops, such as REV-ERBs (reverse strand
of ERBA)/RORs (Retinoic acid-receptor-related orphan receptor) and others [27]. This network
of TTFLs allows for the expansion of the number of CCGs to reach up to 10–15% of the whole
transcriptome in a given tissue [28]. Moreover, recent phosphoproteomic analysis revealed that timing
information could be further conducted to various signaling pathways by means of circadian changes
in phosphorylation [29].

3. The Cell Cycle in Mammals

The cell cycle is a continuous process of cell growth and DNA duplication, followed by cell
division (mitosis). It consists of several cell cycle phases. The transition from one phase to another
is controlled by a set of conserved serine-threonine cyclin dependent kinases (CDKs), whose activity
is regulated by special adaptor proteins—cyclins—expressed in a temporal manner (Figure 2).
According to the classical model, entry into G1 phase is controlled by a complex of CDK4/6 with
D cyclins (CycD), which phosphorylates retinoblastoma protein (Rb) and releases the E2F (E2 factor)
transcription factor. E2F, in turn, activates expression of the cyclins E and A. The transition from G1 to
S phase is controlled by CDK2 in complex with cyclin E, which is later replaced by cyclin A, to initiate
S phase. The S to G2 transition and M phase are controlled by CDK1 in complex with cyclins A and B,
respectively. The activity of each of the CDK complexes can be restrained at each phase by a set of
specific inhibitors such as p15, p21, p27, or WEE1 [30].
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Figure 1. The circadian transcriptional/translational feedback loop (TTFL) machinery in mammals. In 
the core loop CLOCK/BMAL1 bind E-boxes in promoters of target genes (Pers, Crys, and 
clock-controlled genes (CCGs)) and activate transcription. Nuclear export and translation of obtained 
mRNAs allows gradual accumulation of PERs and CRYs in the cytoplasm. Kinases, such as CKI and 
5′ AMP-activated protein kinase (AMPK), adjust the period of the clock by phosphorylation and 
subsequent degradation of PER and CRY proteins, respectively. PERs and CRYs form complexes, 
which enter the nucleus and inhibit CLOCK/BMAL1-mediated transcription. Consequent 
degradation of PERs and CRYs restarts a new cycle of transcription. Accessory loops contain 
additional pairs of antagonizing transcription factors such as REV-ERBs (α/β) and RORs (α/β/γ), or 
DBP (D-box-binding protein) and E4BP4 (E4 promoter-binding protein 4). The former regulates Clock 
and Bmal1 genes through ROR-elements (RORE), whereas the latter controls the expression of other 
CCGs via D-boxes at a second hierarchical level. 

Figure 1. The circadian transcriptional/translational feedback loop (TTFL) machinery in mammals.
In the core loop CLOCK/BMAL1 bind E-boxes in promoters of target genes (Pers, Crys,
and clock-controlled genes (CCGs)) and activate transcription. Nuclear export and translation of
obtained mRNAs allows gradual accumulation of PERs and CRYs in the cytoplasm. Kinases, such as
CKI and 5′ AMP-activated protein kinase (AMPK), adjust the period of the clock by phosphorylation
and subsequent degradation of PER and CRY proteins, respectively. PERs and CRYs form complexes,
which enter the nucleus and inhibit CLOCK/BMAL1-mediated transcription. Consequent degradation
of PERs and CRYs restarts a new cycle of transcription. Accessory loops contain additional pairs of
antagonizing transcription factors such as REV-ERBs (α/β) and RORs (α/β/γ), or DBP (D-box-binding
protein) and E4BP4 (E4 promoter-binding protein 4). The former regulates Clock and Bmal1 genes
through ROR-elements (RORE), whereas the latter controls the expression of other CCGs via D-boxes at
a second hierarchical level.
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Figure 2. Schematic view of coupling between the circadian clock and the cell cycle in healthy and 
tumor cells. The circadian oscillator based on TTFLs and the cell cycle, consisting of several phases 
regulated by CDK/cyclin complexes, coexist in a single cell. The clock is entrained by systemic 
signals from the body and by the internal energetic state of the cell, whereas cell cycle progression 
depends on a combination of other factors, such as mitogenic stimulation, tumorigenic mutations, 
and DNA damage checkpoints. Interaction of both oscillators, as defined by specific coupling factors, 
determines the circadian timing of cell division (for details see Sections 3 and 4). 

It is worth mentioning, however, that according to results of knockout studies in mice, the 
interphase CDKs (CDK2/4/6) are directly required not for the cell cycle in general, but for the 
development of specific cell types [31–35]. Only the deletion of mitotic CDK1 results in cell cycle 
arrest and early embryonic lethality. Similar to yeast, mammalian CDK1 is able to bind all types of 
cyclins and maintain proliferation in embryos until mid-gestation [35]. These results challenged the 
classical view and led to the development of the “essential” cell cycle model, in which CDK1 plays a 
central role [30]. 

Correct cell cycle progression is dependent on several checkpoints, which are activated in 
response to DNA damage and induce cell cycle arrest to avoid transmission of altered genomes to 
daughter cells. Double strand breaks during G1 phase induce activity of ataxia-telangiectasia 
mutated (ATM), which phosphorylates checkpoint kinase 2 (CHK2) and activates p53, preventing 
cells from proceeding into DNA replication. DNA damage during the S/G2 phases results in 
activation of ATR (ATM- and RAD3-related) kinase, which signals through CHK1 and p53, leading 
to cell cycle arrest [36].  

4. Molecular Links between the Circadian Clock and the Cell Cycle 

In their seminal work, Matsuo and colleagues studied circadian aspects of liver regeneration 
after partial hepatectomy. They demonstrated that rhythmic expression of the WEE1 kinase (which 
inhibits the G2/M transition by phosphorylation of CDK1) is transcriptionally governed by 
CLOCK/BMAL1, leading to delayed mitosis entry after injury in circadian mutant mice (Cry1,2−/−) 
[37]. Similarly, the p53 tumor suppressor pathway was found to be under direct transcriptional 
control through BMAL1, which is consistent with an antiproliferative role of BMAL1 in pancreatic 
cancer [38]. The circadian output effector NONO was shown to associate with PERIOD proteins to 
directly activate the cyclic expression of p16INK4A (which inhibits the G1/S transition) and to regulate 
cell cycle progression in a circadian fashion [39]. Another CDK inhibitor, p21Cip1, was shown to be 

Figure 2. Schematic view of coupling between the circadian clock and the cell cycle in healthy and
tumor cells. The circadian oscillator based on TTFLs and the cell cycle, consisting of several phases
regulated by CDK/cyclin complexes, coexist in a single cell. The clock is entrained by systemic
signals from the body and by the internal energetic state of the cell, whereas cell cycle progression
depends on a combination of other factors, such as mitogenic stimulation, tumorigenic mutations,
and DNA damage checkpoints. Interaction of both oscillators, as defined by specific coupling factors,
determines the circadian timing of cell division (for details see Sections 3 and 4).

It is worth mentioning, however, that according to results of knockout studies in mice,
the interphase CDKs (CDK2/4/6) are directly required not for the cell cycle in general, but for
the development of specific cell types [31–35]. Only the deletion of mitotic CDK1 results in cell cycle
arrest and early embryonic lethality. Similar to yeast, mammalian CDK1 is able to bind all types of
cyclins and maintain proliferation in embryos until mid-gestation [35]. These results challenged the
classical view and led to the development of the “essential” cell cycle model, in which CDK1 plays
a central role [30].

Correct cell cycle progression is dependent on several checkpoints, which are activated in response
to DNA damage and induce cell cycle arrest to avoid transmission of altered genomes to daughter
cells. Double strand breaks during G1 phase induce activity of ataxia-telangiectasia mutated (ATM),
which phosphorylates checkpoint kinase 2 (CHK2) and activates p53, preventing cells from proceeding
into DNA replication. DNA damage during the S/G2 phases results in activation of ATR (ATM- and
RAD3-related) kinase, which signals through CHK1 and p53, leading to cell cycle arrest [36].

4. Molecular Links between the Circadian Clock and the Cell Cycle

In their seminal work, Matsuo and colleagues studied circadian aspects of liver regeneration after
partial hepatectomy. They demonstrated that rhythmic expression of the WEE1 kinase (which inhibits
the G2/M transition by phosphorylation of CDK1) is transcriptionally governed by CLOCK/BMAL1,
leading to delayed mitosis entry after injury in circadian mutant mice (Cry1,2−/−) [37]. Similarly,
the p53 tumor suppressor pathway was found to be under direct transcriptional control through
BMAL1, which is consistent with an antiproliferative role of BMAL1 in pancreatic cancer [38].
The circadian output effector NONO was shown to associate with PERIOD proteins to directly
activate the cyclic expression of p16INK4A (which inhibits the G1/S transition) and to regulate
cell cycle progression in a circadian fashion [39]. Another CDK inhibitor, p21Cip1, was shown
to be rhythmically regulated via the REV-ERB/ROR loop, through conserved RORE motifs in its
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promoter [40]. Remarkably, DNA damage was revealed to affect the turnover of both cryptochromes in
an opposite manner by increasing stability of CRY1 and concomitantly destabilizing CRY2. Since both
CRYs appear to have a non-redundant function in this process, a precise balance between them is
required to shape the proper transcriptional response to genotoxic stress [41].

Post-translational modifications further contribute to the coupling between the two oscillators.
In the unicellular red alga Cyanidioschyzon merolae, this link was ultimately narrowed down to
time-dependent phosphorylation of the transcription factor E2F, which regulates the G1/S transition.
Remarkably, mutation of E2F phosphorylation sites results in uncoupling of cell divisions from
the circadian clock [42]. A recent report unexpectedly revealed a unique function of CRY2 as
a key factor of MYC (avian myelocytomatosis viral oncogene homolog) turnover. In cooperation
with FBXL3 (F-box and leucine rich repeat protein 3), CRY2 binds to MYC phosphorylated at
threonine 58 and targets it for degradation, thus restricting proliferation in cancer cells [43].
Another member of the clock’s negative feedback loop, PER2, is involved in the regulation of p53
stability. PER2 binding hinders Mdm2-mediated ubiquitination of p53 and facilitates its nuclear import,
while rendering it transcriptionally inactive. This generates a precondition, when p53 levels in the
nucleus are instantly accessible for the immediate reaction to genotoxic stress [44–46]. PER1, in turn,
controls phosphorylation of CHK2 via direct interaction with ATM and, thus, enhances cell cycle
arrest and apoptosis upon DNA damage [47]. Although the role of mammalian timeless (TIM) in the
clock mechanism remains unclear, its function in both limbs of DNA damage responses seems to be
crucial [48–50]. On the one hand, TIM facilitates phosphorylation of CHK1 by ATR in response to UV
irradiation or hydroxyurea treatment [51]. On the other hand, TIM is responsible for the activation of
CHK2 by ATM in response to doxorubicin-induced DNA double strand breaks [52]. Despite substantial
progress, the identification of precise molecular mechanisms of coupling in particular tissues or tumors
still remains a challenging task, since cell cycle regulation possesses a considerable reserve of plasticity,
due to the redundancy of its individual components.

5. Coupling between the Circadian Clock and the Cell Cycle

Circadian rhythms in cell division were documented in various biological systems, such as
cyanobacteria and unicellular eukaryotes, suggesting a link between two oscillators [7]. Based on
these observations, it was proposed that the circadian oscillator could act as an additional checkpoint,
allowing (“gating”) cell divisions only during certain time windows [53]. Indeed, in cyanobacteria,
cell proliferation shows clear gating by the circadian clock, although the period of cell division cycles
is much shorter than one day (around 10 h) [54,55]. Studies in humans and mice also report circadian
variations in DNA replication and rhythmic expression of cell cycle components in different tissues
in vivo [56–59]. Development of fluorescent circadian reporters allowed for investigation of circadian
rhythms in isolated cells devoid of systemic cues. In NIH 3T3 cells, the incidence of cell division events
relative to the circadian cycle is highly non-random and exhibits a trimodal frequency distribution,
suggesting that cellular clocks predetermine the timing of mitosis [60]. Subsequent mathematical
analyses confirmed the intimate link between both oscillators in NIH 3T3 cells [61,62]. Interestingly,
both experimental data and stochastic modelling defined the nature of this interaction as a 1:1 phase
locking (i.e., oscillations with a common frequency) rather than a gating, as suggested earlier [53,61,62].
Another remarkable finding was reported by a recent study using complex tissue culture techniques
such as 3D intestinal organoids. The authors revealed that intercellular coupling helps stem cells to
synchronize their cell divisions with local circadian pacemakers residing in secretory Paneth cells.
Rhythmic secretion of Wnt by Paneth cells entrains the cell cycle of adjacent stem cells and progenitor
cells bearing weak circadian oscillators [63].

Similar to what is observed in cellular circadian clocks, genetically identical cells tend to show high
variabilities in cell cycle durations [64]. Are the factors responsible for this variability stochastic and set
randomly, independent of initial conditions, or deterministic and rely on certain inherited components?
Recently, Sandler et al. addressed this issue in an elegant experimental approach comparing cell
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cycle durations among different lineages of cells. They found high correlations in pairs of sister and
cousin cells, and no correlation between mother and daughter cells [65]. This property, termed the
“cousin-mother inequality”, suggests deterministic inheritance within the system. A “kicked cell cycle”
model, built on this experimental data, assumes the existence of a certain independent oscillator,
whose phase after each cell division would determine the duration of the next cell cycle. It is still
unclear whether this underlying oscillator is the circadian clock, but some hints, such as inheritance of
the circadian phase by the daughter cells upon division, point in this direction [60,65,66].

In contrast, certain cell types show a marked absence of coupling between the clock and
the cell cycle. In rat1 fibroblasts, luciferase activity of the cell cycle reporter (CCNB1-dGluc) is
rhythmic but not temperature compensated, and does not correlate with oscillations of the circadian
Bmal1-dGluc reporter [67]. Similar phenomena are observed in Lewis lung carcinoma cells [68].
Taken together, both oscillators show robust coupling in vivo and in vitro; however, under certain
conditions, immortalized or cancer cell lines uncouple their cell division from the circadian control.

6. Physiological Significance of the Clock-Cell Cycle Coupling

In the adult body, division of many stem cells is controlled by the circadian clock. Diurnal mitotic
rhythms in UV exposed tissues, such as skin, were among the first to be reported [69,70]. Later studies
provided compelling evidence that the circadian clock indeed plays a crucial role in the physiology
of epidermal stem cells. For instance, healthy skin homeostasis requires a balance between pools of
dormant and active skin stem cells, which is in turn determined by the local clock. Disruption of clock
genes in these cells results in premature epidermal ageing and predisposes to cancerogenesis [71].
The circadian clock found in human keratinocytes temporally regulates expression of a large number of
genes involved in proliferation, sensitivity to signaling pathways, and DNA damage responses [72,73].
Moreover, rhythmic clock gene expression was reported in another constantly remodeling human
organ, the hair follicle. Disruption of the clock components Per1, Bmal1, or Clock with RNAi significantly
prolongs the anagenic phase of intensive epithelial proliferation, suggesting that the clock is required
for a normal progression of the hair cycle [74]. Multiple studies provide evidence that the molecular
clockwork is important for normal stem cell function in other organs also, such as brain, blood,
and intestine [75]. The activation of quiescent neuronal progenitor cells shows time-of-day dependent
fluctuations, which require intact clock genes. Genetic ablation of circadian rhythms disrupts proper
adult hippocampal neurogenesis, leading to impaired cognitive functions such as learning and
memory [76]. Clock-controlled release and accumulation of hematopoietic stem cells and inflammatory
monocytes in the circulating blood is important for the regeneration of the stem cell niche in bone
marrow and the modulation of inflammatory reactions, respectively [77,78]. Divisions of intestinal
stem cells, necessary for efficient renewal of the crypt epithelium after lining, are stimulated by
circadian Wnt secretion from Paneth cells and require an intact circadian clock (see above) [63].

7. The Circadian Clock as a Tumor Suppressor

In the pathological state, a loss of cell cycle regulation leads to uncontrolled cell division and,
ultimately, the development of cancer. Whether and to what extent circadian clocks are involved in
this process remains a high-priority question. Nowadays, the prevailing hypothesis states that the
circadian clock is an important tumor suppressor, and that disrupted circadian rhythms promote
tumor development [79]. Population studies conducted on different cohorts of subjects associate
shift work and insufficient sleep with an elevated risk of cancer development [80–85]. Results from
modeling circadian disruption in rodents by SCN lesion or by aberrant light schedules such as shift
work and chronic jet lag under controlled laboratory conditions support these observations. Cohorts of
tumor-bearing mice, subjected to such treatments, show accelerated tumor growth and increased
expression of genes involved in tumorigenesis such as Myc [86,87]. Additionally, tumor-prone mice,
expressing a mutated allele of p53 in mammary glands, exhibit higher rates of spontaneous tumors,



Int. J. Mol. Sci. 2017, 18, 873 7 of 15

when exposed to weekly alternating light cycles, suggesting that internal desynchronization and sleep
disturbances contribute to de novo cancerogenesis [88].

Numerous studies reported that individual molecular components of the circadian clock, such as
BMAL1 [38,89–93], PER2 [94–96], or PER1 [47] suppress proliferation or increase the sensitivity to
anti-cancer drugs in different cancer cell lines. Moreover, enhancing the clock function in tumor cells
by means of circadian synchronization (i.e., dexamethasone treatment) impinges on the cell cycle and
reduces cellular growth [97]. In line with this, genetic variants of various clock genes were associated
with certain types of cancer in humans (reviewed in [98,99]).

If an intact circadian clock indeed acts as a tumor suppressor, then mutations of clock genes
in mice should predispose to cancerogenesis and lead to higher tumor frequencies. Initial work
performed by Fu and colleagues supports this hypothesis, revealing that Per2m/m (and also Per2−/−)
mice are sensitive to DNA damage and subsequent tumor development induced by γ-radiation [100].
Analogously, another group found that downregulation of PER2 increases proliferation of colon cancer
cell lines, and Per2m/m mice are prone to formation of precancerous polyps in colon. This phenotype is
further aggravated upon mutation of Per2 in mice inclined to develop intestinal tumors (ApcMin/+) [101].
Furthermore, long-term observations of animals with single or double deletions of clock genes such as
Per1,2−/− and Cry1,2−/− or mice lacking a single copy of Bmal1, revealed them to be cancer-prone.
All three genotypes developed significantly more spontaneous and radiation-induced tumors than
wild type animals already under normal 12:12 light:dark conditions, and this phenotype was further
augmented when animals were phase-shifted [102]. The tumor-suppressive potential of intact
circadian rhythms was demonstrated using mice models of induced lung cancer (K-rasLSL−G12D/+;
p53flox/flox). Either subjected to chronic jetlag or bearing mutated alleles of Per2 or Bmal1, these animals
showed increased tumorigenesis and lower survival rates, which correlated with higher proliferation
rates and MYC expression levels in their tumors [103]. A recent study underlined the role of
circadian dysfunction in the development of non-alcoholic fatty liver disease and liver cancer in
obese people [104]. Wild type animals subjected to chronic jet lag shifted their liver metabolism
towards lipid synthesis and storage, leading to the development of steatohepatitis, fibrosis, and,
ultimately, hepatocellular carcinomas. Interestingly, double mutation of cryptochromes (Cry1,2−/−),
Periods (Per1,2−/−), or Bmal1 in the liver (Albcre; Bmal1fl/fl) accelerates progression of these symptoms
and increases tumor incidence [104].

However, there were also studies which report contradicting results, and assert that clock gene
mutant mice are not tumor prone. In contrast to previous reports, the rate of spontaneous tumors in
untreated and γ-irradiated Per1−/− and Per2−/− mice is comparable to that of wild type animals [105].
Moreover, arrhythmic Bmal1−/− and Clock∆19 mutants also do not show higher tumor frequencies,
although they develop symptoms of accelerating aging under normal conditions (Bmal1−/−), or when
subjected to γ-radiation (Clock∆19) [106,107]. A similar discrepancy was reported for Cry1/2−/−

knockout animals, which are equally susceptible to spontaneous or radiation-induced cancers as wild
types [108]. Strikingly, deletion of both cryptochromes was described to have a cancer protective
effect, as it significantly reduces mortality and tumor incidence in mice with p53−/− background [109].
Despite the discrepancies between different studies, it is conceivable that the observed cancer prone
phenotypes of certain clock gene mutants might stem not from the disrupted circadian rhythms per se,
but rather from “clock-unrelated” (pleiotropic) functions of these genes [79].

8. Does the Circadian Clock Support Tumorigenesis?

The prevailing view regarding the antitumor activity of the circadian clock was disputed by
reports that some clock genes support proliferation in normal and cancer cells. Indeed, the expression
of many cell cycle genes is deregulated in Clock∆19 mutant mice and, as a consequence, Clock∆19 mouse
embryonic fibroblasts (MEFs) exhibit significantly lower proliferation rates than those from wild
types [110]. Similarly, Bmal1 deficiency in primary hepatocytes results in reduced rates of cell
division and, vice versa, BMAL1 overexpression stimulates cell growth in NIH 3T3 cells [40,111].
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This pro-proliferative effect of certain clock genes was not specific to untransformed cells, since very
similar properties were also attributed to cancer cell lines. For instance, human colorectal cancers often
show higher expression of Clock or Bmal1 genes compared to healthy tissue [112–114]. In agreement
with this, overexpression of CLOCK increases proliferation of colorectal carcinoma cells in vitro and
in vivo [115]. Another study reports elevated levels of CLOCK in ERα-positive breast tumor samples.
Furthermore, upregulation of Clock transcription by estrogen receptor (ER) was necessary to maintain
high proliferation in tumor cells [116]. BMAL1 was found to be upregulated in certain types of pleural
mesothelioma, and subsequent experiments revealed reduced cell growth and induced apoptosis
upon Bmal1 knockdown in tumorigenic cells, but not in cells derived from healthy tissue [117,118].
Finally, both Clock and Bmal1 were identified as survival factors for leukemia stem cells, since their
genetic (RNAi, CRISPR) or chemical (REV-ERBs agonist SR9011) disruption induces differentiation
and growth arrest. Surprisingly, healthy cells appear to be resilient to genetic ablation of the circadian
clock, as Bmal1 disruption does not produce any gross hematopoietic deficits, thus revealing Bmal1 as
an attractive anti-leukemia target [119].

Taken together, these findings indicate that under certain circumstances, clock genes may foster
cancer development and, therefore, their role as tumor suppressors must be re-evaluated. Although the
reason remains unknown, it is tempting to speculate that unique epigenetic signatures of various
cancer cell types are likely to define distinct subsets of CCGs, modulating influence of the circadian
clock on proliferation, apoptosis, and cell cycle progression.

9. Cancer Affects Circadian Rhythms in Cells and in the Body

Multiple reports suggest that malignant transformation is associated with suppression of circadian
rhythms in tumors [79]. Indeed, many oncogenic pathways have established connections to the
circadian clock and can impinge on its function through transcriptional and post-translational
mechanisms [120]. Increased activity of the Ras pathway observed in human malignancies weakens
circadian oscillations in cells [121]. Overexpression of MYC oncogenes found in many cancers was
shown to silence the circadian clock in different types of tumors [93,122–124]. The cancer/testis
antigen PASD1 (PAS domain containing 1) induced in certain variants of tumors directly interacts
with CLOCK/BMAL1 dimers and inhibits their transactivation activity, thereby interfering with the
circadian clock [125]. Depending on the mechanism of oncogenic transformation, cancer cells can
silence their clock in order to escape rhythmic regulation of metabolism imposed by the circadian
system and thereby accelerate cell growth. Alternatively, to increase proliferation, a tumor may
uncouple its cell cycle from circadian regulation, as mentioned above [68].

Surprisingly, the process of malignant transformation can affect circadian rhythms in distal
organs and introduce imbalance in metabolic homeostasis of the body. Arrhythmic liver metastases
of colorectal cancer phase-shift the expression of clock genes in healthy liver tissue. Similar phase
shifts, most likely caused by some humoral factors, were also observed in more distal organs such as
kidney [126]. Moreover, a recent study reports that mice bearing adenocarcinomas in lung show
an altered hepatic circadian metabolism. Although the expression of core clock genes remains
unchanged, lung tumors massively affect oscillations of liver metabolic genes and molecules [127].
Furthermore, systemic effects, such as reduced serum insulin and increased blood glucose, hint at
a pernicious influence on other peripheral organs such as pancreas. As was suggested, the detrimental
impact of tumors is mediated by secretion of proinflammatory cytokines and metabolites such as
lactate. In this fashion, tumors may shape the physiology of the host in accordance with their energetic
requirements [127].

Another interesting aspect is the systemic impact of hormone-producing tumors on the circadian
rhythms in the body. For instance, patients with Cushing syndrome often bear cortisol- or ACTH
(Adrenocorticotropic hormone)-secreting tumors associated with sleep disorders and disturbed
circadian rhythms [128]. In line with this, patients with pheochromocytoma (adrenaline-producing
tumors) exhibit reduced circadian variations in blood pressure [129,130]. Future studies should address
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whether and how ectopic tumor secretion of circadianly active substances may cause desynchronization
of peripheral oscillators and lead to secondary metabolic disturbances and sleep disorders.

10. Conclusions

The circadian clock and the cell cycle are two essential rhythmic programs that regulate major
aspects of mammalian physiology. Cumulative evidence suggests multiple means by which these
oscillators can affect each other in healthy and pathological states. The circadian clock is known to
regulate expression of cell cycle components on cellular or intercellular levels and, thereby, gate the
cell cycle. Circadian disruption, in turn, results in deregulated cell division and cancerogenesis.
However, the exact contribution of already established links versus as-yet-unknown mechanisms
remains obscure. On the other hand, malignant transformation and tumor development interfere with
molecular clock function and introduce a systemic imbalance in circadian rhythms. Shift work, jet lag,
and sleep disorders are inevitable attributes of modern human society, all of which are associated with
the development of cancer—the leading cause of mortality worldwide. Therefore, a better notion of
the machinery which interconnects these pathological conditions will help to devise new therapeutic
strategies for the treatment and prevention of cancer.
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