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Background: Sustained proliferation and active metastasis are hallmarks of cancer, and they

pose major challenges to the development of treatments and a cure for hepatocellular

carcinoma (HCC). Thus, the mechanisms of proliferation, migration, and invasion of cancer

cells need to be investigated. Many studies indicate that dysregulation of microRNA plays

important roles in the progression of HCC, but the role of placenta-specific microRNA (miR-

512-3p) in HCC has not been systematically investigated.

Purpose: In the current study, the expression, biological function, and mechanisms of miR-

512-3p involvement in HCC were investigated.

Methods: Real-time quantitative polymerase chain reaction assays were conducted to

determine miR-512-3p levels in HCC tissues and cell lines. The StarBase V3.0 online

platform was used to compare miR-512-3p levels in HCC tissues with TCGA data and to

identify potential miR-512-3p target genes. Associations between miR-512-3p and clinico-

pathological characteristics were analyzed statistically. MTT, ethynyl deoxyuridine, and

transwell assays were performed to assess cell viability, proliferation, migration, and inva-

sion. The luciferase reporter gene assay was used to verify target genes. Recuse assays were

performed to confirm whether large tumor suppressor kinase 2 (LATS2) participated in the

regulatory effects of miR-512-3p on HCC cell proliferation and motility, and whether miR-

512-3p mediated the tumor-promoting effects of hypoxia.

Results: miR-512-3p was upregulated in HCC and it was associated with worse survival and

unfavorable clinicopathological characteristics. Functional assays indicated that miR-512-3p

contributed to HCC cell proliferation, migration, and invasion. Mechanistically, LATS2—a

downstream target of miR-512-3p—mediated the tumor-promoting effects of miR-512-3p in

HCC. Hypoxia could elevate miR-512-3p levels in HCC cells, and miR-512-3p partially

mediated the tumor-promoting effects of hypoxia.

Conclusion: Hypoxia-induced miR-512-3p contributes to HCC cell proliferation, migration,

and invasion by targeting LATS2 and inhibiting the Hippo/yes-associated protein 1 pathways.
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Introduction
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, and it is

a major cause of cancer-related deaths worldwide.1–3 Approximately half of the

total number of HCC cases and deaths worldwide occur in residents of China, and

this is partly associated with the comparative prevalence of hepatitis B in that
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country.4,5 Due to a lack of effective early diagnostic

indicators HCC is often at an advanced stage when it is

diagnosed, after the optimal treatment time has passed.6

Recurrence and metastasis after surgical resection are

associated with a poor prognosis.7 It is thus essential to

identify diagnostic indicators and to investigate the mole-

cular mechanisms involved in HCC progression, in an

effort to improve the accuracy of diagnosis and the effi-

cacy of treatment.

Numerous studies indicate that dysregulated microRNAs

are involved in the progression of HCC because they regulate

the functioning of genes involved in various cellular

processes including proliferation, invasion,8–11 and

migration,12–14 and metastasis15,16 by regulating key genes.

In recent years the involvement of placenta-specific

microRNA (miR-512-3p) has been identified in various

human cancers. Zhu et al17 reported that inhibition of ded-

icator of cytokinesis 3 (DOCK3) by miR-512-3p contributed

to suppression of metastasis in non-small cell lung cancer. In

several other studies miR-512-3p has been upregulated in

HCC.18,19 To date however, no study has systematically

investigated the role of miR-512-3p in HCC.

Hippo signaling evidently has an inhibitory effect on

HCC progression.20,21 The Hippo signaling pathway acti-

vates large tumor suppressor kinases, which phosphorylate

yes-associated protein 1 (YAP), resulting in cytoplasmic

YAP retention. Previous studies indicate that large tumor

suppressor kinase 2 (LATS2), a key component of the

Hippo signaling pathway, functions as a tumor suppressor

gene in various cancers including lung cancer,22 glioma,23

endometrial cancer,24,25 colorectal cancer,26 breast

cancer,27 esophageal squamous cell carcinoma,28 and

HCC.29 LATS2 is regulated by several microRNAs. Xu

et al30 reported that microRNA-302d promotes the prolif-

eration of human pluripotent stem cell-derived cardiomyo-

cytes by inhibiting LATS2 in the Hippo pathway. Cheng

et al27 reported that miR-372 promotes breast cancer cell

proliferation by directly targeting LATS2. Han et al31

reported that miR-103 promotes the metastasis and epithe-

lial-mesenchymal transition of HCC by directly inhibiting

LATS2. Notably however, relationships between LATS2

and miR-512-3p in HCC remain unknown.

Hypoxia is a main feature of HCC, and strong evidence

suggests that it may promote HCC progression by

regulating characteristics associated with malignancy,

including cancer stem-like properties,32 proliferation,33,34

metastasis,35,36 and epithelial-mesenchymal transition37,38

in both hypoxia-inducible factor 1-alpha (HIF1-α)-

dependent and HIF1-α-independent manners. Dou et al39

reported that hypoxia contributed to growth and metastasis

by increasing the expression of tuftelin 1, which is an

HCC oncoprotein. Zhou et al40 reported that hypoxia

induced glycolysis in HCC cells by increasing the expres-

sion of long non-coding RNA retinoic acid early transcript

1K pseudogene, mediated by HIF1-α. Zheng et al41

recently reported that hypoxia drove tumorigenesis and

metastasis in HCC by downregulating miR-196-5p, but

relationships between hypoxia and miR-512-3p in HCC

remain uncharacterized.

In the present study miR-512-3p levels in HCC tissues

and cells were investigated. A series of functional experi-

ments was then performed to explore the biological roles

of miR-512-3p in HCC cell proliferation and motility. The

downstream target gene mediating the effects of miR-512-

3p on HCC cell proliferation and motility was then

screened for and verified. Lastly, the effects of hypoxia

on miR-512-3p expression were investigated.

Materials and Methods
Tissue Samples
Tissue samples were obtained from 45 patients who under-

went liver resection at the Department of General Surgery

at the First Affiliated Hospital of Nanchang University

(Nanchang, China). None of the patients received any

adjuvant therapy such as chemotherapy or radiotherapy

before surgery. All HCC and non-tumor tissues were

stored in liquid nitrogen after they were collected. All

patients provided written informed consent, and the study

was approved by the Ethics Committee of Nanchang

University, China. The clinicopathological parameters of

the patients are shown in Table 1.

Cell Culture
The HEK293T cell line, L02 cell line (human immorta-

lized normal hepatic cell line), and human HCC cell lines

(Hep3B, SMMC-7721, MHCC97-L, and HCCLM3) were

purchased from the Chinese Academy of Sciences

(Shanghai, China). All cells were cultured in Dulbecco’s

modified Eagle medium (DMEM) (Gibco, Grand Island,

NY, USA) containing 1% penicillin-streptomycin (Sigma,

St. Louis, MO, USA) and 10% fetal bovine serum (Gibco)

in a 37°C incubator with 5% CO2. The hypoxic cell model

was generated by culturing cells in a 37°C hypoxia incu-

bator with 1% O2.

Zhang et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
OncoTargets and Therapy 2020:136074

http://www.dovepress.com
http://www.dovepress.com


Cell Transfection
miR-512-3p mimics (miR-512-3p, miR10002823-1-5),

control mimics (miR-control, miR1N0000001-1-5), miR-

512-3p inhibitors (anti-miR-512-3p, miR20002823-1-5),

and control inhibitors (anti-miR-NC, miR2N0000001-

1-5) were purchased from RiboBio (Guangzhou, China).

A LATS2 expression plasmid (LATS2, RC219394) and

a negative control (EV, PS100001) were purchased from

OriGene Technologies Inc. (Rockville, MD, USA). The

Lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA,

USA) was used in cell transfection assays, in accordance

with the manufacturer’s instructions.

Real-Time Quantitative Polymerase Chain

Reaction
RNA was extracted from tissues and cells with TRIzol

purchased from Invitrogen and the miRVana microRNA

Isolation Kit in accordance with the manufacturer’s instruc-

tions. Reverse transcription was then conducted using the

TIANScript RT Kit (Tiangen Bio Inc., Beijing, China).

Quantitative PCR was conducted with the SYBR Premix

Ex TaqTM Kit (Takar Bio Inc., Kusatsu, Shiga, Japan) and

TaqMan Human MiRNA Assay Kit (Genecopoeia Inc.,

Guangzhou, China). LATS2 and glyceraldehyde 3-phos-

phate dehydrogenase primers were purchased from

Realgene (Nanjing, China). miR-512-3p and U6 primers

were purchased from Guangzhou RiboBio Co., Ltd.

(Guangzhou, China). Expression levels were quantified

via the 2−ΔΔCt method. All primers used for quantitative

real-time PCR (qRT-PCR) are shown in Table 2.

MTT Assay
MTT was purchased from Sigma-Aldrich Corp. (St. Louis,

MO, USA), and MTT assays were conducted to assess cell

viability. Absorbance was read using a microplate reader

(Bio-Rad, Hercules, CA, USA).

Ethynyl Deoxyuridine Incorporation

Assay
Ethynyl deoxyuridine (EdU) incorporation assays were con-

ducted to assess cell proliferation ability, using Cell-LightTM

Table 1 Association Between miR-512-3p Expression and

Clinicopathologic Features of Patients with Hepatocellular

Carcinoma

Characteristics Number

(n=45)

miR-512-3p Levels P-value

High

(n=23)

Low

(n=22)

Age (years) 0.292

<60 15 6 9

≥60 30 17 13

Gender 0.445

Male 33 18 15

Female 12 5 7

HBV infection 0.654

Negative 9 4 5

Positive 36 19 17

Liver cirrhosis 0.150

Absent 12 4 8

Present 33 19 14

AFP (ng/mL) 0.666

<20 11 5 6

≥20 34 18 16

Tumor size 0.026*

<5cm 21 7 14

≥5cm 24 16 8

Tumor multiplicity 0.608

Single 29 14 15

Multiple 16 9 7

Vascular invasion 0.042*

No 28 11 17

Yes 17 12 5

Edmondson–

Steiner grade

0.399

Ⅰ+Ⅱ 30 14 16

III+Ⅳ 15 9 6

TNM stage 0.009*

Ⅰ+Ⅱ 33 13 20

III+Ⅳ 12 10 2

Note: *P<0.05, statistically significant difference.

Abbreviations: HBV, hepatitis B virus; AFP, alpha-fetoprotein; TNM, tumor-node-

metastasis.

Table 2 Primers Used in This Study

Primers Name Primer Sequence

LATS2 forward 5ʹ- TGGCACCTACTCCCACAG-3’

LATS2 reverse 5ʹ- CCAAGGGCTTTCTTCATCT −3’

TXNIP forward 5ʹ- GAGCCAGCCAACTCAAGAGA-3’

TXNIP reverse 5ʹ- TAGCAGACACAGGTGCCATTA-3’

GAPDH forward 5ʹ- GAAGGTGAAGGTCGGAGTC −3’

GAPDH reverse 5ʹ- GAAGATGGTGATGGGATTTC −3’

miR-512-3p forward 5ʹ- CGGCGGCACTCAGCCTTGAGGG −3’

miR-512-3p reverse 5ʹ- GTGCAGGGTCCGAGGT −3’

U6 forward 5ʹ- CTCGCTTCGGCAGCACA-3’

U6 reverse 5ʹ- AACGCTTCACGAATTTGCGT −3’
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EdU Apollo488 (RiboBio). A Zeiss fluorescence photomi-

croscope (Carl Zeiss, Oberkochen, Germany) was used to

analyze the samples, and quantification was achieved by

counting a minimum of five random fields per sample.

Transwell Assay
Transwell assays were conducted using transwell cham-

bers (Millipore, Burlington, MA, USA), to assess the

migration and invasion capacities of cells. In migration

assays 3 × 104 HCC cells were cultured in the upper

chamber with serum-free DMEM, and the lower chamber

was filled with DMEM containing 20% serum. In invasion

assays 3 × 104 HCC cells were seeded on Matrigel-coated

membrane inserts, and the chamber was placed into a cell

culture plate and incubated at 37°C for 24 h. Cells that had

migrated or invaded across the transwell membrane were

fixed in 4% paraformaldehyde for 30 min, then stained

with 0.5% crystal violet for 30 min. A light microscope

was used to analyze the samples, and quantification was

achieved by counting a minimum of 10 random fields

under 100x magnification.

Western Blotting
RIPA Buffer (WB009A; Hat Biotechnology, Xi’an, China)

was used to extract proteins in HCC cells or tissues. A BCA

kit (WB003; Hat Biotechnology) was used to measure protein

concentrations. All proteins were then electrophoresed in

a 10% sodium dodecyl sulfate polyacrylamide gel and trans-

ferred to polyvinylidene difluoride membrane (Bio-Rad). The

membranes were blocked with 10% non-fat milk, then incu-

bated with specific primary antibodies at 4°C overnight. The

antibodies used in the study were anti-LATS2 (1:500; bs-

4081R; Beijing Bioss Biotechnology), anti-YAP (1:1000;

#14,074; Cell Signaling Technology, Danvers, MA,

USA), anti-phospho-YAP (ser127; 1:1000; #13,008; Cell

Signaling Technology), anti-thioredoxin-interacting protein

(1:1000; #14,715; Cell Signaling Technology), and anti-

glyceraldehyde 3-phosphate dehydrogenase (1:1000, #5174;

Cell Signaling Technology). The membranes were then incu-

bated with secondary antibody (anti-rabbit #7074 or anti-

mouse #7076; Cell Signaling Technology) for 2 h at room

temperature. Lastly, enhanced chemiluminescence reagent

(PierceTM ECL, Thermo ScientificTM, Waltham, MA, USA)

was applied to detect the proteins.

Luciferase Reporter Assay
Luciferase reporter assays were performed to confirm

direct binding between the LATS2 3ʹ-untranslated regions

(UTRs) and miR-512-3p. Wild-type (WT) and mutant

(MUT) 3ʹUTRs of LATS2 mRNA were synthesized and

inserted downstream of the promoter in the pEZX-MT06

vector (Genecopoeia). Cells transfected with miR-512-3p

mimics, inhibitors, or corresponding control vectors were

also transfected with LATS2-3ʹUTR-WT and LATS2-

3ʹUTR-MUT. The cells were then incubated for 48

h. Lastly, the Luc-PairTM Duo-Luciferase Assay Kit

(Genecopoeia) was used to quantify luciferase activity.

Statistical Analysis
Data are presented as means ± the standard deviation, and

at least three independent replicates were performed. One-

way analysis of variance and two-tailed Student’s t-test

were performed using SPSS software 24.0 (SPSS Inc.,

Chicago, IL, USA) and GraphPad Prism 7.0 (San Diego,

CA, USA). Statistical significance was assessed via the

Kaplan–Meier method, Pearson’s correlation analysis, and

the Log rank test. Photoshop and Adobe Illustrator were

used to generate images. p < 0.05 was deemed to indicate

statistical significance.

Results
Clinical Outcomes and miR-512-3p in

HCC
In HCC tissues miR-512-3p expression was higher than it

was in non-tumor tissues harvested in the study (p < 0.0001,

Figure 1A), and it was higher than that reported in the TCGA

data pertaining to normal liver tissues accessed via the

StarBase V3.0 online platform (p = 0.00047, Figure 1B).

Higher miR-512-3p levels were observed in HCC cell lines

(Hep3B, SMMC-7721, MHCC97-L, and HCCLM3) than in

the immortalized normal liver cell line L02 (Figure 1C). In

miR-512-3p-high and miR-512-3p-low groups of HCC

patients generated based on median miR-512-3p expression,

high miR-512-3p was significantly correlated with tumor

size (p = 0.026), vascular invasion (p = 0.042), and advanced

tumor-node-metastasis stage (p = 0.009) (Table 1). In

Kaplan–Meier analysis HCC patients with high miR-512-

3p expression exhibited worse overall survival (p = 0.0115,

Figure 1D).

miR-512-3p and HCC Cell Proliferation,

Migration, and Invasion
qRT-PCR results indicating the efficiency of transfection

of Hep3B and HCCLM3 cells with miR-512-3p mimics

and inhibitors are shown in Supplementary Figure 1. In
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MTT and EdU assays miR-512-3p mimics significantly

enhanced the viability and proliferation of Hep3B cells,

whereas miR-512-3p inhibitors reduced the viability and

proliferation of HCCLM3 cells (p < 0.05, Figure 2A–D).

In transwell migration and invasion assays miR-512-3p

mimics markedly increased the number of Hep3B cells

that passed through the membrane (p < 0.05, Figure 2E),

and the number of MHCC97-H cells that passed through

the membrane was significantly reduced by miR-512-3p

inhibitors (p < 0.05, Figure 2F).

miR-512-3p and LATS2 Targeting in HCC
In qRT-PCR and Western blot assays conducted using HCC

cells, only LATS2 was significantly downregulated by miR-

512-3p (Figure 3D–G and Supplementary Figure 2A and B).

Accordingly, LATS2 was selected as the target of miR-512-

3p, and the complementary sequence between miR-512-3p

and the 3ʹUTR of LATS2 is shown in Figure 3A. In qRT-PCR

assays performed to detect LATS2 mRNA levels in 45 pairs

of HCC tissues and adjacent non-tumor tissues, LATS2

expression was lower in HCC tissues (p < 0.0001,

Figure 3B). miR-512-3p expression was inversely correlated

with LATS2 mRNA levels in HCC tissues (r = −0.7785,
p < 0.0001, Figure 3C). qPCR and Western blot assays

conducted to assess LATS2 levels in Hep3B cells treated

with miR-512-3p mimics and HCCLM3 cells treated with

miR-512-3p inhibitors indicated that LATS2 was signifi-

cantly negatively regulated by miR-512-3p at the mRNA

level and the protein level (p < 0.05, Figure 3D–G). In

luciferase reporter gene assays miR-512-3p overexpression

Figure 1 Expression and prognostic value of miR-512-3p in HCC. (A) miR-512-3p levels in 45 human HCC samples and 45 adjacent normal tissue samples (p < 0.0001,

Student’s t-test). (B) miR-512-3p levels were higher in the HCC tissues in the current study than the levels derived from normal liver tissues recorded in the TCGA

database, accessed via the StarBase V3.0 platform (p = 0.0005, Student’s t-test). (C) qRT-PCR was performed to determine miR-512-3p levels in HCC cell lines (Hep3B,

SMMC-7721, MHCC97-L, and HCCLM3) and L02 cells. *p < 0.05, Student’s t-test vs L02, n = 3. (D) In Kaplan–Meier survival analysis HCC patients with higher expression

of miR-512-3p (n = 23) exhibited shorter overall survival than those with lower miR-512-3p expression (n = 22). p = 0.0115, Log rank test.
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was suppressed but miR-512-3p knockdown enhanced the

luciferase activity of the vector encoded with the WT-3ʹUTR

of LATS2, but not the vector encoded with the MUT-3ʹUTR

in HEK293T cells (p < 0.05, Figure 3H).

LATS2 Mediation of the Effects of

miR-512-3p on Proliferation, Migration,

and Invasion in HCC
LATS2 was overexpressed in Hep3B cells overexpres-

sing miR-512-3p via transfection with a LATS2 expres-

sion plasmid, and the transfection efficiency as

confirmed by Western blotting is shown in Figure 4A.

The results of MTT and EdU assays indicated that

LATS2 overexpression partially abrogated the capacity

of miR-512-3p to promote Hep3B cell viability and

proliferation (p < 0.05, Figure 4B and C). In transwell

assays the miR-512-3p mimic-induced enhanced moti-

lity of Hep3B cells was weakened after LATS2 over-

expression (p < 0.05, Figure 4D).

Effects of miR-512-3p on Hippo/YAP

Signaling Pathways in HCC
Western blot analysis indicated that miR-512-3p mimics

reduced p-YAP expression, and that LATS2 overexpres-

sion partially abrogated the inhibitory effect of miR-512-

3p mimics on p-YAP expression in Hep3B cells (p < 0.05,

Figure 5).

Figure 2 miR-512-3p promotes HCC cell proliferation and motility. (A) In MTTassays miR-512-3p mimics increased Hep3B cell viability. *p < 0.05, analysis of variance, n =

3. (B) In EdU assays miR-512-3p mimics enhanced Hep3B cell proliferation. *p < 0.05, Student’s t-test; n = 3. (C) In MTTassays miR-512-3p inhibitors reduced HCCLM3 cell

viability. *p < 0.05, analysis of variance, n = 3. (D) In EdU assays miR-1251-5p inhibitors suppressed MHCC97-H cell proliferation. *p < 0.05, Student’s t-test; n = 3. (E) In
transwell migration and invasion assays miR-512-3p mimics enhanced the motility of Hep3B cells compared to control cells. *p < 0.05, Student’s t-test, n = 3. (F) In transwell

migration and invasion assays miR-512-3p inhibitors impaired the motility of HCCLM3 cells compared to control cells. *p < 0.05, Student’s t-test; n = 3.
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Hypoxia and miR-512-3p Expression in

HCC
Hypoxia is an important feature of the microenvironment of

solid tumors, and it promotes characteristics associated with

malignancy such as growth39,42 and metastasis.43,44 In

Hep3B cells cultured in hypoxic conditions (1% O2) for

24 h HIF1-α protein was significantly upregulated (p < 0.05,

Figure 6A), confirming that the hypoxic cell model had

been successfully generated. Hypoxia markedly increased

miR-512-3p levels (p < 0.05, Figure 6B) and inhibited

LATS2 expression (p < 0.05, Figure 6A). In functional

assays hypoxia promoted the viability, proliferation, and

Figure 3 LATS2 is a direct target of miR-512-3p in HCC. (A) miR-512-3p and its putative binding sequence in the 3ʹUTR of LATS2. The MUT LATS2 binding site was generated

in the complementary site for the seed region of miR-512-3p. (B) LATS2 mRNA levels in 45 HCC samples and 45 samples from adjacent normal tissue. p < 0.0001, Student’s

t-test. (C) In Pearson’s correlational analysis there was a significant inverse correlation between LATS2 mRNA and miR-512-3p in HCC tissues (r = −0.7785, p < 0.0001). (D) In

qRT-PCR analyses LATS2 was significantly downregulated by miR-512-3p at the mRNA level in Hep3B cells and (F) HCCLM3 cells. *p < 0.05, Student’s t-test, n = 3. (E) In
Western blot analysis LATS2 was significantly downregulated by miR-512-3p at the protein level in Hep3B cells and (G) HCCLM3 cells. *p < 0.05, Student’s t-test, n = 3. (H) miR-

512-3p overexpression significantly suppressed the luciferase activity of WT but not MUT 3ʹUTRs of LATS2. miR-512-3p knockdown caused a dramatic increase in luciferase

activity of WT but not MUT 3ʹUTRs of LATS2 in HEK293T cells. *p < 0.05, Student’s t-test, n = 3.
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mobility of Hep3B cells, and miR-512-3p inhibitors

partially reversed the tumor-promoting effects of hypoxia

(p < 0.05, Figure 6C–E).

Discussion
MicroRNAs are involved in the regulation of HCC

progression.45,46 The roles of miR-512-3p have recently

been investigated in various tumors. Duan et al47 reported

that miR-512-3p regulated malignant tumor behavior and

multi-drug resistance in breast cancer cells by targeting

Livin. Zhu et al17 reported that inhibition of RAC1-GEF

DOCK3 by miR-512-3p contributed to the suppression of

metastasis in non-small cell lung cancer. Notably however,

the biological function of miR-512-3p in HCC remains

Figure 4 LATS2 overexpression partially abrogated the miR-512-3p overexpression-induced HCC cell proliferation, migration, and invasion. In Hep3B cells overexpressing

miR-512-3p, LATS2 was overexpressed via transfection with a plasmid and the transfection efficiency was confirmed by Western blotting (A). *p < 0.05, Student’s t-test, n =

3. (B) MTT, (C) EdU, and (D) transwell assays were performed to assess the viability, proliferation, migration, and invasion capacities of HCCLM3 cells transfected with the

corresponding vectors. *p < 0.05, analysis of variance or Student’s t-test, n = 3.

Figure 5 miR-512-3p inhibits the phosphorylation of YAP in HCC by targeting LATS2. Western blot indicating that miR-512-3p suppressed the phosphorylation of YAP in

HCC, and that LATS2 overexpression reversed these effects. *p < 0.05, Student’s t-test, n = 3.
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unclear. In the current study miR-512-3p was significantly

elevated in HCC, and elevated miR-512-3p was associated

with worse survival and unfavorable clinicopathological

characteristics including tumor size, vascular invasion, and

advanced tumor-node-metastasis stages. In functional

experiments miR-512-3p promoted HCC cell proliferation

and mobility. Collectively these results suggest that miR-

512-3p functions as an oncogene in HCC.

In HCC Hippo signaling acts as a cancer suppression

pathway by inhibiting tumor-related processes, including

proliferation,48 migration,49 and invasion.50 In the Hippo path-

way LATS kinases phosphorylate YAP and cause the cyto-

plasmic retention and degradation of YAP. In previous studies

various microRNAs have been linked to LATS2 regulation in

human cancers, including miR-372 in breast cancer,27

miR-492 in retinoblastoma,51 miR-135b in cutaneous

melanoma,52 miR-363 in ovarian cancer,53 and miR-103 in

HCC.31 Relationships between LATS2 and miR-512-3p have

not been investigated in HCC. The present study generated

substantial evidence that LATS2 is a direct functional target of

miR-512-3p in HCC. miR-512-3p level was inversely corre-

lated with LATS2 expression in HCC tissues. miR-512-3p

downregulated LATS2 expression in HCC cells at the

mRNA level and the protein level, and miR-512-3p affected

the luciferase activity of the WT-3ʹUTR of LATS2 but not the

MUT-3ʹUTR of LATS2. Lastly, in recuse assays restoration of

LATS2 reversed the effects of miR-512-3p on HCC cell pro-

liferation and mobility by activating the Hippo/YAP pathway.

These results confirm that LATS2 is a direct functional target

of miR-512-3p.

Hypoxia is an important feature of the microenviron-

ment of solid tumors, and promotes malignancy.32–36,44 In

several previous studies microRNAs have reportedly

mediated the cancer-promoting effects of hypoxia in var-

ious tumor types.54 Zheng et al41 suggested that hypoxia

could drive tumorigenesis and metastasis in HCC by

downregulating miR-196-5p. In the present study relation-

ships between hypoxia and miR-512-3p expression were

investigated for the first time. Hypoxia could upregulate

miR-512-3p expression in HCC, and hypoxia-induced

miR-512-3p partially mediated the tumor-promoting

Figure 6 miR-512-3p mediates the tumor-promoting effects of hypoxia. Western blotting was performed to quantify HIF1-α and LATS2 levels in Hep3B cells cultured under

normoxic or hypoxic conditions (A). *p < 0.05, Student’s t-test, n = 3. (B) qRT-PCR was conducted to quantify miR-512-3p levels in Hep3B cells cultured under normoxic or

hypoxic conditions. *p < 0.05, Student’s t-test, n = 3. (C) MTT, (D) EdU, and (E) transwell assays were performed to assess the viability, proliferation, migration, and invasion

capacities of Hep3B cells with or without miR-512-3p knockdown under hypoxic conditions. *p < 0.05, analysis of variance or Student’s t-test, n = 3.
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effects of hypoxia. The mechanism involved in the ele-

vated miR-512-3p expression induced by hypoxia in HCC

will be investigated in future studies.

In summary, the current study suggests that miR-512-

3p functions as an oncogene in HCC, and promotes the

proliferation and mobility of HCC cells. Upregulated miR-

512-3p expression was associated with reduced survival

and unfavorable clinicopathological characteristics.

Mechanistically miR-512-3p promotes tumorigenic char-

acteristics by targeting LATS2, which results in reduced

Hippo signaling. Hypoxia elevated miR-512-3p levels in

HCC cells, and miR-512-3p partially mediated the tumor-

promoting effects of hypoxia. Results of the present study

suggest that miR-512-3p may be a novel therapeutic target

for HCC treatment.
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