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LncRNA LINC00657 has oncogenic or anti-carcinoma roles in different cancers, and yet
its detailed molecular mechanism in esophageal cancer (EC) remains unclear. In addition,
competitive endogenous RNA (ceRNA) regulatory lncRNA–miRNA–mRNA networks are crit-
ical for tumorigenesis and progression. Hence, the present study explored the roles of
LINC00657 in EC and identified its relevant ceRNA network. We first detected the ex-
pression of LINC00657 in EC. Then, we applied starBase and TargetScan websites to find
miR-26a-5p binding to LINC00657 and obtain CKS2 as a target of miR-26a-5p. The roles
of LINC00657, miR-26a-5p or CKS2 in the proliferation, migration, invasion, and apoptosis
of EC cells were respectively assessed by CCK-8, wound healing assay, transwell inva-
sion assay, and flow cytometry. The changes of the MDM2/p53/Bcl2/Bax pathway were
measured via Western blot. The results revealed that LINC00657 showed an aberrant high
expression in EC cells, which promoted the growth of EC cells. Additionally, LINC00657
functioned as a sponge of miR-26a-5p, and LINC00657 negatively mediated miR-26a-5p
to regulate the growth of EC cells. Furthermore, CKS2 was observed as a direct target of
miR-26a-5p, and CKS2 controlled the growth of EC cells via the MDM2/p53/Bcl2/Bax path-
way. Moreover, there was a positive correlation between LINC00657 and CKS2. LINC00657
knockdown inhibited CKS2 expression to suppress the proliferation, migration, and inva-
sion of EC cells and induced apoptosis via regulating the MDM2/p53/Bcl2/Bax pathway.
Collectively, LINC00657/miR-26a-5p/CKS2 ceRNA network could promote the progression
of EC, which is good for understanding the molecular mechanism of EC and offers novel
biomarkers for EC diagnosis and therapy.

Introduction
Esophageal cancer (EC) is one of the most common cancers and the sixth leading cause of cancer death in
the world [1]. Esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC) are
known as two main histological types of EC [2]. There are approximately 79% of ESCC cases occurring
in the Asian countries, while the incidence of EAC has a rapid increase in Western industrialized nations
[3]. Risk factors for ESCC mainly include poor nutrition, nicotine consumption, hot beverage drinking,
and alcohol abusing [4]. Barrett’s esophagus (BE), advancing age, gastric reflux, male sex, smoking, and
obesity are known as EAC’s risk factors [5]. Patients with EC have poor prognosis with 15–25% of a 5-year
survival rate [6]. Esophagectomy, alongside neoadjuvant chemoradiotherapy, is considered as the gold
standard therapy for localized EC [7]. However, surgical resection, an invasive and complex treatment,
may cause severe postoperative complications, thus leading to death [5]. In advanced or metastatic EC,
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Table 1 The sequence of the primers

Name Sequence (5′-3′)

LINC00657 forward AGCGAAGTCCCGAACGACGA

LINC00657 reverse TGGGCATTTCCAACGGGCCAA

miR-26a-5p forward UCCAUAAAGUAGGAAACACUACA

miR-26a-5p reverse CAGUACUUUUGUGUAGUACAA

cks2 forward TTCGACGAACACTACGAGTACC

cks2 reverse GGACACCAAGTCTCCTCCAC

β-Actin forward AGCCTCGCCTTTGCCGA

β-Actin reverse CTGGTGCCTGGGGCG

U6 forward CTCGCTTCGGCAGCACATATACT

U6 reverse ACGCTTCACGAATTTGCGTGTC

surgery is generally not a suitable choice, but alternative treatments such as chemotherapy rarely improve overall
survival [8]. Hence, finding new therapeutic approaches for EC is still urgent and necessary.

Long non-coding RNAs (lncRNAs, >200 nt) lack the ability to code protein [9]. Overwhelming studies suggest that
lncRNAs regulate the expression level of gene through different epigenetic mechanism such as chromatin remodeling,
splicing regulation, and functioning as sponges for miRNAs [10]. The aberrant expression of lncRNAs is observed
in diverse cancers, which is critical for the progression of cancers [11]. LncRNA LINC00657, also named NORAD,
is involved in DNA damage [12]. Previous studies indicate that LINC00657 has carcinogenic effects on different
cancers mainly including colorectal cancer, lung cancer, and gastric cancer [13–15], while LINC00657 also functions
as a tumor suppressor in several cancers containing glioblastoma [16]. In addition, LINC00657 overexpression in
ESCC is correlated with poor prognosis [17]. Sun et al. suggest that LINC00657 promotes the growth of ESCC cells
via mediating miR-615-3p [18]. However, the detailed molecular mechanism of LINC00657 in EC remains unclear.

Therefore, we first explored the effect of LINC00657 on EC. We then identified miR-26a-5p binding to LINC00657
and observed cks2 as a target of miR-26a-5p, according to ‘ceRNA hypothesis’. Several reports suggest that miR-26a-5p
can inhibit the proliferation and metastasis of EC [19–21], but the more detailed mechanism of miR-26a-5p in EC still
need to be further studied. CKS2 is known as a carcinogenesis factor in many cancers including EC [22,23]. Besides,
miR-26a-5p is proved to effectively suppress cell proliferation and tumorigenesis through targeting CKS2 [24,25], and
yet the relationship of miR-26a-5p with CKS2 in EC has not been reported. Therefore, we further studied the effect
of the interaction among LINC00657, miR-26a-5p and cks2 in EC.

Materials and methods
Cell culture and transfection
EC cell lines (KYSE-150, ECA-109) and human normal esophageal epithelial cells (HEEC) were obtained from the
American Type Culture Collection (ATCC, Manassas, U.S.A.). All cell lines were cultured in RPMI 1640 supplement
with 10% FBS (fetal bovine serum) and 1% penicillin/streptomycin, maintaining in a humidified incubator at 37◦C
with 5% CO2.

MiR-26a-5p mimic, miR-26a-5p inhibitor, LINC00657 siRNA, LINC00657 plasmid, cks2 siRNA, cks2 plasmid, and
the corresponding control vectors were purchased from Invitrogen (Carlsbad, CA). We applied the vector to transfect
into the cells using Lipofectamine 3000 (Invitrogen).

Quantitative reverse transcription (qRT)-PCR
Total RNA from EC cell lines (KYSE-150, ECA-109) were extracted with TRIzol reagent (Thermo Fisher Scientific).
For lncRNA and mRNA, PrimeScript RT reagent Kit (TaKaRa, Japan) was applied to reversely transcribe RNA into
cDNA. For miRNA, we conducted reverse transcription using the TaqMan microRNA Reverse Transcription Kit
(Applied Biosystems). Then, real-time PCR was carried out under an ABI 7500 Fast Real-Time PCR system using
a SYBR® Premix Ex Taq™ RT-PCR Kit (Takara). The relative gene level was assessed by the 2−��Cq method. The
sequence of the primers was shown in Table 1. β-Actin and U6 were respectively used as endogenous controls for the
normalization of lncRNA, mRNA, and miRNA.
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Cell counting kit-8 (CCK-8) assay
The transfected cells were seeded and incubated in 96-well plates (1 × 104 cells per well) for 1, 2, and 3 days. At
indicated time, CCK-8 solution (10 μl) was added into the cells, followed by 2 h of incubation. Subsequently, the
absorbance of the cells at 450 nm was examined via a microplate reader.

Wound healing assay
After transfection, the cells were added into 6-well plates followed by incubating to 100% confluence in RPMI 1640
medium with 10% FBS. Next, we used 200 μl pipette tip to scratch a vertically lineation on the plate, followed by
removing the cell debris using PBS. Subsequently, the cells were cultured for another 24 h in RPMI 1640 medium
without serum. The scratch was photographed under a light microscope (Olympus Corporation) at two different
time points (0 and 24 h).

Transwell invasion assay
After transfection, EC cells were harvested, resuspended in RPMI 1640 medium without serum, and seeded in the
upper chamber of the 24-well transwell (Corning; pore size 8 μm) pre-coated with Matrigel (BD Biosciences). Mean-
while, we added RPMI 1640 medium with 10% FBS into the lower chamber. After 24 h of the cultivation, the cells
stayed in the upper chamber were discarded with cotton swabs, while the cells invaded in the lower surface were fixed
using 4% paraformaldehyde for 30 min, stained for 20 min with 0.1% Crystal Violet, and washed using PBS. These
cells were recorded by a light microscope (Olympus Corporation).

Flow cytometry
After transfection for 48 h, the cells were harvested and resuspended in binding solution (1 × 106 cells/ml). Next, we
added Annexin V-FITC/PI into the cells for 15 min incubation at room temperature in the dark. Then, the samples
were assessed by a BD Biosciences Accuri C6 flow cytometer (Rantai Biotech, Minhang, Shanghai, China).

Dual luciferase reporter assay
The miR-26a-5p wild-type (WT) or mutant (MUT) putative binding site in 3′-UTR of LINC00657 or cks2 was con-
structed and cloned into the psiCHECK–2 vector (Promega Corporation). miR-26a-5p mimics or mimics control
with LINC00657-WT, LINC00657-MUT, cks2-WT, or cks2-MUT were co-transfected into EC cell lines using Lipo-
fectamine 3000 (Invitrogen), followed by 48 h of incubation at 37◦C. Then, the luciferase activity was detected by the
Dual Luciferase Reporter Assay kit (Promega Corporation).

Western blot
Total protein was extracted with PIPA buffer with protease inhibitors on ice for 20 min. After quantification of protein
concentrations using Bicinchoninic Acid Assay, the proteins (20 μg) were separated to 10% SDS-PAGE followed by
transferring to PVDF membranes (Millipore). Next, blocking with 5% non-fat milk for 1 h, the membranes were
then cultured with primary antibodies overnight at 4◦C, followed by incubating at room temperature for 1 h with
a HRP-conjugated goat anti-rabbit secondary antibody (ProteinTech Group, dilution 1:2000, cat. no. SA00001-2).
After washing with blocking solution, the membranes were determined by an enhanced chemiluminescence (ECL)
system (Immun-Star™ HRP chemiluminescent detection kit, Bio-Rad Laboratories). β-Actin as an internal control
was used in the present study. The semi-quantification of proteins was carried out using ImageJ software. The primary
antibodies (dilution 1:1000, Cell Signaling Technology) include MDM2 (cat. no. 86934), Bcl-2 (cat. no. 3498), p53
(cat. no. 2527), Bax (cat. no. 14796), and β-actin (cat. no. 4970).

Statistical analysis
All experimental data from three independent experiments were expressed as means +− standard deviations (SD),
and analyzed by GraphPad Prism 7 software. Statistical analysis between two groups was calculated by Student’s
t-test. The comparison among multiple groups was evaluated with one-way ANOVA. A P-value<0.05 was considered
statistically significant.

Results
The effect of LINC00657 on the growth of EC cells
To investigate the effect of LINC00657 on EC cells, we detected the level of LINC00657 in EC cells and then deter-
mined the proliferation, migration, invasion, and apoptosis of EC cells transfected with si-LINC00657. As shown in
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Figure 1. The effect of LINC00657 on the growth of EC cells

(A) The expression of LINC00657 in EC cells was detected by qRT-PCR. (B) The level of LINC00657 in EC cells transfected with

si-LINC00657 was measured by qRT-PCR. After EC cells were transfected with si-LINC00657, the (C) cell proliferation, (D) migration,

(E) invasion, and (F) apoptosis was respectively determined by CCK-8, wound healing assay, transwell assay, and flow cytometry.

**P<0.01, ***P<0.001, ****P<0.0001 versus siRNA control

Figure 1A, qRT-PCR analysis indicated the aberrant high expression level of LINC00657 in EC cell lines (KYSE-150,
ECA-109) as compared with human normal esophageal epithelial cells (HEEC). In addition, LINC00657 siRNA
(si-LINC00657) significantly decreased the expression of LINC00657 in EC cells when compared with the blank
and siRNA control groups, and thus the transfection of si-LINC00657 was effective (Figure 1B).

The results from CCK-8 assay indicated that EC cell proliferation was obviously inhibited by LINC00657 knock-
down (Figure 1C). Besides, wound healing assay and transwell invasion assay revealed that LINC00657 knock-
down suppressed the migration and invasion of EC cells (Figure 1D,E). Furthermore, EC cell apoptosis was in-
duced by LINC00657 knockdown in comparison with other control groups (Figure 1F). Therefore, the knockdown of
LINC00657 effectively suppressed the proliferation, migration and invasion of EC cells and yet induced cell apoptosis.
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LINC00657 functions as a sponge of miR-26a-5p
Based on ‘ceRNA hypothesis’, we applied starBase website (http://starbase.sysu.edu.cn/index.php) to identify the po-
tential miRNAs binding to LINC00657. As miR-26a-5p has been found to be a suppressor of EC [26], we selected
miR-26a-5p as a candidate in the present study. The putative binding sites of LINC00657 with miR-26a-5p were shown
in Figure 2A. The relative luciferase activity in EC cells was greatly decreased by the co-transfection of miR-26a-5p
mimic and LINC00657-WT vector, while the activity had no obvious change in other groups. Thus, the direct binding
relationship of LINC00657 with miR-26a-5p was further validated via luciferase reporter assay (Figure 2B). Besides,
there was a high transfection efficiency of si-LINC00657 and LINC00657 plasmid in EC cells (Figure 2C) Moreover,
the expression of miR-26a-5p was enhanced after EC cells transfected with si-LINC00657, and miR-26a-5p level
was down-regulated by the transfection of LINC00657 plasmid (Figure 2D). Hence, LINC00657 directly bound with
LINC00657, and negatively regulated the level of miR-26a-5p.

To further study the effect of LINC00657 with miR-26a-5p in EC cells, we determined the change of the cellular
proliferation, migration, invasion, and apoptosis. RT-qPCR showed that the high level of miR-26a-5p induced by
miR-26a-5p mimic was down-regulated by the introduction of LINC00657 plasmid (Figure 2E). The experimental
results revealed that the proliferation (Figure 2F), migration (Figure 2H,I), and invasion (Figure 2J,K) of EC cells
was inhibited by miR-26a-5p mimic, which was obviously reversed by the introduction of LINC00657 plasmid. The
increase of cell apoptosis induced by miR-26a-5p mimic was changed by the introduction of LINC00657 plasmid
(Figure 2G).

In addition, RT-qPCR suggested that miR-26a-5p inhibitor suppressed the expression level of miR-26a-5p, which
was reversed by the introduction of si-LINC00657 (Figure 2L). miR-26a-5p inhibitor considerably promoted the
proliferation (Figure 2M), migration (Figure 2O,P), and invasion (Figure 2Q,R) of EC cells, which was changed after
EC cells co-transfected with si-LINC00657 and miR-26a-5p inhibitor. Meanwhile, miR-26a-5p inhibitor decreased
the apoptosis of EC cells, but the situation was reversed by the introduction of si-LINC00657 (Figure 2N). Thus,
LINC00657 could negatively mediate miR-26a-5p to regulate the proliferation, migration, invasion, and apoptosis of
EC cells.

CKS2 is a target of miR-26a-5p
TargetScan software (http://www.targetscan.org/vert 72/) was utilized to identify the potential gene target of
miR-26a-5p. As the high expression of CKS2 (cyclin-dependent kinase subunit 2) is positively correlated with the
poor prognosis of EC [23], CKS2 was chosen as a candidate for the further analysis. The binding sites of CKS2 with
miR-26a-5p were listed in Figure 3A, which was further validated by luciferase reporter assay (Figure 3B). Moreover,
qRT-PCR indicated that the transfection of miR-26a-5p mimic in EC cells decreased the expression of CKS2, and
yet miR-26a-5p inhibitor increased CKS2 expression in EC cells (Figure 3C). Thus, miR-26a-5p negatively targeted
CKS2.

In addition, we determined the effect of CKS2 on EC cells using CCK-8, wound healing assay, transwell assay, and
flow cytometry. The results suggested that CKS2 knockdown considerably suppressed the proliferation (Figure 3D,E),
migration (Figure 3F,G), and invasion (Figure 3H,I) of EC cells, and yet induced apoptosis (Figure 3J,K). However,
CKS2 overexpression promoted the proliferation, migration, and invasion of EC cells (Figure 3D–I) but repressed
apoptosis (Figure 3J,K).

Furthermore, we detected the effect of CKS2 on MDM2/p53/Bcl2/Bax pathway that is critical for the growth of cells.
Western blot revealed that the knockdown of CKS2 down-regulated the level of MDM2 and Bcl-2 but up-regulated
the level of p53 and Bax (Figure 3L–O). CKS2 overexpression increased the expression of MDM2 and Bcl-2 and yet
decreased the expression of p53 and Bax (Figure 3L–O). Collectively, CKS2 could regulate the proliferation, migration,
invasion, and apoptosis of EC cells through mediating the MDM2/p53/Bcl2/Bax pathway.

LINC00657 regulates the growth of EC cells through
MDM2/p53/Bcl2/Bax pathway
According to the above experimental results, we speculated that there was a positive correlation of LINC00657 with
CKS2. The qRT-PCR analysis showed that LINC00657 knockdown decreased the level of CKS2 and yet LINC00657
overexpression increased CKS2 expression, which further confirmed the positive correlation of LINC00657 with
CKS2 (Figure 4A).

In addition, the inhibition of EC cell proliferation, migration, and invasion induced by LINC00657 knockdown was
reversed after the cells co-transfected with si-LINC00657 and CKS2 plasmid (Figure 4B–D). LINC00657 knockdown
promoted the apoptosis of EC cells, which was changed by the introduction of CKS2 plasmid (Figure 4E). Moreover,
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Figure 2. LINC00657 functions as a sponge of miR-26a-5p

(A) The putative binding sites between LINC00657 and miR-26a-5p were listed. (B) The binding relationship between LINC00657

and miR-26a-5p was validated by luciferase reporter assay. (C and D) After EC cells were transfected with si-LINC00657, LINC00657

plasmid, or control vectors, the expression levels of LINC00657 and miR-26a-5P were examined by qRT-PCR. After miR-26a-5p

mimic, or combined with LINC00657 plasmid was transfected into EC cells, (E) the expression of miR-26a-5p was measured

by qRT-PCR; the (F) cell proliferation, (H and I) migration, (J and K) invasion and (G) apoptosis was respectively detected by

CCK-8, wound healing assay, transwell assay, and flow cytometry. After miR-26a-5p inhibitor, or combined with si-LINC00657

was transfected into EC cells, (L) the expression of miR-26a-5p was measured by qRT-PCR; the (M) cell proliferation, (O and P)

migration, (Q and R) invasion, and (N) apoptosis was respectively determined by CCK-8, wound healing assay, transwell assay,

and flow cytometry; **P<0.01, ***P<0.001, ****P< 0.0001 versus siRNA control or miRNA control +plasmid control; ##P<0.01,
###P<0.001, ####P<0.0001 versus miR-26a-5p mimic + plasmid control.
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Figure 3. CKS2 is a target of miR-26a-5p

(A) The putative binding sites between CKS2 and miR-26a-5p were shown. (B) Luciferase reporter assay was applied to detect

the binding relationship between CKS2 and miR-26a-5p. (C) The expression of CKS2 in EC cells transfected with miR-26a-5p

mimic or miR-26a-5p inhibitor was assessed by qRT-PCR. After EC cells transfected with si-CKS2 or CKS2 plasmid, the (D and E)

cell proliferation, (F and G) migration, (H and I) invasion, and (J and K) apoptosis was respectively determined by CCK-8, wound

healing assay, transwell assay, and flow cytometry. (L–O) The protein expression of MDM2, Bcl2, p53, and Bax was evaluated using

Western blot after EC cells transfected with si-CKS2 or CKS2 plasmid. **P<0.01, ***P<0.001, ****P<0.0001 versus siRNA control

or miRNA control +plasmid control; ####P<0.0001 versus inhibitor control
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Figure 4. LINC00657 regulates the growth of EC cells through MDM2/p53/Bcl2/Bax pathway

(A) After EC cells transfected with si-LINC00657, LINC00657 plasmid, or control vectors, the mRNA expression of CKS2 was

assessed by qRT-PCR. After si-LINC00657, or combined with CKS2 plasmid was transfected into EC cells, the (B) cell proliferation,

(C) migration, (D) invasion, and (E) apoptosis was respectively determined by CCK-8, wound healing assay, transwell assay and flow

cytometry. (F) The protein expression of MDM2, Bcl2, p53, and Bax was determined using Western blot. ***P<0.001, ****P<0.0001

versus siRNA control or siRNA control + plasmid control or miRNA control +plasmid control; ##P<0.01, ###P <0.001, ####P<0.0001

versus plasmid control or si-LINC00657 + plasmid control
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the decrease of MDM2 and Bcl-2 and the increase of p53 and Bax induced by LINC00657 knockdown were reversed
by the introduction of CKS2 plasmid (Figure 4F). Therefore, LINC00657 mediated CKS2 to regulate the growth of
EC cells through MDM2/p53/Bcl2/Bax pathway.

Discussion
In the present study, LINC00657 was observed to be overexpressed in EC cells (KYSE-150, ECA-109) as com-
pared with normal esophageal epithelial cells (HEEC), which promoted the growth of EC cells. Additionally, the
results showed that LINC00657 functioned as a sponge of miR-26a-5p, and CKS2 was identified to be a target of
miR-26a-5p. Meanwhile, the anticarcinogenic effect of miR-26a-5p and the oncogenic roles of CKS2 were both val-
idated in EC. Moreover, our study proved the positive correlation between LINC00657 and CKS2, and the knock-
down of LINC00657 inhibited CKS2 expression to suppress the proliferation, migration, and invasion of EC cells and
induced apoptosis through regulating the MDM2/p53/Bcl2/Bax pathway. Collectively, LINC00657 could mediate
miR-26a-5p/CKS2 axis to promote the progression of EC.

To date there are no therapeutic options to effectively improve EC patient’s overall survival [8]. Exploring the
molecular mechanism of EC can facilitate the development of EC therapeutic method. LncRNAs have attracted lots of
attention because of their key regulatory role in various cancers [11]. LINC00657 as a new identified lncRNA has been
reported to function as an oncogenic factor or tumor suppressor in different cancers [13–16]. Although LINC00657
has been found to be overexpressed in ESCC and correlates with patient’s poor prognosis [17], the detailed molecu-
lar mechanism of LINC00657 in EC is still unclear. To explore this issue, our study observed the overexpression of
LINC00657 in EC cells. The knockdown of LINC00657 suppressed the EC cell proliferation, migration, and invasion,
but induced apoptosis. Hence, LINC00657 could be considered as a potential biomarker for the therapy and diagnosis
of EC.

ceRNA (competitive endogenous RNA) hypothesis suggests that lncRNAs act as sponges of miRNAs to regulate the
target gene expression [27]. In addition, lncRNA–miRNA–mRNA ceRNA networks are relevant with the tumorigen-
esis and progression [28]. Thus, we used starBase and TargetScan websites to find miR-26a-5p binding to LINC00657
and obtain CKS2 as a target of miR-26a-5p. Previous studies have indicated that miR-26a-5p as a tumor suppressor
can suppress the cellular growth but induce apoptosis in diverse cancers [29–31]. Besides, miR-26a-5p has shown an
aberrant low expression in ESCC, which promotes cell G1 phase arrest and growth inhibition [19]. In agreement with
previous reports, our study found miR-26a-5p functioned as a tumor suppressor in EC cells. Additionally, LINC00657
negatively mediated miR-26a-5p to regulate the growth of EC cells. Furthermore, CKS2 was identified to be a target
of miR-26a-5p, and its expression was negatively regulated by miR-26a-5p. The aberrantly high expression of CKS2
observed in in different cancers including EC was correlated with patient’s poor prognosis [22,23]. Consistent with
these finding, the present study revealed that CKS2 promoted the growth of EC cells. In addition, CKS2 is involved in
the pathogenesis of different cancers through controlling the expression of many molecules such as caspase-3, p53,
and Bax [32–34]. Our work also found that CKS2 knockdown significantly decreased the level of MDM2 and Bcl-2
but increased the level of p53 and Bax, whereas CKS2 overexpression up-regulated the expression of MDM2 and
Bcl-2 and yet down-regulated the expression of p53 and Bax.

The positive correlation of LINC00657 with CKS2 was proved in the present study. Moreover, LINC00657 could
up-regulate CKS2 to increase the level of MDM2 and Bcl-2 but decrease the level of p53 and Bax. p53 is known as a tu-
mor suppressor, and associated with proliferation, apoptosis and cell cycle arrest [35]. MDM2 (murine double minute
2) is an upstream regulator of p53, and its overexpression can lead to the inactivation of p53, thereby facilitating tu-
morigenic processes [36]. Bcl-2 antagonizes the roles of p53 through inhibiting cell death [37]. Bax as a pro-apoptotic
protein is critical for cell apoptosis [38,39]. Moreover, in response to different cellular stresses, p53 can regulate
apoptosis via a transcription-dependent and transcription-independent manner [40]. In the transcription-dependent
manner, p53 stability is tightly mediated by MDM2, and MDM2 binds to the transactivation domain of p53 (p53TAD)
to suppress the p53 transactivation activity and induce p53 proteasomal degradation [41]. MDM2 overexpres-
sion in many cancers impairs p53-mediated tumor-suppressor functions, leading to tumor growth [42]. In the
transcription-independent manner, p53 in the mitochondria interacts with anti-apoptotic proteins Bcl-2 and Bcl-XL,
then releasing pro-apoptotic proteins Bax and Bak, thereby triggering apoptosis [40]. Our study observed the aber-
rantly high expression of MDM2 in EC cells decreased the level of p53, which caused the increase of Bcl-2 and the
decrease of Bax, resulting in the inhibition of EC cell apoptosis. Therefore, these findings suggested that LINC00657
mediated miR-26a-5p/CKS2 axis to promote the proliferation, migration and invasion of EC cells but suppress apop-
tosis through regulating the MDM2/p53/Bcl2/Bax pathway.
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In conclusion, LINC00657/miR-26a-5p/CKS2 ceRNA network promoted the growth of EC cells through regulating
the MDM2/p53/Bcl2/Bax pathway. These findings are good for understanding the molecular mechanism of EC and
provide the potential biomarkers for the therapy and diagnosis of EC.
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