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    Introduction 
 Nuclear pore complexes (NPCs) mediate all traffi c of macro-

molecules across the nuclear envelope (NE). They are large pro-

tein assemblies composed of multiple copies of  � 30 different 

proteins, the nucleoporins (Nups), which are organized in about 

10 subcomplexes and arranged with eightfold symmetry. In meta-

zoa, NPCs are stable throughout interphase ( Daigle et al., 2001 ) 

but disassemble into their subcomplexes during mitosis. When 

the NE breaks down in pro/metaphase, most Nups become cyto-

plasmic and transmembrane Nups relocalize to the ER together 

with other nuclear membrane proteins ( Ellenberg et al., 1997 ; 

 Yang et al., 1997 ;  Daigle et al., 2001 ;  Beaudouin et al., 2002 ). 

Reassembly occurs during anaphase and telophase when the NE 

is rebuilt around chromatin. 

 In live cells, NE disassembly has been shown to start by 

partial disassembly of NPCs, with Nup98 leaving the NE early 

followed by dissociation of Nup153 and Nup214 before the NE is 

completely permeabilized. The membrane Nup POM121 disso-

ciates from NE fragments only after permeabilization ( Beaudouin 

et al., 2002 ;  Lenart et al., 2003 ). In fi xed cells, the nuclear bas-

ket Nup Tpr dissociates from the NE before Nup107 but later 

than Nup98 and Nup50 ( Hase and Cordes, 2003 ). 

 More is known about the mechanism of postmitotic NPC 

assembly. In vitro studies of nuclear assembly in  Xenopus laevis 

 egg extracts have shed light on the essential role of the Ran – 

importin system, which regulates the release of several Nups from 

importin in proximity to chromatin, enabling them to reassoci-

ate and form NPCs ( Harel et al., 2003a ;  Walther et al., 2003b ). 

Several Nups bind to chromatin in early anaphase before membrane 

association ( Belgareh et al., 2001 ;  Walther et al., 2003a ), where 

they have been postulated to form a prepore ( Suntharalingam 

and Wente, 2003 ;  Wozniak and Clarke, 2003 ;  Rabut et al., 2004b ). 

The mechanism of subsequent insertion into the membrane and 

full assembly of the NPC remains to be understood. 

 For some Nups, the order of reassociation with the reform-

ing NE was investigated in various experimental systems, fi xed 

cells of different mammalian species, or nuclei assembled in 

 X .  laevis  egg extracts. Together, these data predict that the Nup107 –

 160 complex, Nup153, Nup98, and POM121 bind during ana-

phase, followed by the Nup62 and Nup93 complexes, Nup358, 

and Nup214 in telophase, whereas Tpr and gp210 reassemble 

only in early G1 (for review see  Burke and Ellenberg, 2002 ). 

 Evidence for structural disassembly and reassembly inter-

mediates has been provided by fi eld emission scanning electron 

microscopy. Porelike structures of different levels of complex-

ity could be visualized in egg extract nuclei ( Goldberg et al., 

1997 ;  Wiese et al., 1997 ;  Kiseleva et al., 2001 ) and a rough time 

course of the formation of these structures could be established 

in  Drosophila melanogaster  embryos ( Kiseleva et al., 2001 ). 

Their protein composition remained, however, unclear. 

 Our current knowledge predicts that NPC disassembly 

and reassembly are ordered processes that proceed via a defi ned 

set of intermediates formed by sequential interactions of NPC 
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complexes ( Rabut et al., 2004a ): Nup133, Nup107, Seh1, and 

Nup43 (all from the Nup107 – 160 complex); the cytoplasmic 

Nup Nup214, Nup98, Nup58 (Nup62 complex), Nup93 (Nup93 

complex); the nucleoplasmic Nups Nup50 and Nup153; and the 

transmembrane Nup POM121. In triple color time-lapse se-

quences of individual dividing cells, we recorded each GFP-Nup 

together with a red fl uorescent nuclear import marker (importin 

 �  – binding domain of importin  �  [IBB];  Gorlich et al., 1996 ) 

and vital DNA staining ( Fig. 1, A and B ). DNA was used as 

spatial reference to quantify nuclear (envelope) intensities (for 

details see Materials and methods) and to monitor mitotic pro-

gression. The import marker IBB was effi ciently imported into 

the nucleus during interphase, released into the cytoplasm at 

NEBD, and reimported in telophase, providing a functional ref-

erence for the import competence of the NPCs. In addition, we 

used the reimport/release of IBB to temporally align the assem-

bly time series of the different Nups ( Fig. 1, C and D ). In sum-

mary, this assay allowed us to analyze the kinetics of NPC 

disassembly and reassembly in detail and to determine the im-

port competence of the nucleus in different states of NPC as-

sembly in living cells. 

 The Nup107 – 160 subcomplex binds to 
chromatin in early anaphase 
 Members of the Nup107 – 160 complex were the fi rst to bind to 

chromatin in early anaphase. During mitosis, a small subpopu-

lation of the complex localized to kinetochores as described 

subcomplexes. However, the precise order in which the differ-

ent subcomplexes bind, the kinetics of the assembly events, and 

the functional state of the different intermediates are unknown. 

To address this, we systematically investigated the kinetics of 

mitotic NPC disassembly and reassembly by time lapse confocal 

microscopy in single dividing cells. Simultaneously, we moni-

tored import competence of the nucleus. We analyzed a set of 

GFP-tagged Nups ( Rabut et al., 2004a ) representing eight dif-

ferent NPC subcomplexes. Our results show that NPC assembly 

is indeed a highly ordered process that proceeds in a stepwise 

fashion. Partially assembled NPCs were already import compe-

tent, which indicates that several Nups may not be required to 

reestablish import function. Regarding NPC disassembly, we 

found it to occur more rapidly than assembly and not simply in 

the reverse order, which could indicate a distinct mechanism. 

Based on our data, we present the fi rst comprehensive model for 

the order, composition, and functional state of NPC disassembly 

and reassembly intermediates in living cells. 

 Results and discussion 
 A functional and quantitative assay 
for the kinetics of NPC disassembly 
and reassembly 
 The kinetics of Nup dissociation from and reassociation with 

the NE during mitosis was monitored in live NRK cells express-

ing 11 GFP-tagged Nups representative of eight different sub-

 Figure 1.    Quantifi cation of Nup and import marker fl uorescence intensities.  (A and B) Regions of interest (outlines) were obtained from the Hoechst chan-
nel automatically (whole nucleus) or interactively (NE) and mean intensities were measured in the IBB and Nup channels. Time stamps give min:s relative 
to t 1/2 (import). (C and D) Normalized Nup intensities over time extracted from sequences shown in A and B after alignment to t 1/2 (import) (green). Black 
curves represent the mean of fi ve independent experiments (error bars indicate SD). Red curves, IBB mean.   
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and Nup43 are less stably associated with the complex and, in-

deed, this has been reported for Seh1 although not for Nup43 

( Loiodice et al., 2004 ). 

 To test whether the binding of members of the Nup107 –

 160 complex to chromatin represented formation of NPCs rather 

than a general  “ coating ”  of chromatin, we analyzed early 

 assembly stages by high resolution microscopy of living cells. 

Binding of GFP-tagged members of the Nup107 – 160 complex 

to chromatin occurred in discrete patches and small dots of the 

appearance of single pores ( Fig. 3 A ). If these structures truly 

represent partially assembled NPCs, they should also contain 

Nups from other subcomplexes. We tested this by simultane-

ously imaging GFP-tagged Nup107 – 160 complex members and 

mCherry-tagged POM121. Indeed, POM121 fi rst accumulated 

in patches around chromatin that also showed a strong localiza-

tion of Nup107 – 160 complex members ( Fig. 3 B ). To rule out 

that this refl ected the inability of the ER to contact other regions 

of chromatin in anaphase, we also analyzed the localization of 

mCherry-tagged lamin B receptor (LBR), a protein of the inner 

nuclear membrane known to bind to chromatin ( Ye and Worman, 

1994 ). In contrast to POM121, the localization of LBR was rela-

tively smooth and did not show a bias for sites of Nup107 – 160 

labeling ( Fig. 3 C ). Our data therefore suggest that Nup binding 

previously ( Belgareh et al., 2001 ). General association of Nup133 

with chromatin was detected shortly after the metaphase – 

anaphase transition or 8.5  ±  0.5 min ( n  = 5) before the time point of 

half maximal IBB intensity in the nucleus (t 1/2 [import];  Figs. 2  and 

S1 A; and Video 1, available at http://www.jcb.org/cgi/content/

full/jcb.200707026/DC1). Nup133 had already reached its 

maximal concentration at t 1/2 (import). These observations are in 

line with the essential function of the Nup107 – 160 complex in 

NPC assembly observed in vitro ( Boehmer et al., 2003 ;  Harel 

et al., 2003b ;  Walther et al., 2003a ;  D ’ Angelo et al., 2006 ). 

 We analyzed the assembly of three additional proteins of 

this subcomplex (Nup107, Seh1, and Nup43). NPC subcomplexes 

are thought to be stable throughout the cell cycle ( Matsuoka 

et al., 1999 ;  Belgareh et al., 2001 ;  Loiodice et al., 2004 ) and 

should thus bind to the reforming NE as a unit with identical 

kinetics. Indeed, we found Nup107 to faithfully recapitulate the 

assembly kinetics of Nup133 (Fig. S2 B, available at http://

www.jcb.org/cgi/content/full/jcb.200707026/DC1). This suggests 

that stable subcomplexes are well represented by one member 

in our assay. Although the assembly of Seh1 and Nup43 also 

started early and was completed before t 1/2 (import), their ki-

netics were slightly but consistently delayed relative to Nup107 

and Nup133 during early anaphase. This could indicate that Seh1 

 Figure 2.    Time series representing the assembly of four Nups.  The contrast of the image series was normalized to a common maximal mean intensity 
reached on the nuclear rim at the last time point of each series. Plots on the right show the data obtained from the series shown (green) and the mean of 
n series (black). As a reference, Nup133 (red) and IBB (dark red) intensity means are shown in all plots. Time stamps give min:s relative to t 1/2 (import). Video 1 
(available at http://www.jcb.org/cgi/content/full/jcb.200707026/DC1) shows representative full-image sequences for Nup133. Error bars indicate SD.   
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times in interphase ( Rabut et al., 2004a ). In our assay, both Nup153 

and Nup50 were detected at the periphery of the chromatin 

as early as 7.9  ±  1.4 ( n  = 4) and 6.6  ±  0.8 min ( n  = 6) before 

t 1/2 (import), respectively ( Figs. 2  and S2 A; and Video 2, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200707026/DC1). 

However, this early pool accounted for  < 10% of the fi nal nu-

clear intensity for Nup153 and only  � 20% for Nup50 ( Figs. 2  

and S2 A, blue shading). The major pools of these Nups associ-

ated with the NE considerably later and reached their half maxi-

mal intensity at the NE only 1.0  ±  0.3 (Nup153) or 1.1  ±  0.5 min 

(Nup50) before t 1/2 (import) (see Fig. 5 D). 

 The biphasic assembly behavior we observed is consistent 

with the interphase dynamics and reinforces the interpretation 

that both proteins have two distinct modes of binding at the pore. 

Because both proteins are bound on the nucleoplasmic side of 

the pore, the early association of a small pool to chromatin 

could be involved in the formation of functional pores. The sec-

ond phase of assembly paralleled initiation of nuclear import 

and transport through the fi rst functional NPC assembly inter-

mediates may therefore add the full complement of Nup50 and 

Nup153 to the complex. 

 POM121 accumulates at the NE after 
several soluble Nups 
 In interphase cells, the vertebrate-specifi c membrane Nup POM121 

localizes almost exclusively to the NE, whereas it disperses in 

the ER during mitosis ( Daigle et al., 2001 ). In metaphase, the 

ER is largely excluded from chromatin and spindle regions. 

However, ER membranes come close to the poleward face of 

the separating chromosomes early in anaphase ( Fig. 3, B and C ). 

The resulting early increase of POM121 signal around chroma-

tin does therefore not refl ect a specifi c accumulation ( Fig. 3 B  

and not depicted). Accumulation in the NE over ER background 

became visible at 5.9  ±  1.0 min ( n  = 5) before t 1/2 (import) and then 

rapidly reached its maximal intensity at t 1/2 (import) ( Fig. 2 ). 

 Together with the colocalization with the Nup107 – 160 

complex, our kinetic data suggest that POM121-binding sites 

on chromatin become available only in late anaphase. At this 

time point, ER membranes come into physical contact with the 

separated chromosome masses from all sides and POM121 as-

sociates with chromatin at sites where Nup107 – 160 components 

are already bound. 

 Nup93, Nup98, and Nup58 assemble after 
membrane association 
 The Nup93 as well as the Nup62 complex are thought to local-

ize to central positions of the pore. In our assay, the Nup93 and 

Nup62 complexes (represented by Nup58) accumulated at the 

NE starting at 3.8  ±  0.4 ( n  = 5) and 3.3  ±  1.4 min ( n  = 11) before 

t 1/2 (import), respectively. The more peripheral Nup98 was fi rst 

detected 3.8  ±  0.6 min ( n  = 6) before t 1/2 (import) ( Figs. 2  and S2 A). 

All three Nups reached their maximal intensity at the NE shortly 

after t 1/2 (import). 

 Binding of these three complexes occurred only after sev-

eral other Nups were already present on chromatin. Their addition 

may be the last step for the formation of an import competent NPC 

assembly intermediate because IBB import initiated concomitant 

to chromatin in anaphase is caused by the formation of pore com-

plexes and is consistent with the hypothesis that prepores form 

already on the naked chromatin before the attachment of nuclear 

membranes ( Suntharalingam and Wente, 2003 ;  Wozniak and 

Clarke, 2003 ;  Rabut et al., 2004b ). 

 Reassociation of Nup153 and Nup50 to 
the NE is biphasic 
 Nup153 and Nup50 localize to the nuclear basket and have been 

shown to exchange dynamically from the NPC with two residence 

 Figure 3.    Localization pattern of Nups on chromatin during anaphase.  
Cells were followed from metaphase and single images were taken at defi ned 
time points. Images were fi ltered with an anisotropic diffusion fi lter. Boxes 
indicate regions of enlargements. Intensity profi les measured along a 0.45- � m-
wide line as indicated by the white outlines were plotted after subtraction 
of cytoplasmic background. Time stamps indicate minutes after anaphase 
onset. (A) Cells expressing GFP-tagged Nup107, Nup133, and Nup37. 
(B) Cells expressing GFP-Nup107, GFP-Nup133, and POM121-mCherry. 
(C) Cells expressing GFP- Nup107, GFP-Nup133, and LBR-mCherry.   
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fi rst and export only later when nuclear biosynthesis has re-

started. This would explain the late assembly time of factors not 

required for import such as Nup214. 

 NPC disassembly in prophase occurs 
rapidly and synchronously 
 The same set of eight representative Nups was followed during 

dissociation from the NE in prophase ( Figs. 4 , S1 B, and S3 A, 

available at http://www.jcb.org/cgi/content/full/jcb.200707026/

DC1). Disassembly proceeded more rapidly than assembly 

and more synchronously for the different Nups so that distinct 

steps in the disassembly process could not be clearly resolved 

(compare  Fig. 5, A and B ). This could be caused by insuffi -

cient time resolution of the assay or simply the fact that dis-

assembly occurs in fewer steps than assembly. Disintegration 

of a large part of the pore could be triggered in a single step. 

Also, recent EM data suggest that the disassembly of individual 

pores within one nucleus in  X .  laevis  egg extract is  asynchronous, 

leading to pore intermediates in different states of disassembly 

at the same time ( Cotter et al., 2007 ). If this occurs in live 

mammalian cells, it would compromise our ability to detect 

the order of the process because we measure the mean of many 

pores simultaneously. 

with their assembly (see Fig. 5, B and D). At this time, the 

Nup107 – 160 complex and POM121 were assembled already to 

 � 80%, whereas only the minor early fractions of Nup50 and 

Nup153 were present. 

 Nup214 association with the NE lasts well 
into G1 
 Nup214 is a peripheral cytoplasmic Nup with a residence time 

of several hours at interphase NPCs ( Rabut et al., 2004a ). 

We fi rst detected Nup214 at the NE 0.8  ±  0.2 min ( n  = 4) before 

t 1/2 (import) (Fig. S2). It was thus the last Nup to associate with 

the newly forming NPC investigated in this study. Its fi rst ap-

pearance was concomitant with the regaining of nuclear import 

activity but its concentration continued to increase over cyto-

plasmic background long after the maximal IBB intensity in the 

nucleus was reached. High import rates were reached already 

when Nup214 had only reached 50% of its maximal intensity at 

the NE (see Fig. 5 D). These kinetics suggest that Nup214 may 

not be required for IBB import, which is consistent with previous 

fi ndings that show no role of Nup214 in protein import via clas-

sical import routes but rather suggest an activity in protein export 

( Walther et al., 2002 ;  Hutten and Kehlenbach, 2006 ). A newly 

assembled nucleus will likely have to establish import function 

 Figure 4.    Time series representing the dissociation of four Nups from the NE during prophase.  The contrast of the image series was normalized to a 
common maximal mean intensity on the nuclear rim at the fi rst time point of each series. Plots show the data obtained from the series shown (red) and the 
mean of n series (black). As a reference, mean intensities of Nup98 (cyan) and POM121 (green) are shown in all plots. Time stamps give min:s relative 
to t 1/2 (import). Videos 3 and 4 (available at http://www.jcb.org/cgi/content/full/jcb.200707026/DC1) show representative full-image sequences for 
Nup98 and POM121. Error bars indicate SD.   
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 Figure 5.    Summary of NPC disassembly and reassembly kinetics.  (A and B) Overview over all means of disassembly (A) and assembly (B) kinetics. 
(C) Time points of fi rst visible nuclear accumulation over background for all analyzed Nups. (D) Time points of 50% assembly of Nups relative to the fi rst 
derivative of IBB intensity as a measure for import rate. Because of the change in concentration distribution of IBB between cytoplasm and nucleus during 
the import phase, the fi rst derivative of IBB intensity systematically underestimates true instantaneous import rates. The maximum reached at time point 0 
therefore does not refl ect the true maximal import rates, which may be reached later. (E and F) Models for mitotic NPC disassembly and reassembly. Fila-
ment structures are included in the model in gray on the basis of previous data. The precise positions of the Nups in the NPC are unknown and thus drawn 
schematically. Because the different Nup-expressing cell lines showed some variability in the timing of mitotic progression (10.6  ±  1.5 min from anaphase 
onset to t 1/2 [import]; not depicted), the time between anaphase onset and t 1/2 (import) was normalized to 10 min in B to D. Error bars indicate SD.   
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 Electron microscopy of  D. melanogaster  embryos has re-

vealed disassembly intermediates similar to assembly; however, 

one intermediate dominated all prophase nuclei, indicating that 

other intermediates may be very transient ( Kiseleva et al., 2001 ). 

This fi ts well with our observation in living mammalian cells 

that disassembly is very rapid. The similar ultrastructural ap-

pearance of NPC intermediates lead to the hypothesis that dis-

assembly could be the reversal of assembly. Despite the limitations 

of our assay, our data indicate that this may not be the case. 

For example, the Nups that assembled earliest and latest during 

anaphase, i.e., Nup133 and Nup214, dissociated from the NE in 

the middle of the disassembly process. Nup98, which assembles 

at an intermediate time point in anaphase, was clearly the fi rst 

Nup to dissociate from the nuclear periphery in prometaphase, 

which is in agreement with data from starfi sh oocytes ( Lenart 

et al., 2003 ). Finally, Pom121, which is assembled after the 

Nup107 – 160 complex in anaphase, also dissociated clearly after 

the Nup107 – 160 complex during disassembly. 

 Interestingly, the Nup107 – 160, Nup93, and Nup214 com-

plexes, which are the most stable NPC subcomplexes during 

interphase ( Rabut et al., 2004a ), dissociated early and rapidly, 

whereas Nup50 and Nup58 (Nup62 complex) together with 

POM121 remained longest in fragments of the NE ( Figs. 4  and 

S3 A; and Videos 3 and 4, available at http://www.jcb.org/cgi/

content/full/jcb.200707026/DC1). Thus, the NE identity of 

POM121-containing membranes appears to be lost only gradu-

ally in prometaphase, which is in agreement with previous ob-

servations ( Beaudouin et al., 2002 ). 

 The persistence of Nup50 at the NE might be caused by 

chromatin rather than NPC association because we found Nup50 

to coat chromatin throughout mitosis from prophase until ana-

phase (Fig. S3 B). It formed a dynamic coat, which rapidly ex-

changed with the cytoplasmic pool as assayed by photobleaching 

(unpublished data). This localization is consistent with the pres-

ence of the  Aspergillus nidulans  homologue of Nup50 on mitotic 

chromatin ( Osmani et al., 2006 ) and could indicate a conserved 

mitotic function. However, it could also be caused by an inher-

ent chromatin affi nity of Nup50 because the yeast Nup50 homo-

logue has been implicated in NPC associated gene regulation 

( Schmid et al., 2006 ). 

 Conclusion 
 In summary, our systematic study allows us to propose the fi rst 

comprehensive model for mitotic NPC disassembly and re-

assembly ( Fig. 5, E and F ). Disassembly occurs in mammalian 

cells in a similar manner to starfi sh oocytes ( Lenart et al., 2003 ) 

but with faster kinetics ( Fig. 5 A ). The composition of dis-

assembly intermediates appears to differ from assembly inter-

mediates, which suggests a distinct mechanism. 

 Our data provide detailed insight into the kinetics of pore 

assembly with high time resolution. Consistent with previous 

studies, we fi nd NPC assembly to be a highly ordered process 

( Fig. 5 C ). For the fi rst time, we can relate the composition of 

the different assembly intermediates to import function. Our data 

supports the model that assembly starts with formation of a 

prepore on chromatin and indicates that such a structure con-

tains the Nup107 – 160 complex as well as substoichiometric 

amounts of Nup153 and Nup50 ( Fig. 5 F ). These may provide 

the binding platform for additional components like the trans-

membrane Nup POM121. 

 In our live cell assay, we measure the mean concentration 

of Nups over all NPCs in the imaging plane to determine their 

assembly kinetics. We therefore cannot formally decide whether 

the fact that the association kinetics of individual Nups stretch 

over several minutes refl ects asynchronous assembly of differ-

ent NPCs in the nucleus, the sequential addition of multiple 

copies of the same Nup to NPCs in the same state of assembly, 

or a mixture of the two processes. However, our high-resolution 

imaging data showed similar concentration of Nups in adjacent 

pores at single time points during assembly ( Fig. 3 ). Further-

more, electron microscopic data from  D. melanogaster  indicate 

that specifi c assembly intermediates dominate at any stage of 

mitosis ( Kiseleva et al., 2001 ). We therefore assume that our ki-

netics refl ect at least to a large extent the synchronous assembly 

process of many NPCs after mitosis. 

 What then is the fi rst assembly intermediate that is com-

petent for nuclear import? Comparing the time of half maximal 

concentration for each Nup with the rate of import ( Fig. 5 D ), 

our data show that the assembly intermediate containing mainly 

the Nup107 – 160 complex and POM121 does not support protein 

import ( Fig. 5, B and D ). Only upon association of Nup93, 

Nup58 (Nup62 complex), and Nup98 does IBB import initiate, 

which suggests that these complexes add transport activity to 

the new pore, possibly by providing many phenylalanine-glycine 

repeats. At this time point, at least a fraction of the pores in the 

nucleus contain all subunits necessary to support protein import 

function. In addition, the presence of a sealed or nearly sealed 

membrane around the nuclear compartment is likely required for 

IBB to accumulate in the nucleus. In contrast, the nucleoplasmic 

Nup50 and Nup153 as well as the cytoplasmic Nup214 are prob-

ably not required for import activity in stoichiometric amounts. 

 In the future, it will be very interesting to analyze the be-

havior of additional Nups, especially the membrane-bound Ndc1 

and ELYS/Mel28, which have very recently been reported to play 

crucial roles in NPC assembly ( Galy et al., 2006 ;  Mansfeld et al., 

2006 ;  Rasala et al., 2006 ;  Stavru et al., 2006 ;  Franz et al., 2007 ). 

In addition, similar data obtained for interphase assembly will 

allow to test whether the insertion of NPCs into an intact inter-

phase NE follows the same mechanism as postmitotic assembly. 

 Our assay using IBB as a functional and temporal marker 

should furthermore prove very useful to study additional as-

pects of NEBD and NE assembly. Besides a detailed kinetic 

understanding, the assay can also yield mechanistic insight when 

combined with molecular perturbations by RNAi or the ex-

pression of dominant-negative proteins. 

 Materials and methods 
 DNA constructs and cell lines 
 pIBB-DiHcRed was generated by ligating the fragment of the IBB domain from 
the plasmid pQE60-IBB-GFP ( Ribbeck and Gorlich, 2002 ) into pDiHcRed-N1 
( Gerlich et al., 2003 ) with a 5 – amino acid linker (GPVAT) between the IBB 
domain and DiHcRed. 

 pPOM121-mCherry was cloned by exchanging 3EGFP in pPOM121-
3EGFP ( Rabut et al., 2004a ) with mCherry ( Shaner et al., 2004 ). pLBR1TM-
mCherry contains the N terminus of LBR and its fi rst transmembrane domain. 
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