
Background
Epidemiology and pathogenesis of renal cell carcinoma
Kidney cancers account for about 2% of all cancers, and 
more than 200,000 new cases of kidney cancer are diag
nosed worldwide each year [1]. The most common form 
of kidney cancer in adults is renal cell carcinoma (RCC). 
Most RCC cases (approximately 75%) are classified as 
clear cell (conventional) RCC (ccRCC), and the next most 
frequent subtype is papillary RCC (pRCC; approximately 
15% of all cases) [2]. The most common genetic event in 
the evolution of sporadic ccRCC is inactivation of the 
von HippelLindau (VHL) tumor suppressor gene (TSG) 
[36]. VHL inactivation leads to stabilization of the 
hypoxiainducible transcription factors HIF1 and HIF2 

and activation of a wide repertoire of hypoxia response 
genes [7]. The frequency of VHL mutations in sporadic 
ccRCC has been reported to be as high as 75% (although 
VHL mutations are rare in nonclearcell forms of RCC). 
In addition to VHL mutations, VHL allele loss of 3p25, 
resulting in biallelic VHL inactivation, is the most fre
quent copy number abnormality in ccRCC (as predicted 
by a classical ‘two hit’ model of tumorigenesis, where loss 
of the second allele of a key tumour suppressor is 
required for tumour formation to occur) [8,9].

Although the VHL mutations in primary RCC were 
detected about 16 years ago, attempts to identify other 
frequently mutated RCC genes have been unsuccessful, 
with none of the thousands of genes tested so far mutated 
in over 15% of tumors [10]. TSG inactivation may result 
from genetic or epigenetic events, and it is well recog
nized that epigenetic silencing of TSGs has a significant 
role in the pathogenesis of many, if not all, human 
cancers. Indeed, promoter methylation and epigenetic 
silencing of VHL in RCC [5] was one of the first examples 
of this phenomenon and so far approximately 60 genes 
have been suggested to be epigenetically dysregulated in 
RCC (Table 1).

Epigenetics and cancer
There are two major, interrelated modes of epigenetic 
regulation in the mammalian genome: cytosine methy
lation and histone modification. Only cytosine bases 
located 5’ to a guanosine can be methylated, and CpG 
dinucleotides are generally underrepresented in the 
genome. However, short regions found frequently in 
proximal promoter regions are CpG rich [11]. These 
regions (CpG islands, 0.4 to 4 kb long and found in over 
50% of all genes) are generally unmethylated in normal 
cells but may be hypermethylated in tumors, where CpG 
island methylation is also associated with histone modifi
cation and chromatin remodeling resulting in transcrip
tional silencing [1216]. Epigenetic states are, like gene 
mutations, inherited in cell division but, unlike muta
tions, DNA methylation and other epigenetic changes are 
potentially reversible [17,18].

In a nondisease setting, gene silencing by promoter 
methylation occurs to regulate the expression of germline 
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Table 1. Gene methylation frequencies in RCC 

  Mean RCC Number of Range across   Adj normal  
  methylation tumors multiple   methylation*  
Gene Locus  (%) analyzed  studies (%) ccRCC (%) pRCC (%) % (n) References

APAF1 12q23 98 170 97-100 98 - 9 (80) [106,107]

APC 5q21-22 17 253 14-29 16 32 7 (72) [34,40-43]

BNC1 15q25 46 59 - - - 5 (20) [63]

BTG3 21q11.2-21.1 70 20 - - - 0 (20) [108]

CASP8 2q33-34 6 139 0-16 0 - - [53,107]

CDH1 16q22.1 35 229 11-80 83 69 87 (62) [33,41-43,53]

CDH13 16q24.2-24.3 3 40 - - - - [53]

COL14A1 8q24 44 41 - - - 5 (20) [63]

COL15A1 9q22 53 65 - - - 30 (30) [63]

COL1A1 17q21.31-22 57 30 - 65 40 - [106]

CRBP1 3q21-22 9 22 - - - -  [54]

CST6 11q13 46 61 - - - 11 (35) [63]

CXCL16 17p13.2 42 62 - 43 40 43 (21) [109]

DAL-1/4.1B 18p11.3 45 55 - 45 - - [110]

DAPK1 9q34.1 35 219 24-41 38 - - [54,108,111]

DKK1 10q11.2 44 62 0-52 44 - 8 (62) [63,65]

DKK2 4q25 58 52 - 58 - 6 (52) [64]

DKK3 11p15.2 50 62 - 53 - 16 (62) [62]

DLC1 8p22-21.3 35 34 - - - 3 (34) [112]

ESR1 6q25.1 69 65 - 67 77 77 (62) [43]

ESR2 14q23.2 53 65 - 56 46 43 (62) [43]

FHIT 3p14.2 53 87 52-53 53 54 52 (0-69) (82) [43,53]

FLCN 17p11.2 9 120 0-33 21 - - [113-115]

GREM1 15q13 24 165 20-41 20 - 15 (79) [63,101]

GSTP1 11q13 10 177 8-12 6 15 0 (72) [33,42,43]

HOXB13 17q21.2 30 50 - - - 0 [102]

IGFBP1 7p14-12 30 30 - 35 20 - [106]

IGFBP3 7p14-12 12 120 3-37 13 40 - [108,116]

JUP 17q21 91 54 - - 11 11 (54) [100]

KTN19 17q21.2 38 66 - 39 33 14 (22) [109]

LOXL1 15q24 35 23 - - - 24 (17) [63]

LSAMP 3q13.2-21 26 53 - 26 - - [67]

MDRI 7q21.1 86 65 - 87 85 97 (62) [43]

MGMT 10q26 8 225 2-33 2 0 0 (62) [33,41-43,54]

MT1G 16q13 20 25 - - - - [54]

p14ARF 9p21 33 299 17-68 36 40 20 [33,34,40,43]

p16INK4 9p21 11 407 0-80 10 13 0 (87) [34,35,
        40-43,54,81]

PDLIM4 5q31 43 41 - - - 0 (22) [63]

PML 15q22 3 90 - 3 - - [107]

PTGS2 1q25.2-25.3 95 65 - 96 92 100 (62) [43]

RARB 3p24 13 206 0-53 2 0 0 (77) [34,41-43,54]

RASSF1 3p21.3 51 735 28-91 59 75 48 (0-100)(174) [34,35,38,
        40-46]

RASSF5 1q32.1 28 79 19-32 - - - [54,67]

ROBO1 3p12 18 44 - 18 - - [117]

RPRM 2q23 44 52 - - - 18 (44) [63]

SDHB 1p36.1-35 4 25 - - - - [53]

SFRP1 8p12-11.1 47 234 34-80 50 18 5 (152) [59-63]

SFRP2 4q31.3 53 62 - 56 - 10 (62) [62]

Continued overleaf
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and tissuespecific genes and to regulate the monoallelic 
expression of imprinted genes [1922]. However, in the 
past decade it has become accepted that aberrant 
promoter methylation and the resultant gene silencing can 
provide a selective advantage to neoplastic cells in the 
same manner that mutations do [2226]. Thus, epi genetic 
silencing of ‘gatekeeper’ or ‘caretaker’ TSGs can occur 
frequently at the earliest stages of cancer initiation, 
resulting in the clonal evolution of a population of cells at 
risk of obtaining further genetic or epigenetic lesions 
[27,28]. In inherited cancer syndromes such as von Hippel
Lindau disease (associated with susceptibility to RCC) de 
novo VHL promoter hypermethylation can provide the 
‘second hit’ that initiates tumor development [29]. In such 
cases methylation is specific to the wildtype allele, suggest
ing clonal selection for the epigenetic loss of expression.

A survey of methylated genes in RCC
In order to catalog candidate TSGs reported to show 
tumorspecific region hypermethylation in RCC, we 
searched PubMed and other online databases (such as 
PubMeth) [30]. Of the 58 genes that were identified as 
being methylated in RCC (Table 1, Figure 1; see Table 1 
for full gene names), 43 had a mean combined methylation/
mutation rate of over 20% and the characteristics of these 
genes were analyzed in further detail (although 31 genes 
had been reported only by a single study).

Chromosome 3p tumor suppressors
Deletions of 3p are frequent in many adult cancers [31] 
and occur in 45 to 90% of sporadic RCCs [4,32,33]. 

Inactivation of the 3p25 TSG VHL is of critical 
importance to the pathogenesis of ccRCC and occurs in 
up to 86% of tumors [34]. Although VHL mutations are 
rare in nonclearcell RCC, VHL methylation has been 
reported in pRCC and ccRCC [9,35,36]. VHL methylation 
does not associate with tumor stage, consistent with the 
interpretation that it is an early event in tumor formation 
[9,37]. In addition to VHL, several other 3p candidate 
TSGs have been reported to be methylated in RCC 
(Figure 1). The RASSF1 gene maps to 3p21, a region of 
frequent allele loss in RCC and other cancers (including 
lung, bladder, breast and hepatocellular). Somatic 
RASSF1A mutations are infrequent in cancer [38], but 
RASSF1 is frequently methylated in sporadic RCC (and 
various other common cancers), either biallelically or as a 
second hit following 3p deletion [39,40]. After VHL, 
RASSF1 methylation has been examined more than any 
other gene in sporadic RCC, the mean methylation 
frequency is 51% [34,35,38,4147]. In a study by Costa et 
al. [44], frequent RASSF1A methylation was detected in 
kidney tissue surrounding the excised tumor. Aberrant 
methylation in morphologically normal renal tissue 
adjacent to the tumor (but not in more distant normal 
tissue) has been interpreted as evidence that the TSG 
methylation is part of a ‘field effect’ at an early stage of 
tumorigenesis that produces a large number of cells with 
an initial epigenetic lesion that is then followed by 
additional genetic and/or epigenetic events that lead to 
tumor development. The candidate tumor suppressor 
gene TU3A (located at 3p21.1) is frequently down
regulated in cancers, most notably prostate cancer [48] 

Table 1. Continued 

  Mean RCC Number of Range across   Adj normal  
  methylation tumors multiple   methylation*  
Gene Locus  (%) analyzed  studies (%) ccRCC (%) pRCC (%) % (n) References

SFRP4 7p14-13 53 62 - 56 - 15 (62) [62]
SFRP5 10q24.1 57 62 - 59 - 15 (62) [62]
SLIT2 4q15.2 25 48 - - - 8 (12) [118]
SPINT2 19q13.2 38 118 - 30 45 5 (38) [70]
TIMP3 22q12.1-13.2 51 289 20-78 36 32 14 (104) [34,40-43,119] 
TU3A 3p21.1 39 61 - 42 25 0 (24) [49]
UCHL1 4p14 38 32 - - - 0 (32) [116]
VHL 3p26-25 16 740 8-31 14 16 0 [5,9,33-36,40]
WIF1 12q14.3 73 62 - 76  23 (62) [62]
XAF1 17p13.2 12 84 8-50 - - 0 (4) [120,121]

*Where the range of methylation in adjacent (Adj) normal tissue is high across multiple studies, this range is indicated in parentheses before the number analyzed. 
Abbreviations: APAF1, apoptotic protease activating factor 1; APC, adenomatous polyposis coli; BNC1, basonuclin 1; BTG3, B-cell translocation gene 3; CASP8, caspase 8; 
CDH1, cadherin 1; CDH13, cadherin 13; COL, collagen; CRBP, retinol binding protein 1, cellular; CST6, cystatin E/M; CXCL, chemokine (C-X-C motif) ligand; DAL, differentially 
expressed in adenocarcinoma of the lung; DAPK, death-associated protein kinase; DKK, dickkopf; DLC, deleted in liver cancer ; ESR, estrogen receptor; FHIT, fragile histidine 
triad; FLCN, folliculin; GREM, gremlin; GSTP, glutathione s-transferase protein; HOXB, homeobox family B; IGFBP, insulin-like growth factor binding protein; JUP, junction 
plakoglobin (also called γ-catenin); KTN, keratin; LOXL, lysyl oxidase-like; LSAMP, limbic system-associated membrane protein; MDRI, multiple drug resistance gene; 
MGMT, O-6-methylguanine-DNA methyltransferase; MT1G, metallothionein 1G; p14ARF, cyclin-dependent kinase inhibitor 2A alternative reading frame; p16INK4, cyclin-
dependent kinase inhibitor 2A; PDLIM4, pdz and lim domain protein 4; PML, promyelocytic leukemia; PTGS, prostaglandin-endoperoxide synthase; RARB, retinoic acid 
receptor beta; RASSF, RAS association domain family; ROBO, roundabout; RPRM, reprimo; SDHB, Succinate dehydrogenase B; SFRP, secreted frizzled related protein; 
SLIT2, slit homolog 2; SPINT2, serine peptidase inhibitor, Kunitz type, 2; TIMP, Tissue inhibitor of metalloproteases; UCHL, ubiquitin carboxyl-terminal esterase L1; VHL, von 
Hippel-Lindau tumor suppressor; WIF, Wnt inhibitory factor; XAF, XIAP associated factor.
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and astrocytoma [49]. In one study of 61 tumors, TU3A 
was methylated in 42% of ccRCC and 25% of pRCC [50].

The FHIT gene encodes a diadenosine 5’,5’’’P1,P3
triphosphate hydrolase involved in purine metabolism. 
The gene encompasses the common fragile site FRA3B at 
3p14. Loss of FHIT is common to many tumor types 
[51,52]. In vivo, reexpression of FHIT has tumor sup
pres sing activity [53]. FHIT promoter methylation is 
common (52 to 53%) in both ccRCC and pRCC [44,54].

RARB regulates cell proliferation and differentiation 
and, in common with other 3p TSGs (RARB maps to 
3p24), is frequently downregulated or lost in multiple 
tumor types. However, several small studies have 
found RARB to be methylated in less than 20% of RCC 
cases [35,42,44,55].

WNT pathway regulators
Dysregulation of the WNT/βcatenin pathway is 
common in a variety of cancers, and oncogenic activation 
of this pathway drives the expression of genes that 
contribute to proliferation, survival and invasion [56,57]. 
Inhibitors of WNT signaling can be divided into two 
functional classes: the SFRP proteins, which bind directly 

to WNT, preventing its binding to the FZ receptor [58], 
and the Dickkopf (DKK) proteins, which bind to the 
Lowdensity lipoprotein receptorrelated protein 5 
(LRP5)LRP6 component of the Wnt receptor complex 
[59]. The SFRP1, SFRP2, SFRP4, SFRP5 and related WIF1 
genes are all frequently methylated in RCC (47 to 73%) 
[6064], as are the Dickkopf genes DKK1, DKK2 and 
DKK3 (44 to 58%) [6366]. Recently, SFRP1 was shown to 
be overexpressed in metastatic RCC compared with non
metastatic tumors, in which expression was often 
attenuated by promoter methylation [67].

Epigenetics and familial RCC genes
As described above, germline VHL mutations cause 
inherited RCC and VHL inactivation is also critical to 
the development of most ccRCC. Similarly, a 
constitutional translocation associated with RCC 
susceptibility disrup ted the NORE1A (RASSF5) and 
LSAMP1 genes, and both genes were epigenetically 
inactivated in sporadic RCC [68]. However, somatic 
inactivation (by mutation or methylation) of other genes 
associated with inherited kidney cancer, such as FLCN, 
FH and SDHB, is infrequent or absent (Table 1). 

Figure 1. Genes methylated in RCC are distributed across the genome. However, there is a concentration of silenced genes at 3p (see text for 
details). Methylated genes are also concentrated at chromosome 17 and both loss and gain of chromosome 17 have been reported in RCC.
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Nevertheless, SPINT2 (HAI2), which encodes a secreted 
inhibitor of MET activity (activating mutations in the 
MET protooncogene are associated with familial pRCC, 
although somatic mutations are infrequent in sporadic 
pRCC [69,70]), was found to be methylated in 30% of 
ccRCC and 45% of pRCC [71]. This observation 
demonstrates how TSG methylation can target familial 
RCC gene pathways. We note that several other 
epigenetically inactivated candidate TSGs, includ ing 
members of the Wnt regulatory pathway [72], p16INK4a 
[73], CASP8 [74], GREM1 [75], RPRM [76], collagens 
[77], IGFBP1 [78], IGFBP3 [79] and PTGS2 [80], can be 
related to VHLregulated pathways. How ever, genes 
involved in many other cellular processes have also been 
found to be epigenetically silenced in RCC (Table 1).

Identification of novel RCC TSGs by epigenetic 
analyses
Compared with the results of highthroughput sequen
cing studies of RCC [81], it seems that epigenetic studies 
have provided a much higher number of frequently 
inactivated candidate TSGs. Nevertheless, a combination 
of sequencing and epigenetic analysis provides the 
optimum strategy. Thus, although RASSF1A would not 
have been identified as an important RCC TSG by 
sequencing analysis alone, CDKN2A (which is mutated in 
approximately 10% of RCC and is the second most highly 
mutated gene in RCC [10]), is, on average, methylated in 
11% of RCC [35,36,41,43,44,55,82], yielding a combined 
inactivation rate of about 21%. A wide variety of method
ological approaches can be used to determine the 
promoter methylation status of candidate RCC TSGs and 
these have differing advantages and drawbacks (Tables 2 
and 3). In addition to the detection of pathological 

promoter region methylation, it is important to demon
strate that this is associated with transcriptional silencing 
of the candidate TSG.

The functional epigenomics strategy uses 5aza2’
deoxycytidine treatment of cancer cell lines to identify 
genes whose expression is reactivated following demethy
lation. Although this strategy can provide an unbiased 
approach to identifying candidate epigenetically inactiva
ted TSGs, only a minority of the reexpressed genes are 
ultimately proven to be silenced in primary tumors. 
Some techniques, such as methylationspecific PCR, can 
be very sensitive, and it is reassuring when results are 
available from a large number of tumors and multiple 
studies because the frequencies of methylation for 
individual genes can show considerable variation 
(Table 1). Such variation can reflect differences between 
cohorts of tumor samples or methylation detection 
methodologies, and only in a minority of cases are there 
data available from multiple studies and over 100 tumor 
samples. For less well studied genes the evidence for 
pathogenicity is strengthened by reports of frequent 
tumorspecific methylation (or mutations) in other 
tumor types; this is the case for BNC1 [83], PDLIM4 
[84,85], CST6 [86,87] SLIT2 [88,89], IGFBP3 [90,91] and 
SPINT2 [9294].

So far, epigenetic studies in RCC have concentrated on 
the methylation of CpG islands at or near to gene 
promoters. Recent studies in colorectal cancer have 
indicated that methylation extends well beyond discrete 
islands. Indeed, approximately 50% of these ‘CpG island 
shores’ were found more than 2 kb from the nearest 
annotated gene [95]. As with CpG island methylation, 
CpG shore methylation inversely correlates with gene 
expression. Further investigation of global genomic 

Table 2. Technologies to identify genome-wide epigenetically regulated genes

Method Key features Advantages Disadvantages

Functional epigenomics Methylated genes are re-expressed in 
cell lines by treatment with 5-aza-2’-
deoxycytidine. Expression arrays determine 
reactivated genes 

Links hypermethylated sites to 
gene silencing 

Correlating correct methylated site to 
expression regulation is laborious. Cell 
lines are frequently more methylated 
than the corresponding tumors. 

Methylation-dependent 
immunoprecipitation (MeDIP) 

Methylated DNA is separated 
from unmethylated DNA by 
immunoprecipitation and hybridized to a 
CpG island microarray

Global analysis; produces 
quantifiable results

Dependent on good 
immunoprecipitation efficiency; difficult 
to determine the extent of methylation 
across a specific CpG island

Bead chip ‘Infinium’ Bisulfite-modified DNA is hybridized to 
beads containing DNA oligonucleotides 
specific to CpG dinucleotide methylation. 
Single base extension determines 
methylation state

Global analysis at single CpG 
sites using targeted probes; 
quantitative data

Provides data for only one or two CpG 
dinucleotides per island; further work 
may be required to determine the extent 
of methylation at specific sites

Next-generation sequencing Combines isolation of methylated DNA 
using techniques such as MeDIP or 
restriction digest and high-throughput 
sequencing. Bisulfite-modified DNA can 
also be sequenced directly

Statistically robust; high 
coverage; single nucleotide 
resolution

Initial set-up costs high; probe design can 
be challenging
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methy lation patterns is necessary to elucidate the full 
role of epigenetic gene silencing (and oncogene 
activation) in RCC development. It is now accepted that 
in certain tumor types, colorectal being the best 
described, a subset of tumors show a CpG island 
methylator phenotype (CIMP+), which associates with 
specific lesions such as BRAF mutations and 
microsatellite instability [96]. How ever, the relevance of 
the CIMP+ phenotype to RCC has not yet been clearly 
defined [97]. The role of abnormal histone modification 
as an epigenetic factor in RCC development also remains 
to be investigated in depth. However, recent largescale 
sequencing screens of RCC revealed mutations in the 
histonemodifying genes ubiquitously transcribed 
tetratricopeptide repeat gene on x chromosome (UTX), 
set domain-containing protein 2 (SETD2) and lysine-
specific demethylase 5C (KDM5C, JARID1C), and that 
loss of these genes correlated with transcriptional 
deregulation [81,98]. The interplay between erroneous 
histone modification and aberrant DNA methylation in 
the evolution of RCC merits further investigation.

Translational medicine and RCC epigenetics
Epigenetic biomarkers
Methylated TSGs provide attractive options for bio
markers for the detection and prognosis prediction of 
cancers, including RCC [99]. DNAbased assays are often 
more robust than RNAbased assays, and whereas the 
mutation spectrum causing TSG inactivation is usually 
diverse (which limits the utility of mutationspecific 
detection strategies for tumor screening programs), TSG 
inactivation by promoter hypermethylation provides a 
more homogeneous target for molecular screening 
strate gies. So far, largescale gene sequencing studies 
have demonstrated that, with the exception of VHL, there 
are no genes that are mutated very frequently, but a 
significant number of genes do show frequent tumor
specific methylation.

Early diagnosis of RCC can be challenging. The classical 
clinical symptoms and signs of renal cancer are usually 
present only with late disease, when prognosis is poor; 
these symptoms  pain, palpable flank mass and hematuria 
 are present in only approximately 10% of patients [100]. 
The aim is to detect RCC early when the tumor is still 
confined, as this has a significant impact on longterm 
diseasefree survival. Although an increasing number of 
RCCs are detected as incidental findings on abdominal 
imaging, distinguishing benign and malignant masses in 
such a situation can be difficult. However, DNA can be 
detected from cells sloughed from the tumor into urine or 
blood, and three studies [4143] have successfully 
detected the presence of promoter methy lation, by 
methylationspecific PCR, from DNA extracted from 
serum and urine of patients with RCC. Methylation of the 
Wnt antagonists SFRP1, SFRP2, SFRP4, SFRP5, DKK3 and 
WIF1 was detected in tumor DNA in the serum of 
patients in whom those genes were methylated in their 
tumor. Moreover, the frequency of methylation detection 
in serum correlated significantly with increased grade and 
stage, suggesting that detection of these methylation
specific PCR products may be useful as markers of tumor 
progression [63]. Using a panel of previously identified 
RCCspecific methylated genes, two of these studies 
[41,43] have found a strong correlation between tumor 
methylation and methylated DNA obtained from patient 
urine. Methylation was not found in control, agematched 
urine samples. The panels of genes used in these studies 
included VHL, RASSF1, MGMT, GSTP1, p16INK4, 
p14ARF, APC and TIMP3. The specificity for genes such 
as VHL and RASSF1, which are frequently methylated and 
believed to be inactivated at an early stage of tumor 
development, suggests that methylationspecific PCR
based hypermethylation panel arrays could have potential 
as an economically viable early detection screen for 
patients presenting nonspecific symptoms and for 
distinguishing benign and malign renal masses.

Table 3. Technologies to analyze specific methylated regions

Method Key features Advantages Disadvantages

Methylation-specific PCR (MSP) DNA primers are designed to distinguish 
between methylated or un-methylated 
DNA. Bisulfite-modified DNA is amplified

Very sensitive; will identify very 
low levels of methylated DNA in 
a sample

Very sensitive; easily contaminated; 
requires further analysis to determine 
level of methylation present

Combined bisulfite restriction 
analysis (CoBRA)

Bisulfite-modified DNA is amplified using 
non-discriminatory primers. PCR product is 
digested with restriction enzymes that are 
specific to methylated DNA sequences

Robust detection of 
methylation; not prone to false 
positive results 

Does not give detailed analysis of region 
amplified; requires complete bisulfite 
conversion to prevent PCR bias

Bisulfite sequencing Bisulfite-modified DNA is amplified using 
non-discriminatory primers. PCR product is 
cloned and sequenced

Informative for all CpGs within 
the region; provides allele-
specific methylation information

Laborious

Pyro-sequencing Bisulfite-modified DNA is amplified 
using non-discriminatory primers and 
sequenced using pyro-sequencing 
technology

Multiple samples can be 
analyzed in parallel; quantitative

Analysis is restricted by small read sizes
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Only a few genes that might have potential as prog
nostic biomarkers have been analyzed in urine or blood 
from RCC patients. However, the tumor methylation 
status of several TSGs has been correlated with prog
nosis. Two independent studies [63,64] have reported an 
inverse correlation between SFRP1 promoter methylation 
and patient survival (in vitro and in vivo assays both 
suggested that SFRP1 had tumor suppressing activity in 
RCC [62,64]). Methylation of COL14A1 and BNC1 was 
significantly associated with a poorer prognosis and this 
was a better prognostic indicator than tumor stage or 
grade [64]. JUP methylation was detected in a very high 
proportion of tumors tested (91%) and was reported to 
be an independent indicator of disease progression and 
patient survival [101]. Similarly, a significant correlation 
between methylation of the bone morphogenetic protein 
antagonist GREM1 and tumor grade and stage and poor 
prognosis was reported [102], and methylation of TU3A 
was significantly associated with advanced tumor stage 
(later than stage T2) and poor survival [50]. The methy
lation status of several TSGs has been correlated with 
tumor pathological characteristics but not prognosis. 
HOXB13 methylation, for example, was correlated with 
tumor grade, stage, size and microvessel invasion [103], 
whereas DKK1 methylation correlated with increased 
pathological grade [66] and DKK2 methylation correlated 
with both increased stage and grade [65]. However, most 
of these studies require replication and, although RASSF1 
methylation was reported to correlate with stage [44,46] 
and grade [44], the largest study so far found no 
correlation with grade [39].

Clearly it is important that there should be further 
studies of potential methylated biomarkers in tumor 
tissue and urine and/or blood with the ultimate aim of 
producing a panel of biomarkers that will enable non
invasive detection, molecular staging and prediction of 
prognosis. As the number of potential methylated TSG 
biomarkers increases, it will be of great importance to 
assay these in a standardized manner in prospective 
studies to establish their clinical utility.

Promoter methylation as a target for therapy
The identification of frequently methylated RCC TSGs 
highlights critical pathways that could potentially be 
targeted for novel therapeutic interventions in RCC and 
other cancer types. In addition, there are less gene
specific approaches to epigenetic therapy. Decitabine, the 
clinical form of the demethylating agent 5aza2’deoxy
cytidine, has been investigated in several clinical trials for 
neoplasia, and promising responses have been reported 
in hematological malignancies (such as myelodysplastic 
syndrome [18,104,105]), although the response rates 
seem to be lower for common solid tumors. However, 
epigenetic therapy to alter cancer methylation or histone 

modification status is an area of increasing clinical trial 
activity. Clearly, strategies such as tumor methylation 
profiling, which could identify cancer patients most likely 
to respond to such therapies, would be a major advance.

Future prospects
Technological advances are accelerating the pace of 
methy lation profiling for common human cancers. The 
advent of highthroughput hybridizationbased assays 
can allow the methylation status of around 14,000 genes 
to be analyzed simultaneously (although only a few CpGs 
are interrogated for each gene) and strategies based on 
second generation massively parallel sequencing tech
nologies will undoubtedly provide a more complete 
assessment of RCC epigenetics and elucidate novel RCC 
TSGs. One advantage of these approaches over the older 
‘candidate gene epigenetic status approach’ is that the 
simultaneous analysis of many genes allows a better 
comparison of TSG methylation frequencies for specific 
genes and is likely to facilitate comparison between 
different studies. With increasing numbers of methylated 
TSGs in RCC identified, our knowledge of the molecular 
pathogenesis of RCC will increase and with it the 
potential for developing novel biomarkers and potential 
therapeutic interventions.
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