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Summary The pronounced resistance of human renal cell carcinoma (RCC) to anticancer-induced apoptosis has primarily been related to
the expression of P-glycoprotein and effective drug detoxification mechanisms. Because the CD95 system has recently been identified as a
key mediator of anticancer drug-induced apoptosis, we analysed the contribution of the CD95 system to chemotherapy-induced apoptosis in
four newly established RCC cell lines. Here, we demonstrate that all RCC cell lines expressed CD95-receptor and -ligand. Exposure to
agonistic anti-CD95 antibodies resulted in induction of apoptosis and significant (P < 0.05) reduction of cell number in three out of four cell
lines, indicating that the essential components for CD95-mediated apoptosis were present and functionally intact in the majority of these RCC
cell lines. Moreover, treatment of cultures with bleomycin or topotecan, a novel topoisomerase | inhibitor with little substrate affinity for P-
glycoprotein, led to induction of apoptosis and significant (P < 0.05) dose-dependent reduction of cell number in all RCC cell lines. Both
anticancer drugs also induced upregulation of CD95 ligand expression in all cell lines. Additionally, augmentation of CD95 receptor
expression was found in three RCC cell lines, including one p53-mutated cell line, whereas another p53-mutated cell line showed no or only
a weak CD95 receptor upregulation after exposure to topotecan or bleomycin, respectively. Despite this upregulation of CD95 receptor and
ligand, antagonistic antibodies directed against CD95 receptors or ligands could not inhibit induction of apoptosis by topotecan and bleomycin
in any cell line. Thus, although a functionally intact CD95 signalling cascade is present in most RCC cell lines, the anticancer drugs topotecan
and bleomycin that induce upregulation of CD95 receptor and ligand fail to effectively activate CD95-mediated apoptosis. This deficient
activation of CD95-mediated apoptosis might be an important additional factor for the multidrug resistance phenotype of human RCCs.
© 2000 Cancer Research Campaign
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Human renal cell carcinoma (RCC) is known to be largely resisHowever, recent evidence indicates that the CD95 pathway is also
tant to conventional chemotherapy, resulting in an extremelynvolved in drug-induced apoptosis of tumour cells (Krammer,
poor prognosis once the tumour has metastasized and is beyoh@97). Upregulation of CD95-ligand and/or -receptor has thus
the reach of curative surgery (Mulders et al, 1997). Resistance tzeen demonstrated in drug-sensitive leukaemias, hepatocellular
chemotherapy has been explained by multiple mechanismsarcinomas and neuroblastomas upon treatment with various anti-
including the multidrug resistance phenotype (Baldini, 1997;cancer drugs, and, most importantly, blocking of CD95 receptor
Mulders et al, 1997) or defects in apoptotic pathways (Hettsactivation by antagonistic antibodies effectively inhibited drug-
1998). Recent evidence indicates that CD95-mediated apoptosizduced apoptosis (Friesen et al, 1996; Fulda et al, 1997; Mdiller
might also effectively determine the response of cancer cells tet al, 1997). In contrast, drug-resistant leukaemia cells failed to
cytotoxic drugs (Friesen et al, 1996; 1997; Strand et al, 1996jpregulate CD95-ligand expression and to activate the CD95-
Fulda et al, 1997; Krammer, 1997; Miiller et al, 1997). pathway (Friesen et al, 1997). Remarkably, upregulation of CD95
CD95 is a 45 kDa type | transmembrane receptor that confers arceptor expression upon anticancer drug-treatment was observe
apoptotic signal to sensitive cells upon trimerization by its liganconly in p53 wild-type hepatocellular carcinomas, indicating that
CD95L, a type Il membrane protein (Nagata, 1994). Followingp53 might also be involved in the regulation of CD95-mediated
activation of CD95-receptors, a death signal is generated that leadpoptosis (Mdller et al, 1997; 1998). These observations suggestec
to the activation of a cascade of cysteine proteases (caspases) #mat chemotherapeutic agents induce apoptosis via CD95-depen:
finally to apoptosis (Kischkel et al, 1995). This apoptotic pathwaydent pathways and that resistance of tumours to chemotherapy
has originally been explored within the immune system onlymight also be related to deficient activation of the CD95 system.
Although CD95 receptor expression and CD95-mediated apop-
tosis have clearly been demonstrated in human RCCs (Caignard
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Accepted 9 January 2000 for chemoresistance in human RCCs has yet to be established
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functional contribution of the CD95 system to chemotherapy-cellular RNA and oligo(dT) (CD95 receptor) or random primer
induced apoptosis in human RCCs. To this end, we exposed new(€D95 ligand) as RT-primer. The amplification mixture with a
established human RCC cell lines of different histological types tdinal volume of 50ul was composed as follows: b of the cDNA
topotecan, a novel topoisomerase | inhibitor with little substrateemplate, 10 pMpl=* (CD95 receptor) or 50 pMul-t (CD95
affinity for P-glycoprotein (Hendricks et al, 1992; Sorensen et alligand) of the gene-specific primers, 200 (CD95 receptor) or
1995), or to the DNA-damaging antibiotic bleomycin, which has100uM (CD95 ligand) of each dNTP and 1.5 U Tag-polymerase
been shown to act via the CD95 system (Mdiller et al, 1997). (Sigma).

For the amplification of CD95 receptor, the following primers
were used (Cascino et al, 1995): (forward)CAG AAC TTG
GAA GGC CTG CAT C 3 (reverse) 5GGA CTT TGT CAC
CGT TAT TTA 3. These oligonucleotides amplified the trans-
membranous CD95 receptor (510 bp) as well as a splice variant
All four cell lines used in this study were derived from typical with a 63 bp deletion of the transmembranous region encoding the
representatives of the clear cell (clearCa-3, -6, -17) and chreoluble CD95 receptor (447 bp). The initial denaturation step at
mophilic/papillary (chromphi-3) types of RCC (Gerharz et al, 94°C for 4 min was followed by 25 cycles of denaturation for 30 s,
1993; 1994; 1995; 1996). The cell lines were maintained wittannealing at 5C for 30 s, extension at 7@ for 40 s, and a final
Dulbeccos’s modified Eagle’s medium (DMEM, Gibco, FRG), extension step at 7€ for 10 min. The PCR products were
supplemented with 10% heat-inactivated fetal calf serum (FCSkeparated on a 1.5% agarose gel and the ratio between both splice
penicillin and streptomycin (= standard growth medium) and cultivariants was quantified by densitometry (Biometra, FRG) in three
vated at 37C in an atmosphere with 5% CO independent experiments.

For the amplification of CD95 ligand, the following primers
were used (Peter et al. 1995): (forwardpABA GGA TCC ATG
TTT CTG CTC TTC CAC CTA CAG AAG GA 13 (reverse) 5
Extraction of genomic DNA was performed using the QIAmpATA GAA TTC TGA CCA AGA GAG AGC TCA GAT ACG
Tissue Kit (Qiagen, FRG) according to the manufacturer'sTTG AC 5. The initial denaturation step at°@!for 4 min was
protocol. For amplification of p53 exons 5 to 8, the following followed by 35 cycles of denaturation for 1 min, annealing &€54
oligonucleotide primers were used: Exons 5 and 6: (forwdrd) 5 for 1 min, extension at 72 for 1 min, and a final extension step
TTC CTC TTC CTG CAG TAC TC-3 (reverse) 5ATG TGC at 72C for 10 min. Identity of the amplification products was
AAA CCA GAC CTC AG-3. Exons 7 and 8: (forwardy &TG confirmed by direct sequencing (data not shown).
TTG TCT CCT AGG TTG GC-3 (reverse) 5AAG TGA ATC
TGA GGC ATA AC-3. Each amplification reaction was carried
out in a total volume of 50l containing 200 ng of genomic DNA,
10 pmol of each primer, 10 nM of each dNTP, 2 U Taq polymeras®&lorthern blot analysis was carried out for ) RNA of each
and PCR-reaction-buffer (Sigma, FRG). After an initial denaturasample under denaturating conditions with a 1% formaldehyde
tion step at 92C for 2 min, 35 cycles of denaturation at@4for gel. After transfer of the RNA to the Nylon membrane
30 s, annealing at 8Q for 40 s, and extension at°@2for 1 min, (Amersham, FRG), the RNA was hybridized with a specific p21
as well as a last delay at°r2for 10 min, were performed. The cDNA probe generated by RT-PCR (primers: forwardCBG
PCR-products were purified from surplus oligonucleotides usingflGG ACA GCG AGC AGC TG 3 reverse: 5ATC TGT CAT
Microspin S-300 columns (Pharmacia, FRG). The purified PCRGCT GGT CTG CC 3 35 cycles of denaturation for 30s,
products were prepared for automatic sequencing using the AB&nnealing at 5& for 30 s, extension at 7@ for 40 s). The DNA
Prism BigDye Terminator Cycle Sequencing Kit (Perkin Elmer,was labelled by incorporation &P-dCTP using the oligo-labelling
FRG) according to the manufacturer’s protocol. Sequence analyskit (Pharmacia). Hybridization, stringent washing procedures and
was carried out with the sensé)(&nd the antisense'{Jrimer radiography were carried out as previously described (Ramp et al,
using an ABI-Prism 310 sequencer (Perkin Elmer). p53 mutation$997). All experiments were done twice with different Nylon
were verified by an independent PCR-amplification of genomianembranes and the results obtained were reproducible.
DNA followed by a repeated sequencing.

MATERIALS AND METHODS

Cells and culture

Analysis of p53 mutations

Northern blot analysis

Flow cytometric analysis

RNA extraction The expression of CD95 receptor and CD95 ligand was assessed

Total cellular RNA was isolated from RCC cell lines using eitherby fluorescence-activated cytometry carried out in a FACScan
the RNeasy kit (Qiagen) for the detection of CD95 receptoiflow cytometer (Becton Dickinson, FRG). After 24 h in standard
mRNA, or the caesium chloride ultracentrifugation method for thegrowth medium, RCC cells were incubated for another 24, 48, and
detection of CD95 ligand and p21 mRNA. RNA concentration was/2 h in growth medium supplemented with topotecapg(Ini?)
measured by photometry at 260 nm. or bleomycin (30Qug mF). As control, cells were maintained in
standard growth medium. g of the FITC-labelled monoclonal
antibodies (CD95 receptor-FITC: monoclonal Jg@ouse) anti-
body UB2, Immunotech, FRG; CD95 ligand-FITC: monoclonal
For monitoring CD95 receptor and CD95 ligand expression]gG,, (rat) antibody H11, Alexis, FRG) was added to each tube
reverse transcription was performed using an RT-kit (Stratagenyith 1 x 10 cells in a final reaction volume of 2Q0 and
FRG), 2ug (CD95 receptor) or fig (CD95 ligand) of total incubated for 20 min at°€. Two washing steps were performed

RT-PCR analysis
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before measuring the cells. As controls, the FITC-labelled isotyp8lockade of CD95 signalling by antibodies

tibodi -1gQl tech) for CD95 t d rat- . I .
antibodies mouse-lgdimmunotech) for receptor and ra To analyse the functional contribution of the CD95 system to anti-

19G,, for CDOS ligand (Pharmingen, FRG) were used. All experi- ancer drug-induced apoptosis in RCC, we used antagonistic anti-
ments were done twice and the results obtained were reproducib ec')dies directed against CD95 receptors (i.e. Fab)i-APO-1

antibody fragments made by PK’s laboratory) (Friesen et al, 1996;
Induction and quantification of apoptosis Fulda et al, 1997; 1998; Miiller et al, 1997), or antibodies binding

CD95 ligands (i.e. monoclonal 4H9 antibodies, Immunotech)

(1N>;nl(?4 ;gg)wi;;fzidﬁ dt;]ne eczflz S\?ear?t:re;a(t)efz dsxﬂﬁr?ssgtzggreg\lakajima et al, 1998). Both antibodies competitively inhibit
' ' . inding of CD95 ligand to the CD95 receptor, resulting in a

(0.01, 0.1, 1, or 19g mF?) or bleomycin (3, 30 or 30Ag mt?) . .
S ) blockade of the CD95 signalling pathway.
- q)@ 1
or CD95 receptor-activating CH11 antibody ( mr, RCC cells were exposed to topotecaug@imi™) or bleomycin

Immunotech) (Natoli et al, 1995; Keane et al, 1996; O'Connell e ; . S )
300ug miY) as single agentsr in combination with the F(a
al, 1996; Strand et al, 1996) for another 48 h. For yifi¥etreat- gnti-ng—l)antibodgy fra%ments (0.1 onig mHY) or 4H9 ;nt%?

t, t Il d to IFKEOO U mt?; Bi . .
ment, tumour cells were exposed to Ik Mt BIOSOUICe, . jieg (0.1 or ug miY). RCC tumour cells were then incubated

FRG) 24 h after seeding on 8-chamber slides. After another 48 .
the growth medium was substituted by medium supplemented wit Qr 48 h and MTT assays were performed as described above.

the CH11 antibody and cells were cultivated for another 48 h. As a

control, tumour cells were exposed to either standard growtRESULTS

medium or growth medium supplemented with [¥#N-

(100 U mtY). The number of apoptotic cells pex1L(® cells was  Anticancer drugs induce apoptotic cell death in human

determined by light microscopical counting of haematoxylin-eosirRCCs

(HE)-stained cells showing the typical morphological signs of, . . .

apoptosis, i.e. chromatin condensation and/or fragmentation imt%xposure to topotecgn or bleomycm r(_esulted n 'r.‘duc“OT‘ of apop-

. : . . . tosis, as became evident from light microscopic inspection of cell

apoptotic bodies. Counting of apoptotic cells was performed in - 2 o .
. . cultures (Figure 1). The determination of specific apoptotic death

two independent experiments and the data presented are the m gRD) confirmed a dose-dependent increase of apoptotic cell

out of these experiments. Specific apoptotic death (SAD) wa P pop

calculated as the frequency of apoptotic cells after exposure to

topotecanor bleomycinor CH11 or CH11 + IFNy minus the

frequency of apoptotic cells in standard growth medium.

Assessment of cell number

Tumour cells in the exponential growth phase were transferred
microwell plates (Gibco) at & 10* cells per well in 0.1 ml stan-
dard growth medium. After 24 h cells were exposed to topoteca
(0.01, 0.1, 1, or 1pg mk?) or bleomycin (3, 30, or 30Qg mt?)

or CD95 receptor-activating CH11 antibody (@& mb?
Immunotech) in growth medium. As a control, tumour cells were
cultivated in standard growth medium. The plates were incubate
for another 48 h (topotecan or bleomycin) or 72 h (CH11) &E37
and 5% CQ For IFNy pretreatment, tumour cells were exposed
to IFN-y (100 U mt?) for 48 h, and then incubated for another 72 h
in growth medium supplemented with CH11 (A mli?). As a
control for the effects of IFN-on cell number, tumour cells were
exposed to IFNxfor 48 h and then incubated for another 72 h in
standard growth medium. The number of viable tumour cells wa
then analysed using the colorimetric MTT assay (Mosman, 198:
and measured on a spectrophotometric plate reader (Titert
Multiscan, FRG) at 570 nm.

The data presented are the meastandard deviation from 24
replicate wells per microtitre plate and three independent expet
ments per cell line. The data were statistically evaluated by &
analysis of variance with two independent factors. The 509
inhibitory drug concentration (I¢;value) was statistically deter-
mined by SSPS (probit analysis).

Interactions between CH11 and topotecan were analysed by t
fractional inhibition method as follows: when expressed as th

fractional inhibition cell viability, additive inhibition produced . i T
by_ bOFh inhibitors (i) C_)CCUI’S Wh??g': '4 t+ 1, synergism wherM Figure 1 Marked induction of apoptosis (arrows) in clearCa-6 cells after
> i, + i, and antagonism when,i< i, + i, (Webb, 1963). exposure to topotecan (B) when compared to the control (A) (bar = 50 um)
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1854 U Ramp et al

bleomycin

topotecan
IC.. = 0.12 pg/ml
1007 *° MOt 15
& 75
5 Sy
Q ~
E 50 9
= ] 5 O
g 2
0 0
0.01 0.1 1 10 Hg/ml
IC... = 0.26 pg/ml
1007 *® Ho
g 751 20
g 158
E 50 a
3 10
3 25 5
8
0 0
0.01 0.1 1 10 Hg/ml
IC.. = 2.32 pg/ml
1007 LT
& 75
Fi 10 g
E 50 a
=}
= 5 &
8 25
0 0
0.01 0.1 1 10 Hg/ml
IC, = 0.56 pg/ml
100 * 15
g
< 75 LO?
£ s s
[a)]
>
g 5
3 2
0 0
0.01 0.1 1 10 Hg/ml

IC,, =430 pg/ml

100
g
T s -
@ S
£ a
50
g S
8 25

0
3 30 300 pg/ml

IC,, > 3000 ug/ml

15
1oof
g -+
qh)75’ ,—}-10;{;
£ 50 a
5
2 5 0
g 2
0

0
3 30 300 ug/ml

clearCa-17

IC,, > 3000 pg/ml 15
1001 1
S -
S 75 r 10 =
9] S
£ 50 a
5
2 5 &
g 25~
0 L‘J 0
3 30 300 Mg/ml

chromphi-3

IC50 > 3000 pg/ml

-15
100
75 "‘ 0 o
£ a
50
3
2 5 &
325 '
0 ﬁ—J—L‘JO

3 30 300 pg/ml

Figure 2 Effects of topotecan or bleomycin on apoptosis and proliferation.

Exposure to topotecan or bleomycin resulted in an increase of specific
apoptotic death (SAD) as well as a significant (P < 0.05) dose-dependent

reduction of cell number in all RCC cell lines (vertical bars indicate standard

deviations)

Anticancer drugs augment expression of CD95
receptors and ligands in human RCCs

As shown by RT-PCR (Figure 3) and flow cytometry (Figures 4
and 5), all RCC cell lines showed constitutive expression of CD95
receptor and ligand in standard culture medium.

Exposure to topotecan (g mt?) resulted in a time-dependent
increase in the expression of CD95 receptuatligand in three out
of four cell lines, as revealed by flow cytometry (Figures 4 and 5).
The maximum expression was observed 72 h after exposure to
topotecan and only minor differences in the extent of induction
became evident between these cell lines. In contrast, clearCa-17
cells showed only a weak increase of CD95 ligand expression and
no concomitant upregulation of CD95 receptor expression
(Figures 4 and 5), although this cell line had also responded with
an increase of apoptotic cell death.

Exposure to bleomycin (308 mi?) resulted in an augmenta-
tion of CD95-receptoand-ligand expression in all cell lines with
a maximal induction after 48 h (clearCa-3, -17, and chromphi-3)
or 72 h (clearCa-6) (Figures 4 and 5).

Anticancer drug-induced upregulation of CD95
receptor and ligand occurs in p53-mutated RCCs

Because p53 has been reported to be involved in the augmentation
of CD95 receptor expression in hepatocellular carcinomas after
exposure to anticancer agents (Muller et al, 1998), we additionally
defined the mutational status of p53 in our RCC cell lines.
Sequencing of p53 exons 5-8, which are the most commonly
affected hot-spot regions for p53 mutations in human cancer
(Harris and Hollstein, 1993; Reiter et al, 1993), revealed no
mutations in clearCa-3 and chromphi-3. In contrast, isolated point
mutations were found in clearCa-6 and clearCa-17 (Table 1).
Whereas clearCa-17 showed no (topotecan) or a weak
(bleomycin) increase of CD95 receptor expression, clearCa-6
responded with marked upregulation of CD95 receptor upon expo-
sure to both anticancer drugs despite p53 mutation. Moreover, upon
exposure to topotecan, clearCa-6 was still able to transcriptionally
activate the expression of p21 (Figure 6), known to be directly
regulated by p53 (El-Deiry et al, 1993; Waldman et al, 1995).

Anticancer drug-induced apoptosis is not mediated via
the CD95 pathway in human RCCs

The augmentation of CD95 receptor and/or ligand expression
observed in our RCC cell lines after treatment with topotecan or
bleomycin might suggest involvement of the CD95-system in
drug-induced cell death. To test this hypothesis, we competitively
inhibited the binding of CD95 ligand and hence CD95 receptor
activation either byantagonistic F(ab),-anti-APO-1 antibody

death in all RCC cell lines (Figure 2), the response being mogtagments or by 4H9 anti-CD95 ligand antibodies. If the apoptotic

pronounced in clearCa-6.

Induction of apoptosis was paralleled by a significBrt 0.05)
dose-dependent reduction of cell number, thg v@lues ranging
from 0.12ug mi! to 2.32ug mit for topotecan and from
430ug mktto more than 300QQg mi for bleomycin (Figure 2).

effects of anticancer drugs were actually mediated via the CD95-
system, simultaneous incubation of RCC cells with these anti-
bodies should block the effects of anticancer drugs.

The data obtained in these experiments are summarized in
Figure 7, showing that the reduction of cell number observed after

It is noteworthy that the effects of topotecan became evidergxposure to topotecan or bleomycin condd be blocked by anti-

already at clinically relevant concentrations (gglmt?) (Herben
et al, 1996), whereas the JGralues of bleomycin were at least

bodies directed against CD95 receptors or ligands in any cell line.
These observations clearly show the existence of a CD95-

100 times higher than the peak plasma concentration achievahiledependent pathway for the action of topotecan and bleomycin
during chemotherapy in vivo (Scheithauer et al, 1986).

British Journal of Cancer (2000) 82(11), 1851-1859
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topotecan bleomycin
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Figure 3  Constitutive expression of CD95 receptor and ligand. (A) Using
primers simultaneously amplifying the transcripts of transmembranous and
soluble CD95 receptor, RT-PCR demonstrated coexpression of both CD95

Cell number
0

receptor forms in all RCC cell lines with a predominance of the trans
membranous variant. (B) RT-PCR revealed CD95 ligand expression in all cell
lines (Concanavalin A-activated peripheral blood mononuclear cells (PBMC)
were used as positive control, NC = negative control)
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Figure 4 CD95 receptor expression after exposure to topotecan or
bleomycin. Exposure to topotecan (1 pg mi; thick line) or bleomycin

(300 pg mli; thick line) resulted in increase of CD95 receptor expression in
clearCa-3, -6, and chromphi-3 when compared with the control (medium

line). No increase of CD95 receptor expression was found in clearCa-17 after

exposure to topotecan (thin line = isotope control. Presented is the maximum
of CD95 receptor induction. Af describes the difference of mean fluorescence
intensities between drug-exposed tumour cells and the untreated control)
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Figure 5 CD95 ligand expression after exposure to topotecan or
bleomycin. Exposure to topotecan (1 pg mi; thick line) or bleomycin

(300 pg ml; thick line) resulted in increase of CD95 ligand expression

in all RCC cell lines when compared with the control (medium line) (thin
line = isotype control. Presented is the maximum of CD95 ligand induction.
Af describes the difference of mean fluorescence intensities between
drug-exposed tumor cells and the untreated control)

Essential components for CD95-mediated apoptosis
are present in human RCCs

Because the upregulation of CD95 receptor and ligand after expo-
sure to anticancer drugs was not followed by CD95-mediated cell
death, we hypothesized that the response to CD95 receptor activa
tion might seriously be disturbed in our RCC cell lines. To test this
hypothesis, we used tregonisticanti-CD95 antibody CH11 to
confront RCC cell lines with a uniform pro-apoptotic signal.

As shown in Table 2, CD95 receptor activation dgonistic
CH11 antibodies resulted in an increase of specific apoptotic death
(SAD) in all RCC cell lines of the clear cell type, which was
followed by a significant R < 0.05) reduction of cell number.
Differences between the extent of apoptotic response and reduc-
tion of cell number probably reflect differences in the onset
and kinetics of CD95-mediated apoptosis in our cell lines. After
pretreatment with IFNs which is known to increase CD95
receptor expression (Nonomura et al, 1996), CH11-triggered apop-
totic cell death was further augmented, as indicated by the increase
of SAD and the reduction of cell number (Table 2). In contrast,
chromphi-3 cells proved to be largely resistant against CD95

British Journal of Cancer (2000) 82(11), 1851-1859
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Table 1 p53 status of exons 5 to 8 determined by DNA sequencing

clearCa-6
Cell Wild-type (wt) and mutations (mt) of p53 time (h) 0 L 6 . 12 24 48 2
lines :
clearCa
3 wt
6 mt: exon 8, codon 290: CGC (Arg) to CAC (His)
17 mt: exon 6, codon 213: CGA (Arg) to CTA (Leu)
chromphi
3 wt

s

receptor activation by CH11 antibodies, even after {fiXetreat- ] - o ) i o
ment. In conclusion, the essential components for CD95-mediat<:)'(%‘g§ufe t;’;fg;é'?gr?Tlongnfliip,{‘?ri';Tnagf;t o iaocﬁgggteegfg'z/i\ﬁer
cell death were present and functionally intact in all RCC cell lineexpression in p53-mutated clearCa-6 cells, thereby suggesting functionally
of the clear cell type, but not in the chromophilic RCC cell |ine.intact_p53 despite mutat_ion. Hybridization with GAPDH demonstrated the

. . equality of RNA loaded in each lane
Nevertheless, the upregulation of CD95 receptor and ligand
induced by topotecan or bleomycin was not sufficient for an
effective activation of CD95-mediated apoptosis. function of the CD95 system in RCCs upon treatment with anti-

Moreover, we asked whether anticancer drug-induced upregul@&ancer drugs, therefore, could provide new insights into alternative
tion of CD95 receptor expression might be exploited for CD95-mechanisms of multidrug resistance in renal cancer and eventually
mediated apoptosis applying CH11 antibodies. To answer thifacilitate the design of novel therapeutic concepts.
question, clearCa-3 and chromphi-3 cells (which had been least The data presented here demonstrate that therapeutically rele-
responsive to CH11 antibodies as a single agent) were simultaneant concentrations of topotecan induced a marked, dose-depen-
ously exposed to both topotecanpy@d mi*) and CH11 (0.fug dent increase of apoptosis and a significBrit 0.05) reduction of
ml-Y) for 72 h. As shown in Figure 8, both cell lines respondedcell number in all our RCC cell lines. In accordance with previous
with a marked reduction of cell number. By fractional inhibition preclinical and clinical observations (Homma and Aso, 1994),
analysis, it could be demonstrated that the effects of CH11 andCC cell lines, however, proved to be largely resistant to
topotecan in combination were synergistic compared with eithelbleomycin, showing only a minor reduction of cell nhumber at
agent alone. clinically relevant dose levels @ pg mt?).

Response to topotecan was paralleled by a marked increase in
the expression of CD95 receptand ligand in three out of four
DISCUSSION RCC cell lines. It was interesting to note, however, that an almost
Ample evidence exists that anticancer drugs exert their effectsorresponding upregulation of CD95 receptor and ligand could be
through induction of apoptosis, irrespective of their primary intra-induced by bleomycin in all cell lines, although bleomycin had
cellular targets (Hickman, 1992). Only recently, CD95-triggeredshown far less pronounced effects on cell number when compared
apoptosis has been identified as a key mediator of chemotherafry topotecan. These findings are in line with previous reports on
in leukaemias and some solid tumour types (Friesen et al, 199énticancer drug-induced upregulation of CD95 receptor and ligand
Fulda et al, 1997; 1998; Mdiller et al, 1997). Vice versa, resistanc@ other tumour models (Friesen et al, 1996; Miiller et al, 1997,
to anticancer drugs in leukaemias was shown to be associated wkhlda et al, 1998). The upregulation of CD95 receptor and ligand
defects of the CD95-system (Friesen et al, 1997). Up to now, thepon treatment with anticancer drugs, therefore, is a common
pronounced resistance of human RCCs to chemotherapy haeaction pattern in a great variety of different human tumour types,
primarily been related to effective drug elimination by transportincluding RCCs.
proteins such as P-glycoprotein (Baldini, 1997; Mulders et al, However, the upregulation of CD95 receptor and ligand
1997) or to drug detoxification by the glutathione/glutathione-S-observed in our RCC cell lines did not yet prove the actual func-
transferase pathway (Mickisch et al, 1990). Investigations into théonality of the CD95 system in chemotherapy-induced apoptosis.

Table 2 Cell number and apoptotic response in RCC cell lines after exposure to CH11 (500 ng mI?) or IFN-y (100 U mI) or IFN-y (100 U mI*t) + CH11
(500 ng ml-*)

CH11 IFN-y IFN-y + CH11
Cell BAD cell number SAD cell number SAD cell number SAD
lines (%) (% of the control) (%) (% of the control) (%) (% of the control) (%)
clearCa
3 2.6 88+5 8.3 8l+4 3.3 42+2 10.3
6 21 40+ 4 32.1 79+10 35 18+1 48.9
17 17 62+3 8.4 88+6 1.2 11+1 *
chromphi
3 0.2 105+ 2 0 93+6 0.1 91+3 0.6

Abbreviations: BAD = basal apoptotic death; SAD = specific apoptotic death; * marked response with less than 10° cells per chamber left (cf. Materials and
methods)
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Figure 7 CD95-antagonistic F(ab)",-anti-APO-1 antibody fragments or
CD95 ligand-binding 4H9 antibodies did not inhibit topotecan- or bleomycin-
induced apoptosis. Combined exposure of F(ab)”-anti-APO-1 antibody
fragments (0.1 or 1 pg mi) or 4H9 antibodies (0.1 or 1 pg ml) with
topotecan (1 pg mli?) or bleomycin (300 pg mi?) did not inhibit reduction of
cell number when compared with the effects of topotecan or bleomycin as
single agents. Exposure to F(ab)’,-anti-APO-1 antibody fragments (1 pg ml™)
or 4H9 antibodies (1 ug ml) alone did not affect cell growth in any cell line.
CD95 receptor activation by agonistic CH11 antibodies (0.5 pg ml) resulted
in significant (P < 0.05) reduction of cell number in all RCC cell lines of the
clear cell type. F(ab)",-anti-APO-1 antibody fragments completely inhibited
the reduction of cell number induced by CD95-agonistic CH11 antibodies
(0.5 pg ml?) as exemplary shown in clearCa-6.

felold

I =CH11

@ = topotecan
O=CHI11+
topotecan

60

cell number (%)

clearCa-3

chromphi-3

Figure 8  Synergistic enhancement of CH11-induced apoptosis in clearCa-3
and chromphi-3 by topotecan. Both cell lines were cultured in the presence of
CH11 (0.5 pg mi™) or topotecan (1 pg mi) alone or in combination.

Therefore, we used F(abanti-APO-1 antibody fragments or 4H9
anti-CD95 ligand antibodies, which are both known to block the
binding of CD95 ligand to its receptor, thereby preventing signal
transduction via the CD95 system (Friesen et al, 1996; Fulda et al,
1997; 1998; Miiller et al, 1997; Nakajima et al, 1998). In these
experiments, the apoptosis induced by topotecan or bleomycin
could not be inhibited in any RCC cell line. Although not
explaining the underlying mechanisms, these results provide
convincing evidence that apoptosis induced by these anticancer
drugs is mediated via CD95-independent mechanisms in human
RCCs. The molecular effector pathways of chemotherapy-induced
apoptosis in RCCs, therefore, might differ from those in other
solid tumours like carcinomas of liver, colon, and lung, Ewing
sarcoma and neuroblastoma. In these tumour types, various anti-
cancer drugs including bleomycin have been shown to induce
apoptosis — at least in part — via the CD95-system (Fulda et al,
1997; 1998; Milller et al, 1997).

Little is known so far about the underlying mechanisms
prohibiting the activation of the CD95 system in RCCs despite
upregulation of CD95 receptor and ligand. However, our data
clearly demonstrate that the essential components of CD95-medi-
ated signal transduction are available and functionally intact in
three out of four RCC cell lines. Thus, we observed a marked
increase of apoptosis and a significa&(0.05) reduction of cell
number in all clear cell RCC cell lines upon CD95 receptor activa-
tion by agonisticanti-CD95 antibodies. Nevertheless, the levels of
anticancer drug-induced upregulation of CD95 receptor and ligand
were not sufficient for effective activation of CD95-mediated
apoptosis in these cell lines.
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