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The aim of the study was to investigate the intelligent recognition of radiomics based on the convolutional neural network (CNN)
in predicting endometrial cancer (EC). In this study, 158 patients with EC in hospital were selected as the research objects and
divided into a training group and a test group. All the patients underwent magnetic resonance imaging (MRI) before surgery.
Based on the CNN, the imaging model of EC prediction was constructed according to the characteristics. Besides, the com-
prehensive prediction model was established through the clinical information and imaging parameters. The results showed that
the area under the working characteristic curve (AUC) of the radiomics model and comprehensive prediction model was 0.897
and 0.913 in the training group, respectively. In addition, the AUC of the radiomics model was 0.889 in the test group and that of
the comprehensive prediction model was 0.897. The comprehensive prediction model was established through specific imaging
parameters and clinical pathological information, and its prediction performance was good, indicating that radiomics parameters

could be applied as noninvasive markers to predict EC.

1. Introduction

EC is a group of epithelial malignant tumors that occur in
the endometrium, the most frequent is adenocarcinoma
originating from the endometrial glands [1]. What is more,
EC often emerges in postmenopausal and perimenopausal
women. It is one of the most common tumors of the female
reproductive system, with nearly 200,000 new cases every
year [2]. Among the gynecological malignant tumors that
cause death, it ranks third after ovarian cancer and cervical
cancer. With the rapid development of social economy, the
incidence of EC is gradually increasing in China, and it is the
second place among malignant tumors [3]. At present, the
cause of EC is still unclear. Some scholars have pointed out
that its risk factors are related to fertility, hormones,
metabolism, and physiological behavior [4]. Endometrial
hyperplasia is the pathological change of the endometrium
before canceration and has the potential to deteriorate. The
morphology of atypical endometrial hyperplasia is similar to
that of EC, and it is difficult to distinguish in clinical di-
agnosis [5]. Based on the danger of endometrial hyperplasia

and the difficulty of clinical diagnosis, it is necessary to find a
method that can intelligently identify normal endometrial,
endometrial hyperplasia, and endometrial cancerous tissues.

The artificial neural network (ANN) is an artificial in-
telligence method that attempts to simulate the function of
the human brain [6]. The convolutional neural network
(CNN) is an artificial intelligence method that attempts to
simulate the function of the human brain [6]. Based on the
combination of biology and neurology, deep learning
technology is a kind of the deep network model with hi-
erarchical structure constructed by simulating the hierar-
chical working mode of the human brain visual system,
which is inspired by the field of the human brain visual nerve
[7]. What is more, the CNN is a derived ANN with the
characteristics of hierarchical structure, extracting features,
perceiving local areas, and classification due to a perfect
combination of the ANN and deep learning technology [8].
The task requirement of modern image recognition is that
the classification system can adapt to different kinds of
recognition requirements, and the CNN has become a hot
topic in the field of the ANN because of its high-efficiency
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recognition advantages. MRI is a medical imaging technique
applied in radiology, which employs the combined action of
a strong magnetic field, magnetic field gradients, and silent
electric waves to form images of human organs to analyze
the physiological processes or anatomy of the body image
[9]. The radiomics is the most widely applied in the on-
cology, which includes tumor classification, shunt staging,
and prognosis prediction. Ge et al. [10] combined the pa-
rameters of CT radiomics with clinicopathological charac-
teristics for investigation, established a preoperative
prediction model for EC, and verified the application value
of this model in clinical diagnosis.

In this study, radiomics based on CNN modeling was
adopted to intelligently identify the normal, hyperplastic,
and cancerous tissues of the endometrium, providing a new
method for clinical prediction of the emerging and devel-
opment of EC.

2. Materials and Methods

2.1. Research Objects. In this study, 158 patients with EC,
who underwent staged surgery in hospital from October 17,
2018, to May 21, 2020, were selected as the research objects
and divided into the training group and the test group (79
cases in each group), with an average age of 56.9 + 17.5 years.
The medical ethics committee of hospital had approved this
experiment, and each patient and his or her family members
had understood the situation of this experiment and signed
the informed consent form.

The criteria for inclusion were defined to include patients
who were diagnosed with EC after surgery, had no con-
traindications to MRI scanning, were younger than 70 years
old, and had clear consciousness for normal examination.

The criteria for exclusion were defined to include pa-
tients who suffered from mental disorders, had other ma-
lignant tumors such as cervical cancer, had incomplete
clinical data, withdrew from this experiment due to their
own reasons, and had poor MRI image quality for difficult
recognition of the lesion.

2.2. Research Methods for Intelligent Recognition of Endo-
metrial Cancer. Each patient underwent sagittal T1- and T2-
weighted images of pelvic enhanced MRI before surgery. The
CNN model was constructed, the imaging model for EC
prediction was screened out based on features, and the
comprehensive prediction model for EC was established
based on clinical pathological information and imaging
parameters. The patient’s region of interest (ROI) was
drawn, and the AUC, sensitivity, specificity, and accuracy
were applied to evaluate the diagnostic effect of the con-
structed model, and its effect was verified in patients of the
test group.

2.3. Dynamic Enhancement Magnetic Resonance Scanning.
In this study, the MR Prisma 3.0 magnetic resonance in-
strument produced by Siemens, Germany, was employed to
examine the patients. Before the scanning, the examination
procedure should be described in detail to the patients. They
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should be in the supine position and maintain steady
breathing. After MRI scanning, a high-pressure syringe was
adopted to inject a 0.2mmol/L contrast enhancer gadoli-
nium-diethylenetriamine pentaacetic acid (Gd-DTPA)
through the back of the hand vein at an injection rate of
2.5mlL/s. Then, the same amount of normal saline was in-
jected. The scanning parameters were as follows. The matrix
was 251 x 251, the layer thickness was 3.5 mm, the field of
view was 25 x 25cm, the flip angle was 15°, and the layer
spacing was 6.1mm. The obtained dynamic enhanced
magnetic resonance images were sent to the workstation,
and the images were processed by Functool II software.

2.4. Steps of the Back-Propagation Algorithm. Under the
principle of gradient descent, the back-propagation (BP)
algorithm searched for the minimum value on the error
surface. The iterative process of each BP was divided into two
steps. The first step was that an output result was generated
during propagation before inputting the data. The second
step was that the corresponding weights in the network were
adjusted by back propagation to compute errors. The
teedforward process and BP process were alternated, and the
error was less than the set value or the time of iterations that
reaches a set value unless the output result of the network
reached a preset condition. For the multicategory classifi-
cation problem with B categories and M training examples,
the error function is
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In equation (1) Py’ represents the target value corre-
sponding to the k™ dimension in the m™ sample, and q,i1
stood for the network output value corresponding to k'
dimension in the m™ input. The error of the whole dataset
was the sum of all single data errors. The BP of a single
sample could be expressed as the following equation.
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In equation (2), p{" expresses the target value corre-
sponding to the k™ dimension in the m™ sample, and q,\h
stood for the network output value corresponding to k'
dimension in the m™ input. For a normal full connection
layer, the partial derivative of F relative to corresponding
network weight could be calculated by the following form of
the back-propagation rule. The output equation of the input
layer is as follows.

x" = g(v) thereintov" = W'x"" " + . (3)

In equation (3), r represents the current layer, the output
layer was defined as the R layer, and the input layer was
specified as the 1*" layer.

The basic idea of the gradient learning algorithm was to
find the error, calculate the partial derivative of parameters
in the CNN, and identify the “error” in the BP network as the
error signal of each unit pair’s deviation. Besides, the
equation could be as follows.
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In equation (4), (OF/0c) represents the partial derivative
of the error with respect to the network parameter, and
(0v/0c) was equal to 1. Therefore, the error signal was equal
to the error relative to all the input partial derivatives of a
unit. For R layer of the input layer, the partial derivative
equation is obtained as follows.

(SR — gl(vR) o (qm _ Pm) (5)

In equation (5), R represents the input layer, and “o”

expresses the point-by-point product. The partial derivative

8" was back-propagated from the upper layer through the
network, and its equation could be shown as follows.

61’ — (wr+1)T8r+1 o gl (Vr). (6)

In equation (6), 0" represents the partial derivative, and
“o” expresses the point-by-point product. Finally, the rule of
the weight of a certain neuron for updating was that the
neuron was input and multiplied by its triangular array. It
was represented by a vector, which was the outer product of
the input vector and the error signal vector, as shown in the

following equations.
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Corresponding to the deviation ¢ of equation (4), each
weight W;; usually had a corresponding ¢&;; in practical
applications.

2.5. Structure of the Convolutional Neural Network Model.
The network structure of LeNet-5 was adopted in this study,
and the input data were a matrix formed by 32 x 32 pixels.
The first feature image layer included 6 feature maps, and a
5 x 5 window was applied to convolve the input image, so as
to obtain a 28 x 28 feature map. Then, it entered the first
downsampling layer, and the first feature image layer was for
downsampling operations to obtain 6 feature maps with a
size of 14 x 14. The C3 layer was a convolutional layer, and
the size of its convolution kernel was 5 x5, which was the
same as that of the C1 layer. It entered the S4 layer to
continue the downsampling operation. The S4 layer was for
convolutional operation by the C5 layer, and a fully con-
nected method was adopted to perform convolution oper-
ations on the convolution kernel of each C5 layer on the
basis of the S4 feature map. The C5 layer included 120
feature maps with a size of 1 x 1, and finally, the process of
feature extraction was ended. Then, the result of 1 x 10 result
was eventually output through a fully connected network on
the basis of the C5 layer. In the vector whose output was
1 x 10, the classification result output by the network was the
position corresponding to the largest component (Figure 1).

2.6. Data Preprocessing and the Convolutional Neural
Network Model. In order to accelerate the convergence
speed of the training algorithm, data preprocessing tech-
niques were often adopted, including noise removal,
dimensionality reduction of input data, and deletion of
irrelevant data. Balanced data were very crucial in classifi-
cation, and it was often considered that the data in the
training set should be approximately evenly distributed
relative to the label category. In order to balance the dataset,
some redundant classification data should be appropriately
removed, and some classification data with rare examples
should be supplemented as much as possible.

CNN applied the structure that was the same as that of
LeNet-5, but the following modifications had to be made.
First, the tanh function should be employed to the output
values of all layers in the network in LeNet-5, including the
output layer results in the interval [0, 1], and the activation
function applied in the CNN was the sigmoid function.
Second, the radial basis function network structure was
adopted in LeNet-5, and the CNN output layer was con-
nected with the C5 layer to omit the F6 layer, so as to employ
the fully connected method. Third, LeNet-5 applied a special
learning rate sequence, and the learning rate during CNN
training was fixed at 0.002. Fourth, the input data size of
LeNet-5 was 28 x 28, while the CNN adopted the border
filling method to expand the size to 32 x 32.

2.7. Technical Process of Radiomics. There was the technical
process of radiomics, including 4 steps. The first step was to
acquire images. Up to now, the images applied in radiomics
research included MRI, computed tomography (CT), pos-
itron emission tomography (PET), and ultrasound. The
second step was the image segmentation. The ROI or focus
was sketched to prepare for the next feature extraction. The
frequently applied segmentation methods included auto-
matic, manual, and semiautomatic segmentation. The third
step was to extract the image features. The extraction of
image features was one of the critical steps of radiomics,
which was to extract image features from the segmented ROI
with high throughput to achieve the transition from image to
quantitative data. At present, image extraction features
contained morphological features and nonmorphological
features. Morphological features described the shape, size,
and location of lesions through traditional imaging methods.
In addition, nonmorphological features included first-order,
second-order, and high-order features. First-order features
described the statistical distribution of each voxel, such as
statistical features (mean, median, and skewness) generated
through histograms; second-order features were texture
features that described the relationship between voxels and
reflect tumor abnormalities; and high-order features in-
cluded wavelet features and fractal analysis. The fourth step
was to analyze data and build models. The extracted image
features were combined with statistics, pathological features,
clinical data, and other information to construct an imaging
prediction model that was suitable for clinical application.
The specific radiomics flowchart is shown in Figure 2.
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Figure 1: The structure of the CNN model.
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FIGURE 2: Technical process of radiomics.

2.8. Statistical Methods. The data processing of this study
was analyzed by SPSS19.0 version statistical software. The
measurement data conforming to the normal distribution
were expressed by the mean + standard deviation (x + s), and
the nonconforming measurement data were represented by
frequency (%). The accuracy, sensitivity, and specificity were
collected in the prediction of the radiomics model and the
comprehensive prediction model. P < 0.05 revealed that the
difference was statistically obvious.

3. Results

3.1. Feature Distribution of all Patients. The patients were
grouped into the training group and the test group, so as to
investigate the feature distribution of patients in the two
groups. There was no statistical difference in the feature
distribution among patients in the two groups. Figure 3
shows the comparison results of high-risk and low-risk data
of preoperative biopsy pathology among patients in both
groups. Moreover, there were comparisons on the normal
and rising levels of CA125 in serums among patients in the
two groups (Figure 4).

3.2. Imaging Features of Endometrial Cancer. The MRI im-
aging manifestations of each stage of EC were best shown on
sagittal T2WI, which could clearly reflect the anatomical

0
High risk low risk

B Training group
72 Test group

FIGURE 3: Pathological comparison of preoperative biopsy among
patients in the test and training groups.

structure of the uterus. The typical manifestations were as
follows. The endometrium was widened, the endometrial
cavity was expanded, there were medium or low signal areas
mixed with nodules in the high signal endometrial cavity,
and larger masses presented different signal intensities due
to necrosis, bleeding, and other reasons.

Endometrial hyperplasia was manifested as diffuse le-
sions in the uterine cavity, the endometrial was uniform and
extensively thickened, diffusion weighted imaging (DWI)
showed slightly high signal, and the endometrial thickening
was limited and asymmetric (Figure 5). Endometrial polyps
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FIGURE 4: Comparison of CA125 levels in serums from patients.

appeared as nodules or masses in the uterine cavity, showing
a woven mesh-like uneven high signal on T2WI, and DWI
indicated a slightly high signal (Figure 6). The T2WI of
submucosal fibroids was like circular low signal, or nodules
or tumors were dominated by low signal, and the sur-
rounding boundary was light. If uterine bleeding was caused
in the early stage, the surrounding boundary of the tumor
would be unclear (Figure 7).

3.3. Experimental Results of the Convolutional Neural
Network in Dataset. The network structure of the CNN was
similar to that of LeNet-5. The main difference was that the
CNN did not adopt some of the previous parameters in
LeNet-5 and applied a fully connected network in the final
classifier part. The misclassification rate curve of the CNN in
the training process is shown in Figure 8. The abscissa stood
for the times of iterations, and the ordinate represented the
misclassification rate. The test misclassification rate after the
CNN convergence was higher than that of LeNet-5, and the
CNN test misclassification rate and training misclassifica-
tion rate were higher than those of LeNet-5 during the entire
training process.

3.4. Predictive Efficacy of the Radiomics Model. The predic-
tion efficacy of the radiomics model of patients in the two
groups was compared, including the accuracy, sensitivity,
and specificity of patients from the two groups in predicting
EC before surgery. It was found that the accuracy and
specificity of patients in the two groups were not large, and
the difference was not statistically obvious (p>0.05). In
addition, the sensitivity of patients in the training group was
sharply lower than that of the test group, and there was a
statistically great difference (p <0.05) (Figure 9).

3.5. Predictive Efficacy of the Comprehensive Predictive Model.
There were comparisons on the prediction efficacy of the
comprehensive prediction model of patients in both groups,
including the accuracy, sensitivity, and specificity of patients
in the test group and training group in predicting EC before
surgery. As shown in Figure 10, the accuracy and specificity
of patients in the two groups were not marked, with no
statistically huge difference (p >0.05), while the sensitivity

18cm

FIGURE 6: The image of endometrial polyps.

of patients in the training group was dramatically higher
than that of the test group, and the difference was statistically
substantial (p <0.05).

3.6. Comparison on the Area under the Working Characteristic
Curve of the Radiomics Model and Comprehensive Prediction
Model. The AUC of the radiomics model was 0.897 in the



FIGURE 7: The image of endometrial tissue submucosal fibroids.
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Figure 9: Comparison on prediction efficiency of the radiomics
model. (Note: *The difference was statistically substantial in
contrast to the sensitivity of the training group (p <0.05).).
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Figure 10: Comparison on prediction efficiency of the compre-
hensive prediction model. (Note: * A statistically great difference in
contrast to the sensitivity of the training group (p <0.05).).

training group and that of the comprehensive prediction
model was 0.913 in the training group. It indicated that the
two models constructed in this study had good prediction
performance, and the effect of the comprehensive prediction
model was better than that of the radiomic model. The AUC
of the radiomics model and comprehensive prediction
model in the test group was 0.889 and 0.897 in turn, which
was similar to the above results. Therefore, it revealed that
both models had great predictive performance, which again
verified that the effect of the comprehensive prediction
model was superior to the radiomics model (Figures 11
and 12).

4. Discussion

The etiology of EC has not been clear up to now. Metin et al.
[11] employed the radiomics to establish a preoperative
predictive model of EC. The radiomics preoperative pre-
diction research also had been reported in the early cervical
cancer [12] and bladder cancer [13]; the radiomics models of
these research were the images based on different sequences
of CT or MRI. Moreover, some other clinical pathological
information was integrated. They could achieve the ideal
prediction, which was consistent with the results of this
study. The comprehensive prediction model was constructed
in this study by combining specific imaging parameters with
clinical pathological information. The results showed that
the prediction performance was great and confirmed in the
test group, indicating that the imaging parameters could be
used as noninvasive markers for the prediction of EC.

In the research of EC, Takagi et al. [14] evaluated EC
through the prediction model based on PET. It was found
that PET was not suitable for routine examination of EC.
Xuet al. [15] analyzed the single texture features of EC based
on the MRI model, without complete radiomics analysis and
independent risk factor validation. In this study, EC was for
the complete MRI radiomics analysis under the CNN-based
BP algorithm. From the results, the established model could
achieve good specificity and sensitivity, which was superior
to the above two models.

In this study, the diagnostic efficacy of the compre-
hensive predictive model in the training group and the test
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group was higher than that of the radiomics model, indi-
cating that the diagnosis of disease required the compre-
hensive evaluation of clinical pathological features,
pathological information, and various data of the radiomics.
On the basis of the development of the CNN and the famous
LeNet-5, a simple neural network model was constructed
and applied to the identification of EC. The experimental
results revealed that the simplified structure of the CNN
could also achieve a better classification identification rate.

5. Conclusion

The enhanced MRI imaging analysis was for preoperative
pelvic cavity in patients with EC based on radiomics of the
CNN, the CNN model of preoperative EC was constructed,
and the imaging specific parameters were combined with the
clinical pathological information to establish the compre-
hensive prediction model. The results indicated that the
prediction performance of the above models was good and
verified in the test group, suggesting that the model con-
structed in this study could be applied in clinical practice.
The limitations of this study were that all subjects came from
the same hospital, MRI images were all from the same in-
strument, and the number of samples was also limited.
Furthermore, the production of cancer markers was not
taken into account during the research, so further investi-
gation was needed. To sum up, the CNN model constructed
in this study could be adopted to the clinical prediction and
diagnosis of EC by radiomics analysis.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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