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Abstract: A miniaturized horizontal polarized high frequency transmitting LPDA is presented. In use
of the dipole transformation and antenna coefficient optimization methods, a 65% reduction in the
size was achieved with the electrical performance kept in a competitive level. Full-wave simulation
results showed a stable directional pattern and lower VSWR over the impedance bandwidth of 2
to 30 MHz. The gain bandwidth can reach the range of 4–30 MHz, meanwhile, there is only minor
degradation on gain in frequencies under 4 MHz.

Keywords: antenna miniaturization; high frequency; transmitting antenna

1. Introduction

To meet the increasing demand for miniaturized antenna, researchers developed
all sorts of miniaturization technologies. These techniques have reduced the size of the
antenna to some extent [1–3]. However, not all the technologies were appropriate for
high frequency (HF) antennas. Most of the HF antennas were too large to apply the
techniques, such as magneto-dielectric ferrite materials [4], as well as having a complicated
structural approach [5–7]. Researchers in this field tend to seek more economical and
practical methods to reduce the HF antennas’ size. Structural transformation [8–10] and
wideband loading technology [11] were effective approaches in recent years. A helical
structure was proved to be valid for antenna miniaturization in the literature [12,13]; the
helical form can reduce the antenna size to some extent. However, the drawbacks of lower
gain and limited communication range restrict its use fields. Besides, the complicated
helical structure is harder to create than a simulation. Machining accuracy has great
influence on the electrical performance. To broaden the structural bandwidth, some helical
antennas with a complex network for a sectional match can only be applied in the receiving
system. Characteristic theory was applied to the platform-mounted HF antenna design and
miniaturization [14–17]. Limited by its operating environments, the whole HF band cannot
be covered by this kind of antenna. Beside this, authors in [18] proposed a wire duoconical
monopole antenna design that had a bandwidth of 7.5–25 MHz. The gain was above 0.2 dBi.
The bandwidth had not covered the lower frequencies in the HF band and a higher gain
would be more appropriate for wake signal receiving. According to the ITU P.372-14 [19],
most of the noises in the HF band are vertically polarized, so that the monopole form
is an adverse condition in HF band communication. Owing to their constant radiation
characteristics over broad bandwidth, a Log-Periodic Dipole Antenna (LPDA) was widely
used in the HF band. Meanwhile, when the LPDA needed to cover the entire short wave
frequency band (2–30 MHz), the antenna size usually had to be designed very large to fit
the lower frequency requirement. This disadvantage enhanced the construction difficulty
and increased the floor space. Miniaturization became an important issue for LPDA in
modern-day HF communication.

There has been some research on HF LPDA miniaturization in recent years. In use of
antenna structure transformation, authors in [20] presented a miniaturized invert-V LPDA
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design worked in 6–30 MHz. Its bandwidth was still not broad enough, though the minia-
turized antenna has a good performance in 6–30 MHz. Applying to the same miniaturize
principle as [20], the American TCI corporation produced one type of horizontal polarized
HF LPDA with a bandwidth of 2–30 MHz, TCI-530 [21]. As is illustrated in Figure 1, it was
32 m high and 70 m wide.

In this paper, a novel miniaturized design of LPDA was proposed, which was inspired
by the antenna that was shown in Figure 1. A 65% reduction in the size was achieved
without any obvious impedance change over the operation frequency range of 2–30 MHz.
The gain characteristics were maintained on a good level over 4–30 MHz. The antenna
could be employed in both of the receiving and transmitting systems. In transmitting
systems, it has a 5 kW power endurance capability. As a deformation form of the regular
LPDA, our proposal has a similar pattern feature. The patterns kept constant over the entire
bandwidth and the maximum 3 dB radiation angle on the vertical plane was nearly 30–60◦;
combined with the characteristics of ionosphere and the information channel, the antenna
has a communication range of 0–500 km that can be utilized in navigation, broadcast, signal
monitoring, etc.

A comprehensive comparison of our proposal and other antennas that work in the
HF band is demonstrated in Table 1. Compared with the antennas proposed in the litera-
ture [12–18], our design has a broader impedance bandwidth that covers nearly the entire
HF band (2–30 MHz). The radiation patterns are preferable to others for their stability. The
horizontal polarization and transmit–receive usability ensured wider application of our
proposal. Amongst the antennas presented in recent literatures, our proposal and TCI 530
have a broader bandwidth and more stable performance over the whole operation band for
their frequency independent structure. Other smaller antennas had a narrower bandwidth
and lower gain when the total sizes were reduced.

Table 1. Comparison of our proposal and the other antennas.

Item Our Proposal TCI 530 Duoconical Monopole Invert-V LPDA

Dimension 29 m × 24 m 72 m × 32 m 20 m × 6 m 30 m × 19.8 m
Impedance Bandwidth 2–30 MHz 2–30 MHz 7.5–25 MHz 6–30 MHz

Gain 5–7 dBi (over 4 MHz) 4–7 dBi 0.2 dBi 2–8 dBi
VSWR ≤2.5 ≤2.5 ≤3.0 ≤2.5
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In this paper, a novel miniaturized LPDA design employing the combination method
of element deformation and coefficient variation was presented. The proposal effectively
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reduced the antenna size without drawbacks on its performance. The rest of this paper is
arranged as follows: in Section 2 we presented the miniaturization design and optimization.
Simulation and verification were shown in Section 3. Finally, we draw conclusions in
Section 4.

2. Miniaturization Design and Optimization

Compared with the conventional full range HF horizontal polarized LPDA that was
over 100 m long, the antenna showed in Figure 1 had been miniaturized by its invert-V
structure that reduced the horizontal occupation area. It is a known fact that the entire
size of a full range HF LPDA is mostly defined by its lower frequency dipole elements.
As shown in Figure 1, the longest dipole element defined the height and width of the
antenna. To make the antenna’s structure sustainable and wind-resistant, the structural
items such as stay wires and tail wires must be connected to the antenna and the support
tower accordingly. This made the antenna appear even larger. Hence the miniaturization
procedure should be carried out in two aspects: electrical and structural.

2.1. Electrical Miniaturization and Antenna Design

In the antenna theory of LPDA, the cutoff frequencies of the truncated structure can be
determined by the electrical lengths of the elements’ structure [3]. Different dipoles were
corresponding to different operation frequencies. The longest dipoles were responding to
the lower frequencies. Therefore, we can reduce the LPDA size by transformation of the
longest dipole, inspired by methods presented in [3,5,22,23], where the shape of the longest
dipole was changed and loaded with networks. Herein the longest dipole elements were
changed from a single wire into three wires and a loaded network in our approach. The
external form and the network is shown in Figure 2; these three wires were in a same plane
and half of the transformed dipole was 17 m long; the diameter of the wire was 6 mm,
the width of the three wire plane dipole was 1.5 m. The network consisted of a series of
inductors and a capacitor with their detailed value showed in Figure 2. It was parallel
connected with the assembly line and mainly operated in 2–4 MHz. Moreover, due to the
attenuation involved by the network, there was degradation of efficiencies in 2–4 MHz;
consequently, the gain bandwidth can only reach 4–30 MHz.

However, only modification on the longest dipole cannot reduce the antenna size to
an ideal level. Therefore the method of variable coefficients was applied in our proposal
to achieve further miniaturization. The LPDA coefficients σ and τ had been optimized
according to the antenna theory. Here σ is the spacing factor and τ is the proportionality
factor. The basic coefficients τ σ and their relationships were determined by (1) [24]. As is
shown in Figure 3, R is the dipole spacing and l the length. Typical method of Carrel was
used for reference in the design procedure [24]. The procedure can be divided into five
steps as is shown below.

(1) Given D0 (dB), determine σ and τ from figure of computed contours of constant
directivity versus σ and τ for log-periodic dipole arrays in [24]. Here the given gain
D0 was set as 5 dB and σ = 0.05, τ = 0.84;

(2) Determine the active region bandwidth Bar and designed bandwidth Bs by formula
(2). The desired bandwidth was 4–30 MHz;

(3) Find the total length of the structure L and the number of elements N in use of (3);
(4) Determine the average characteristic impedance of the elements Za and the character-

istic impedance of the feeder line Z0;
(5) Optimize σ and τ with the assistant of full-wave simulation software FEKO.

The main coefficients were determined as follows: σ = 0.05, τ = 0.84 and the number of
dipole elements were 16. A LPDA with varying factors of σ and τ for each dipole elements
would have miniaturized size and competitive electrical performance compared with the
conventional antenna [25]. Coefficients of each element were optimized in consideration
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of the size and the electrical performance with the assistance of the full-wave simulation
software EMSS FEKO by a sort of simulation loop.

τ =
Rn

Rn+1
,σ =

Rn+1−Rn

2ln+1
, α = tan−1

[
1 − τ

4σ

]
(1)

Bar = 1.1 + 7.7(1 − τ)2cosα, Bs = τ1−N (2)

L =
λmax

4

(
1 − 1

Bs

)
cotα, N = 1 +

ln(Bs)

ln
(

1
τ

) (3)

Besides, the included angles, θ between the two arms of each dipole in the LPDA will
affect the electrical performance and the size. The best value of each angle should balance
both of the electrical and structural needs. The full-wave simulation software EMSS FEKO
was applied to simulate and optimize our design. The optimized parameters are given in
Table 2. Besides the deformed longest element, the antenna consisted of 16 pairs of dipoles
and a set of assembly lines. The output impedance was 200 Ω so that a 4:1 impedance
balun was fitted to the feed point. Designed antenna coefficients are given in Table 2. The
total length L of the antenna was 21.15 m; the shortest dipole was 3.8 m. The diameter of
the dipoles was 6 and 8 mm for the assembly line.
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Table 2. Coefficients of the designed LPDA.

Dipole Number Σ τ Θ (◦)

1 0.050 0.86 93
2 0.051 0.86 102
3 0.053 0.86 104
4 0.054 0.86 110
5 0.055 0.86 112
6 0.057 0.87 116
7 0.058 0.87 118
8 0.059 0.87 123
9 0.060 0.87 130
10 0.060 0.87 135
11 0.060 0.88 140
12 0.060 0.88 145
13 0.061 0.88 155
14 0.061 0.88 163
15 0.062 0.88 175
16 0.062 0.88 180



Sensors 2021, 21, 6034 5 of 11Sensors 2021, 21, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 3. The log-periodic dipole array. 

2.2. Structural Miniaturization 
The obvious difference between the HF antennas and other antennas that work in a 

higher frequency happens to the gigantic structure. Most of the HF antennas need sup-
porting items or stay wires to obtain their electrical size and resist the strong wind in the 
outdoor circumstance. The proposal of our designed LPDA is shown in Figure 4; through 
comparisons of Figures 1 and 4, one can discover that the necessary structural compo-
nents take a considerable part of the entire antenna size. Therefore, the occupational size 
could be miniaturized if we adopt a smaller but sustainable structure. 

In our proposal, the tail wires on both sides of the antenna were substituted for a 
pair of insulating bar with stay wires. As is illustrated in Figure 4, the antenna height was 
miniaturized from 32 m to less than 24 m; the horizontal size was shrunk from 72 to 24 m. 
Even the horizontal projection was a part no longer than 30 m. Finally, the total front size 
of the antenna was reduced by 65%. 

  

Figure 3. The log-periodic dipole array.

2.2. Structural Miniaturization

The obvious difference between the HF antennas and other antennas that work in
a higher frequency happens to the gigantic structure. Most of the HF antennas need
supporting items or stay wires to obtain their electrical size and resist the strong wind
in the outdoor circumstance. The proposal of our designed LPDA is shown in Figure 4;
through comparisons of Figures 1 and 4, one can discover that the necessary structural
components take a considerable part of the entire antenna size. Therefore, the occupational
size could be miniaturized if we adopt a smaller but sustainable structure.

In our proposal, the tail wires on both sides of the antenna were substituted for a
pair of insulating bar with stay wires. As is illustrated in Figure 4, the antenna height was
miniaturized from 32 m to less than 24 m; the horizontal size was shrunk from 72 to 24 m.
Even the horizontal projection was a part no longer than 30 m. Finally, the total front size
of the antenna was reduced by 65%.
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3. Simulation and Verification

With the aid of EMSS FEKO, a full-wave electromagnetic simulation was carried out
to evaluate the performance of our proposal and the former antenna. As can be observed
in Figure 5, 524 metallic wire segments were used to create the model’s electrical structure.
Exact Sommerfeld integrals were utilized to calculate the ground influence. Ground
coefficients were set at a relative permittivity of εr =15 and a conductivity of σ = 0.01.
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3.1. VSWR Results

It is known as a fact that when the voltage standing wave ratio (VSWR) equals to
three, only 25% of the power will be lost. Hence 2.5 was commonly set as an acceptable
value for the VSWR of HF antenna. The comparison of simulated VSWR of our proposal
and the former antenna was shown in Figure 6. The results indicated that the VSWR of
the miniaturized antenna has similar values that are lower than 2.6. Most of the VSWR
were close to 2.2 or lower. Our proposal had a good VSWR performance over the broad
bandwidth. This indicates that the antenna is appropriate for transmitting.
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3.2. Simulated Pattern

The simulated 3D pattern is shown in Figure 7; it can be seen that miniaturization
has not caused variations in patterns. The comparison of normalized directivity patterns
of the former antenna and the miniaturized one is shown in Figure 8. There have been
no significant changes in patterns of the miniaturized antenna in the entire bandwidth.
The stability of the radiation pattern was proved by the simulation. The radiation angle
indicates that our proposal was propitious for short and middle range communication.
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3.3. Simulated Gain

As is shown in Figure 9, the simulated gain of our proposed LPDA has a similar value
in comparison with the former antenna in operation frequency range over 4 MHz. Being
affected by the added network on the longest dipole, the antenna efficiency was decreased
in frequencies under 4 MHz; as a result, the gain was consequently decreased in the same
frequency.

It can be observed from Figure 6 that the miniaturized antenna had a similar electrical
performance in comparison to the former one. Besides, a comparison of our proposal and
the former antenna was listed in Table 3 as follows. Most of the conventional HF antennas
that work in the same bandwidth range from 2 to 30 MHz cannot achieve the same level of
electrical performance.
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Figure 9. Simulated gain.

Table 3. Comparison of our proposal and the former antenna.

Item Our Proposal Former Antenna

Dimension 29 × 24 m 72 × 32 m
Impedance Bandwidth 2–30 MHz 2–30 MHz

Gain 5–7 dBi (over 4 MHz) 4–7 dBi
VSWR ≤2.5 ≤2.5

Maximum Radiation Angle
2 MHz 0◦ 0◦

15 MHz 60◦ 57◦

30 MHz 50◦ 48◦

3 dB Lobe Width (Horizontal plane)
2 MHz 102◦ 107◦

15 MHz 86◦ 80◦

30 MHz 83◦ 79◦

3.4. Verification

Photographs of fabricated antennas are shown in Figure 10. The practical VSWR
was measured and the comparison with the simulation was shown in Figure 11. Power
endurance capacity was also tested and proved by an experiment. A set of 7/8” coaxial
cables and a 5 kW transmitter were used to test the power endurance of the miniaturized
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antenna. Three frequencies were operated during the experiment procedure, which were
5.5, 15.4, and 25.5 MHz. Each operating frequency had been worked for one hour with the
carrier wave type of CW (continuous wave) on maximum power output. The antenna had
a stable performance during the power endurance test.
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Figure 11. Tested VSWR and simulated VSWR.

4. Conclusions

A miniaturized transmitting LPDA design based on the combination of loading and
varying parameters was presented and optimized in this paper. The operating frequency
range was 2–30 MHz. The optimization of the support structure obtained further miniatur-
ization. Compared with the antenna in the same style, the optimized antenna was expected
to have similar VSWR and gain with the conventional LPDA while its size was minia-
turized by 65%, and the gain and pattern were verified by simulation. The antenna was
fabricated and the VSWR was tested. Besides, the performance of 2~4 MHz can be further
optimized, considering the available designs present in the literature; more complicated
dipole forms such as helixes and more effective match networks for lower frequencies will
be studied in the subsequent work.
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