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Disentangling dyskinesia from parkinsonism 
in motor structures of patients with 
schizophrenia

Katrin Sakreida,1 Wei-Hua Chiu,2 Juergen Dukart,3,4 Simon B. Eickhoff,3,4 

Thomas Frodl,1 Christian Gaser,5,6 Michael Landgrebe,7 Berthold Langguth,8 

Daniela Mirlach,8 Ioana-Sabina Rautu,9 Markus Wittmann10 and Timm B. Poeppl1,8

Patients with schizophrenia frequently suffer from motor abnormalities, but underlying alterations in neuroarchitecture remain un
clear. Here, we aimed to disentangle dyskinesia from parkinsonism in motor structures of patients with schizophrenia and to assess 
associated molecular architecture. We measured grey matter of motor regions and correlated volumetric estimates with dyskinesia and 
parkinsonism severity. Associations with molecular architecture were identified by cross-modal spatial correlations between ensuing 
maps of abnormality-related volume alterations and neurotransmitter maps from healthy populations. Both phenomena were linked 
to (specific) striatal and basal forebrain reductions as well as to D1 receptor density. Dyskinesia also manifested in cerebellar decrease, 
while parkinsonism was associated with less motor cortex volume. The parkinsonism-related brain pattern was additionally asso
ciated with 5-HT1A/2A and µ-opioid receptors distribution. Findings suggest the need to develop psychopharmacological compounds 
that display not only selectivity for receptor subtypes but also anatomical selectivity for alleviating dyskinesia without worsening par
kinsonism and vice versa.
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Introduction
Patients with schizophrenia frequently suffer from motor ab
normalities including hyper- and hypokinetic syndromes 
such as dyskinesia and parkinsonism. Both dyskinesia and 
parkinsonism represent common side effects of antipsychotic 
treatment in at least 25% of patients.1–3 They also occur in 
medication-naïve patients with comparable prevalence 
rates.4,5 Moreover, significantly increased prevalence rates 
even in unaffected first-degree relatives of patients with 
schizophrenia suggest that abnormalities in neural motor 
pathways are not only associated with schizophrenia itself 
but also subject to genetic susceptibility.6

The first magnetic resonance imaging (MRI) study in 
medicated schizophrenia patients with and without dyskin
esia indicated decreased volumes of the caudate nuclei but 
not of other basal ganglia structures.7 However, subsequent 
studies investigating chronic patients with schizophrenia 
could not replicate this finding and suggested opposite effects 
in other basal ganglia regions, i.e. increased size of the lenti
form nucleus.8,9 Similarly, reported striatal abnormalities as
sociated with parkinsonism were initially not replicated.8,10

A review of the literature concluded that brain alterations re
lated to dyskinesia and parkinsonism in schizophrenia still 
remain inconclusive.11 However, previous literature suggests 
that (differential) alterations are not limited to subcortical 
motor structures (i.e. basal ganglia and cerebellum) but 
also concern cortical motor structures.1 Despite co- 
occurrence of both motor phenomena in the course of the 
schizophrenic disease process,5 dyskinesia and parkinsonism 
were mostly investigated in different samples and with varied 
neuroanatomical focus, limiting interpretation with respect 
to the specificity of the findings. Animal models suggest 

that dyskinetic and parkinsonian states are based on diamet
ric pathophysiology, which is mediated by imbalance of the 
neurotransmitter dopamine in striatal pathways.12

However, it remains largely unknown how putative neuro
anatomical alterations associated with dyskinesia and par
kinsonism relate to neurotransmitter systems.

We hypothesized that dyskinesia and parkinsonism in 
schizophrenia are associated with specific alterations in both 
cortical and subcortical motor structures. Moreover, we con
jectured that the corresponding patterns of alterations relate 
to the dopaminergic system but also to specific distribution 
of other receptors. Here, we used automated region-based 
morphometry of anatomical MRI data to disentangle dyskin
esia from parkinsonism in motor structures of patients with 
schizophrenia. To assess their molecular underpinnings, the 
identified patterns of grey matter volume alterations were spa
tially correlated with density maps of 11 receptors/transpor
ters covering various neurotransmitter systems as derived 
from molecular imaging in healthy populations.

Materials and methods
Participants, clinical assessments and 
imaging
We included 35 patients (13 females, mean age = 39.3 ± 13.7 
years, range 18–64 years) who met the ICD-10 criteria for 
schizophrenia. Severity of motor symptoms was rated by 
trained psychiatrists on two established clinical scales. We em
ployed the Abnormal Involuntary Movement Scale (AIMS)13

to quantify dyskinesia and the Simpson–Angus Scale (SAS)14

to assess parkinsonism. Psychopathological symptoms were 
measured using the Brief Psychiatric Rating Scale (BPRS).15
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All patients were on antipsychotic medication. Seven different 
first-generation and eight different second-generation antipsy
chotics were administered in the whole sample. Four patients 
were exclusively medicated with first-generation antipsycho
tics, 25 patients exclusively received second-generation anti
psychotics, and 6 patients were on antipsychotics of both 
generations. T1-weighted anatomical images were acquired 
on two 1.5 Tesla Siemens MRI scanners and preprocessed 
using standard pipelines (see Supplementary Methods). 
Patients from both scanners did not differ with respect to sex 
and age nor regarding all collected clinical variables including 
age at disease manifestation, disease duration, times of being 
inpatient, concomitant antipsychotic dose as well as BPRS, 
AIMS and SAS scores (all P-values ≥ 0.093). All patients pro
vided written informed consent. All study procedures were in 
accordance with the Declaration of Helsinki and had been ap
proved by the ethics committee of the University of 
Regensburg.

Region-based morphometry
Individual MRI data were preprocessed using the 
Computational Anatomy Toolbox (CAT; Version 12.6) as 
an extension to the Statistical Parametric Mapping (SPM) 
software (Version 12; SPM12; Wellcome Trust Centre for 
Neuroimaging, London, UK). Preprocessing includes the 
standard options of segmentation and normalization to the 
Montreal Neurological Institute template as implemented 
in SPM12. After quality check for sample homogeneity, 
data were smoothed using a Gaussian filter with a full-width 
at half-maximum smoothing kernel of 8 mm.

We defined 26 individual regions of interest (ROI) in the mo
tor system including motor cortices, basal forebrain, basal gan
glia, thalamus, cerebellum and brainstem (see Supplementary 
Table 1 for an exhaustive list). Maximum probability tissue la
bels derived from the Neuromorphometrics atlas were used to 
estimate the mean value of local grey matter volume inside the 
defined ROI. The anatomical atlas, which is defined in template 
space, was transformed to native subject space using the inverse 
non-linear deformations needed to spatially normalize images 
to template space. Total intracranial volume was estimated 
for each patient and used as a nuisance variable in the statistical 
analyses. There was no difference regarding relevant variables 
such as sex and age as well as all collected clinical variables be
tween patients from both scanners (see Supplementary 
Methods). Therefore, sample was not modelled as covariate.

Neurotransmitter mapping
We used the JuSpace toolbox16 for cross-modal spatial 
correlation analyses of MRI data with positron emission 
tomography–derived estimates covering various receptor 
systems including dopaminergic (dopamine D1 and D2; 
dopamine transporter: DAT, dopamine synthesis capacity: 
FDOPA), serotonergic (serotonin 5-hydroxytryptamine re
ceptor subtypes 1a, 1b and 2a: 5-HT1A, 5-HT1B, 5-HT2A; 
serotonin transporter: SERT), noradrenergic (noradrenaline 

transporter: NAT), μ-opioid and gamma-aminobutric acid 
(GABA)ergic (GABAA) neurotransmission as obtained 
from healthy volunteer studies. Analyses were based on un
thresholded grey matter brain maps modelling the correl
ation between volume reduction and severity of dyskinesias 
and parkinsonism (i.e. AIMS and SAS scores).

Statistical analysis
We used IBM® SPSS® Statistics for Mac (Version 25.0) for 
the statistical analyses. Partial correlations between ex
tracted grey matter volumes in the motor ROI and severity 
of dyskinesia (AIMS sum score of 10 items) and parkinson
ism (mean of SAS single scores) were calculated and deemed 
significant at P < 0.05, corrected for 26 (multiple) compari
sons using the false discovery rate (FDR).17

A Spearman correlation analysis was performed for each of 
the 11 receptors/transporters provided by the JuSpace toolbox 
correlating its spatial distribution with local grey matter vo
lumes on the group level using the Neuromorphometrics atlas. 
We used the default option accounting for spatial autocorrel
ation. Spearman ϱ correlation coefficients were Fisher’s 
z-transformed. Receptors showing a significant [P < 0.01, 
FDR corrected for 11 (multiple) comparisons] association 
with grey matter volumes were entered into a multiple linear re
gression analysis to disentangle their specific associations.

Results
Relationship of dyskinesia and 
parkinsonism with clinical 
characteristics
Age at disease manifestation, concomitant antipsychotic dose 
and current psychopathology did not significantly correlate 
with severity of dyskinesia (AIMS scores, mean = 4.6 ± 6.2, 
range 0–24) or of parkinsonism (SAS scores, mean= 0.5 ± 0.4, 
range 0–1.8; −0.138 ≤ all r ≤ 0.300 and all P-values ≥ 0.089; 
see Supplementary Table 2). That is, severity of both motor phe
nomena was not linked to early disease manifestation, high con
comitant antipsychotic dose or severity of psychopathological 
symptoms. However, both disease duration and times of being 
inpatient were significantly positively correlated with dyskinesia 
scores (rs = 0.712, P < 0.001; rs = 0.538, P = 0.002), but not 
with severity of parkinsonism (rs ≤ 0.284, P ≥ 0.115). This rela
tionship thus indicates that chronification of disease may be a 
significant risk factor for the development of dyskinesia.

Altered grey matter morphology 
related to dyskinesia and 
parkinsonism
We found significant negative correlations of grey matter 
volumes with severity of dyskinesia in bilateral basal fore
brain, right putamen and several portions of cerebellum 

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac190#supplementary-data
http://www.neuro.uni-jena.de/cat/
http://www.fil.ion.ucl.ac.uk/spm/
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac190#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac190#supplementary-data
http://neuromorphometrics.com/
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac190#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac190#supplementary-data
https://github.com/juryxy/JuSpace
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac190#supplementary-data
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[all r ≤ −0.362, all P-values (two-tailed) ≤ 0.035; Fig. 1A). 
Using the AIMS sum score of Items 1–7 instead of all 10 
items did not significantly change the results. 
Furthermore, our analyses revealed significantly decreased 
grey matter volumes associated with severity of parkinson
ism in bilateral precentral gyrus, left caudate nucleus and 
right basal forebrain (all r ≤ –0.385, all P-values (two- 
tailed) ≤ 0.025; Fig. 2A). That is, both dyskinesia and 
parkinsonism were linked to basal forebrain pathology 
but affected the striatum differently, the first related to al
teration of the right putamen and the latter to changes in 
the left caudate. Moreover, while dyskinesia additionally 
manifested in cerebellar decrease, parkinsonism showed ef
fects in cortical motor structures.

Relationship to molecular 
architecture
Correlation analyses with molecular imaging–derived neuro
transmitter maps identified significant relationships of the 
brain map of dyskinesia-related grey matter alterations 
with dopaminergic neurotransmitter systems [(receptor/ 
transporter, rs, P-value) D1: rs = 0.345, P = 0.005; DAT: 
rs = 0.334, P = 0.006; Fig. 1B]. The map of parkinsonism- 
related grey matter changes was significantly correlated 
with dopaminergic, serotonergic and opioid neurotransmit
ter systems (D1: rs = 0.391, P = 0.001; 5-HT1A: rs = 0.319, 
P = 0.009; 5-HT2A: rs = 0.380, P = 0.002; μ-opioid: rs = 
0.343, P = 0.005; Fig. 2B). That is, the higher the availability 
of the respective receptors as derived from healthy volunteer 
studies, the higher the dyskinesia- and parkinsonism-related 
grey matter loss.

When testing for specificity of the above findings by con
trolling for each other impact in dyskinesia- and 
parkinsonism-related neurotransmitter systems using mul
tiple linear regression, we found that among both significant 
associations between dyskinesia-related grey matter altera
tions and dopaminergic neurotransmitter systems, the 
dopamine transporter survived at a marginal significance 
level (P = 0.070). Among the parkinsonism-related associa
tions, the 5-HT2A (P = 0.012) and the μ-opioid receptor 
(P = 0.004) remained significant.

Discussion
We found a reduction of grey matter volumes in the right ba
sal forebrain linked to higher severity of both motor phe
nomena but differentially altered striatal volume, i.e. a 
dyskinesia-related effect on the right putamen and a 
parkinsonism-related effect on the left caudate. In addition, 
higher dyskinesia severity was associated with cerebellar vol
ume decrease, whereas parkinsonism-related volume de
crease was observed in the motor cortex. The brain pattern 
of both dyskinesia- and parkinsonism-related alterations 
was linked to the dopaminergic neurotransmitter system. 

Parkinsonism-related changes were additionally related to 
serotonergic and opioid systems.

Our results align previous, partly inconsistent findings re
garding involvement of basal ganglia and particularly stri
atum in dyskinesia and parkinsonism in patients with 
schizophrenia.7–10,18 The observed striatal pathology must 
not necessarily be driven by antipsychotic-medication effects 
but might also reflect general schizophrenia pathophysi
ology.19 The observed alterations of basal ganglia and re
lated forebrain structures linked to both dyskinesia and 
parkinsonism are in line with their involvement in the patho
physiology of hyper- and hypokinetic disorders such as cho
rea/ballism and Parkinson’s disease.20,21 The identified 
spatial relationship between the maps of structural motor- 
system alterations and dopaminergic receptor/transporter 
distribution corroborates the hypothesis that decreased 
dopamine concentrations and dopamine receptor hypersen
sitivity in the nigrostriatal pathway are crucial pathophysio
logical mechanisms of parkinsonism and dyskinesia, 
respectively.3

In a similar vein, our finding of decreased cerebellar vol
ume associated with dyskinesia severity straightens previous 
inconsistent results regarding cerebellar abnormalities in 
schizophrenia patients with dyskinesia.18,22 In addition, it 
matches well with the model proposing a key role of the cere
bellum in the generation of levodopa-induced dyskinesia in 
non-schizophrenic patients.23 Our analyses also complement 
previous evidence of parkinsonism-related grey matter de
crease in the motor cortex of patients with schizophrenia24

by showing that the amount of loss is not merely categorical 
but correlated with parkinsonism severity.

The parkinsonism-related pattern of motor system altera
tions in patients with schizophrenia was also associated with 
the serotonergic neurotransmitter system. Schizophreniform 
symptoms in Parkinson’s disease have been conceptualized as 
an imbalance between dopaminergic and serotonergic neuro
transmission,25 given that serotonin 5-HT receptors indirectly 
modulate motor activity by regulating release of dopamine in 
the nigrostriatal pathway.26,27 The phenomenon-specific, 
anatomy-neurotransmitter associations observed in our study 
further support the notion that, in addition to selectivity for 
5-HT1A and 5-HT2A receptor subtypes, it will be necessary to 
develop compounds that display anatomical selectivity in order 
to alleviate dyskinesia without worsening parkinsonism and 
vice versa.28,29 That our analyses linked parkinsonism-related 
alterations to the opioid system is in line with known enhance
ment of opioid transmission in the basal ganglia in Parkinson’s 
disease.30 In this context, this finding may further explain why 
κ- and µ-opioid receptor agonists seem to lead to improvement 
of parkinsonism.31,32

In this context, it has to be kept in mind that these findings 
are based on correlation analyses between neuroanatomical 
changes in patients and neurotransmitter maps as derived 
from healthy populations. It might be assumed, however, 
that patients with chronic schizophrenia would exhibit rele
vant alterations of receptor availability in these brain areas. 
In other words, the correlations may not hold true for the 
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association with severity of motor abnormality in psychosis. 
Nevertheless, our findings provide a sound basis for further in
vestigations of these associations, using direct measures of re
ceptor distribution and transporter availability in patients with 
chronic schizophrenia. A limitation of our study is that it can
not definitely exclude that catatoniform symptoms, which 
overlap with parkinsonism, influence the results. Moreover, al
though the SAS is commonly used in antipsychotic drug trials, 
it has the drawback of overemphasizing the assessment of rig
or. Hence, our findings regarding parkinsonism might re
present effects of rigor rather than of tremor or deficient 
postural control. In addition, it has to be considered that the 

result of lacking direct association between severity of motor 
abnormalities and antipsychotic medication is based on con
comitant antipsychotic dosage and not on estimation of total 
antipsychotic exposure during the lifespan. Future analogue 
studies should re-examine this association, if the correspond
ing data are available. Such future studies should also increase 
the sample size and thereby statistical power to assure that the 
observed effects generalize to a larger, even more heteroge
neous cohort of patients with schizophrenia.

Taken together, our data suggest that both dyskinesia and 
parkinsonism in schizophrenia are linked to (specific) basal 
ganglia and forebrain pathology and the dopaminergic 
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system, but differ in involvement of cerebellum and motor 
cortex as well as of serotonergic and opioid neurotransmis
sion. These attributes may guide the development of drugs 
that can balance more specifically antipsychotic and motor 
(side) effects.
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