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Abstract

Competing endogenous RNAs (ceRNAs) represent a novel mechanism of gene regula-

tion that may mediate key subpathway regions and contribute to the altered activities of

pathways. However, the classical methods used to identify pathways fail to specifically

consider ceRNAs within the pathways and key regions impacted by them. We proposed

a powerful strategy named ce‐Subpathway for the identification of ceRNA‐mediated

functional subpathways. It provided an effective level of pathway analysis via integrating

ceRNAs, differentially expressed (DE) genes and their key regions within the given path-

ways. We respectively analysed one pulmonary arterial hypertension (PAH) and one

myocardial infarction (MI) data sets and demonstrated that ce‐Subpathway could iden-

tify many subpathways whose corresponding entire pathways were ignored by those

non‐ceRNA‐mediated pathway identification methods. And these pathways have been

well reported to be associated with PAH/MI‐related cardiovascular diseases. Further evi-

dence showed reliability of ceRNA interactions and robustness/reproducibility of the ce‐
Subpathway strategy by several data sets of different cancers, including breast cancer,

oesophageal cancer and colon cancer. Survival analysis was finally applied to illustrate

the clinical application value of the ceRNA‐mediated functional subpathways using

another data sets of pancreatic cancer. Comprehensive analyses have shown the power

of a joint ceRNAs/DE genes and subpathway strategy based on their topologies.

K E YWORD S
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1 | INTRODUCTION

MicroRNAs (miRNAs) are small, endogenous, non‐coding RNA mole-

cules that bind to microRNA response elements (MREs) contained in

their target mRNAs.1 miRNAs are known to target dozens of mRNA

transcripts, while mRNAs harbour multiple MREs and thus can be

regulated by multiple miRNAs. The fact that distinct RNA molecules

can be targeted by common miRNAs leads researchers to suggest

the concept of gene regulation by competition for common miRNAs.

And those RNA molecules that act as miRNA decoys have been
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termed as ceRNAs.2 Many important transcripts can be reconsidered

and functionalized, partly through the identification of competing

endogenous mechanism, presenting a framework for the prediction

and validation of ceRNAs.3 Moreover, large‐scale analyses have

shown that ceRNAs play the crucial roles in complex biological pro-

cesses of many diseases.4-6 For example, the pseudogene PTENP1

competes with the important tumour suppressor gene PTEN for

interaction with miR‐499‐5p, thus regulating PTEN protein levels.7

PTEN is known to be frequently disrupted in multiple cancers and

governs multiple biological processes, including survival, proliferation

and energy metabolism.8 As the study of ceRNAs progress, ceRNA

interactions are found to work in the pathways. For example, Suma-

zin et al have constructed glioblastoma‐related ceRNA network and

suggested that ceRNAs may function in different regulatory path-

ways.9 However, systematic analysis of competing endogenous

mechanism within the pathways is still poorly understood. It is rea-

sonable to expect that some ceRNAs may locate in key regions of

the disease‐related pathways or multiple ceRNAs may mediate the

same dysregulated regions of the important pathways. Therefore, it

is crucial to study ceRNA interactions between the disease‐related
genes within the functional pathways and further identify key

ceRNA‐mediated subpathway regions, which would provide some

clues to the major pathogenesis of human diseases.

Pathway analysis is an effective tool for identifying the pathways

or subpathways that are significantly impacted when a biological sys-

tem is perturbed by stimulation.10 However, the current computa-

tional approaches applied to pathway identification fail to specifically

consider ceRNA interactions within the pathways and key regions

impacted by them. For example, hypergeometric test and gene set

enrichment analysis (GSEA) approaches have been widely used in

pathway analysis.11,12 However, they focus only on differentially

expressed (DE) genes; ignore those mRNAs that have competing

endogenous relationships between each other and the important

topologies within the pathways. Another two classical methods, sig-

nalling pathway impact analysis (SPIA) and Subpathway‐GM have used

pathway topologies for the identification of pathways or subpath-

ways.13,14 These methods are excellent in identifying key pathways or

subpathway regions, but they still do not consider the effect of com-

peting endogenous mechanism on the pathway or subpathway identi-

fication. Recently, although some studies have slightly considered the

concept of ceRNAs in pathway analysis, they are short of systematic

design, normalized algorithm or available software. For instance, Sun

et al have simply imported the interrelated genes within the con-

structed ceRNA network to some given pathways for annotation, and

demonstrated that ceRNAs could potentially modulate multiple sig-

nalling pathways.15 Obviously, ceRNAs could be the essential compo-

nents of pathways, the alterations of which may contribute to the

altered activities of functional pathways.

In this study, we proposed a novel approach referred to as ce‐
Subpathway for the identification of ceRNA‐mediated subpathways.

It integrated information from ceRNAs/DE genes, and their key

regions within the given pathways to identify significant subpath-

ways associated with the study condition (eg various human

diseases). Specifically, ceRNA interactions and disease‐related DE

genes were obtained based on gene expression profiles and mapped

into the reconstructed pathway graphs. An effective subpathway

identification strategy was then applied to locate ceRNA‐mediated

functional subpathways from the given pathways. Statistical signifi-

cance of these subpathways was further evaluated by hypergeomet-

ric test, which integrated the impact of the number of both ceRNAs

and disease‐related DE genes. The R‐based tool of the ce‐Subpath-
way strategy has been freely available in GitHub (https://github.c

om/chunquanlipathway/ce-Subpathway).

2 | MATERIALS AND METHODS

2.1 | Gene expression data sets

The study devoted to identifying ceRNA‐mediated functional subpath-

ways associated with various human diseases. The corresponding

gene expression profiles were obtained from the NCBI Gene Expres-

sion Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) database and

TCGA research group (http://tcga-data.nci.nih.gov/), respectively. The

following data sets were from GEO: one PAH (GSE33463), one MI

(GSE66360), one breast cancer (GSE7562),two oesophageal cancer

(GSE20347, GSE74742), two colon cancer (GSE8671, GSE4183) and

two pancreatic cancer (GSE32676, GSE57495) data sets. For all the

gene expression profiles, the probes were mapped to gene symbol

and those probes that mapped to the same gene symbol were merged

by averaging their expression values. As for the profiles with raw

expression values, gene expression values were log 2 transformed.

The following data sets were from TCGA: one breast cancer data set

with 849 samples and one pancreatic cancer data set with 177 sam-

ples. The processed level 3 RNA‐seq data were downloaded for fur-

ther analysis.

2.2 | Obtain mRNA‐related ceRNA interactions and
disease‐related DE genes

423 975 miRNA‐mRNA interactions containing 386 miRNAs and

13 802 mRNAs were downloaded from starBase V2.0.16 Based on

these miRNA‐mRNA interactions, we obtained all the mRNA‐mRNA

pairs with sharing the number of common miRNAs ≥3 and estimated

their statistical significance by a hypergeometric test. Meanwhile, we

required the two mRNAs in each mRNA‐mRNA pair appearing in the

same pathway. Those mRNA‐mRNA pairs with hypergeometric test

false discovery rate (FDR) adjusted P < 0.05 and the two mRNAs of

which within the same pathway were retained. According to the the-

ory that the expression of ceRNA interactions was positively corre-

lated, we further computed Pearson correlation coefficient (Pcc) of

the above mRNA‐mRNA pairs based on gene expression profiles.

Then, all the mRNA‐mRNA pairs with Pcc R >0 and P < 0.05 were

identified as ceRNA interactions. We obtained these ceRNA interac-

tions, their corresponding P‐values of Pcc and all the nonredundant

ceRNAs. Here, P‐values of Pcc were used to measure the strength

of ceRNA interactions.

968 | FENG ET AL.

https://github.com/chunquanlipathway/ce-Subpathway
https://github.com/chunquanlipathway/ce-Subpathway
http://www.ncbi.nlm.nih.gov/geo/
http://tcga-data.nci.nih.gov/


Differentially expressed genes were the key factor in identifying

functional subpathways associated with human diseases. Thus, various

diseases‐related DE genes were identified between disease and nor-

mal samples based on gene expression profiles, using the significance

analysis of microarrays method with a strict cut‐off of FDR adjusted

P < 0.01.17 We obtained disease‐related DE genes, and their corre-

sponding FDR adjusted P‐values. Here, FDR adjusted P‐values were

used to measure DE significance level of disease‐related DE genes.

2.3 | Map ceRNAs and DE genes into the
reconstructed pathway graphs

KGML files (KEGG Markup Language, http://www.genome.jp/kegg/

xml/) of the pathways were downloaded from the KEGG database,

which provides abundant pathway structure information and is

widely used in pathway analysis.13,18 These KGML files were con-

verted to list variables in R by applying an R package iSubpath-

wayMiner.19 Specifically, the map nodes were removed from the

corresponding KEGG pathway map, and the resulting graphs mainly

contained gene products. Two genes were connected by an edge if

a common compound was existed in their corresponding reaction in

a metabolic pathway, or if they had a relationship such as interac-

tion, binding or modification in a non‐metabolic pathway. Thus, we

obtained the reconstructed pathway graphs with the topology struc-

ture of each pathway retained.

The disease‐related ceRNAs and DE genes, which we have obtained

from the previous step, were then mapped to all the reconstructed

pathway graphs. Those ceRNAs or DE genes that could be mapped onto

the corresponding nodes of gene products within the reconstructed

pathway graphs were defined as key nodes. These key nodes would

contribute to identifying important subpathways in the next step.

2.4 | Locate ceRNA‐mediated subpathways
according to key nodes

We located ceRNA‐mediated functional subpathways by integrating

the power of a joint ceRNAs/DE genes and subpathway strategy

based on their pathway topologies. Three steps were as follows.

First, we developed a computed score named ce‐score, which

showed the importance of the DE levels of disease‐related DE

genes, the strength of ceRNA interactions and pathway topologies.

The formulas were defined as:

PDE ¼ minðPDE
i ;PDE

j Þ (1)

P ¼ PDE � Pcor (2)

z ¼ θ�1ð1� PÞ (3)

ce� score ¼ expð� d
z
Þ (4)

where PDE
i and PDE

j are the FDR adjusted P‐values of key node i and

j, respectively; PDE is the minimum value between PDE
i and PDE

j ; Pcor

is the P‐value of Pcc between key node i and j; z is the value of the

inverse normal cumulative distribution function (θ−1) that is con-

verted from P; d is the length of the shortest path between key

node i and j in any one pathway, calculated by breadth‐first search

algorithm; ce‐score is the computed score.

We computed the ce‐scores between any two key nodes in

every given pathway graph. The key nodes could be ceRNAs, DE

genes or both of them. The smaller FDR adjusted P‐value repre-

sented more significant DE level of disease‐related DE genes. The

smaller P‐value of Pcc represented stronger ceRNA interactions.

Here, if the relationship between two key nodes was not ceRNA

interaction, we set its P‐value of Pcc to 1; if one key node was

not DE gene, we set its FDR adjusted P‐value to 1. Thus, when

the nodes had more significant DE level, stronger ceRNA interac-

tion or shorter path length, the ce‐score would be greater. And

this would help in identifying more important ceRNA‐mediated

functional subpathways. In contrast, when the nodes were not

ceRNAs/DE genes or more distance from each other, the ce‐score
would be smaller.

Second, we estimated an appropriate threshold ω to screen the

greater ce‐scores. Here, we used the empirical probability distribu-

tion function. Actually, we ranked all the ce‐scores between any

two key nodes within all the reconstructed pathway graphs, and

regarded a value which was greater than 75% of the ce‐scores as

threshold ω. If the ce‐score between any two key nodes was greater

than ω, these two key nodes and other nodes at their shortest path

(many other nodes that may or may not be ceRNAs or DE genes)

were added to the same node set. This process was recurrent for all

key nodes. All the node sets formed the basis for locating subpath-

ways. Flexibility could be introduced through varying threshold ω by

users. A larger ω indicated that only key nodes with stronger ceRNA

interaction, more significant DE level or shorter path length could

be added to the same node set, the identified subpathways would

thus form a smaller scale. As the threshold ω decreased, the number

of some other nodes except for key nodes within subpathways

would increase, and then the scale of subpathways would become

larger.

Third, the idea of lenient distance similarity was used to locate

ceRNA‐mediated subpathways.14,20 According to each node set

above, we extracted the corresponding subgraph from pathway

graph and defined those subgraphs with the number of nodes ≥5 as

ceRNA‐mediated functional subpathways because subgraphs with

small scales were only scatter node sets and could not usually form

biologically meaningful subpathways.

2.5 | Evaluate statistical significance of the ceRNA‐
mediated subpathways

After locating all the ceRNA‐mediated functional subpathways, we

further evaluated their statistical significance by a hypergeometric

test. The following values were required: (a) the number of ceRNAs

and DE genes submitted for analysis; (b) the number of background

genes; (c) the number of ceRNAs and DE genes annotated to each
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subpathway; and (d) the number of background genes annotated to

each subpathway. All human genes in KEGG were considered as

background genes. The hypergeometric P‐value of statistical signifi-

cance was defined as:

P ¼ 1�∑rceþrDE�1
x¼0

t
x

� �
m� t

nce þ nDE � x

� �

m
nce þ nDE

� � (5)

where m is the number of genes in the whole genome; nce (nDE) is

the total number of ceRNAs (DE genes) submitted for analysis, of

which rce (rDE) is involved in the same subpathway containing t

genes.

When many subpathways were considered, a high false‐positive
discovery rate may be likely to occur. Therefore, we further calcu-

lated FDR adjusted P‐values using the Benjamini‐Hochberg FDR

method.

2.6 | Survival analysis

To evaluate prognosis performance of the significant ceRNA‐
mediated functional subpathways, a risk score model was con-

structed. The risk score for each patient was calculated according to

linear combination of the gene expression values weighted by the

regression coefficient from the univariate Cox regression analysis,

which was defined as:

Risk score ¼ ∑k
i¼1βiExpðiÞ (6)

where βi is the Cox regression coefficient of gene i from an indepen-

dent training set; Exp(i) is the expression value of gene i in a corre-

sponding patient; k is the number of testing genes.

The median risk score was used as the cut‐off to classify the

training set into high‐risk group and low‐risk group. A Kaplan‐Meier

survival analysis was then performed for the two classified groups of

patients, and statistic significance was assessed using the log‐rank
test with a cut‐off value of P < 0.05. The Kaplan‐Meier survival

curve was utilized to validate the predicted ability of the k‐gene
signature model.

3 | RESULTS

The ce‐Subpathway strategy has been proposed to identify ceRNA‐
mediated functional subpathways via a global view of the system‐
level integration of ceRNAs, disease‐related DE genes and pathway

topologies (Figure 1). In this study, we firstly compared the ce‐Sub-
pathway strategy with four other non‐ceRNA‐mediated pathway/

subpathway identification methods at the system level, including

hypergeometric test, GSEA, SPIA and Subpathway‐GM. These

methods were commonly used for pathway analysis.11–14,21 Then,

reliability of ceRNA interactions and robustness/reproducibility of

the ce‐Subpathway strategy were validated, respectively. Further-

more, survival analysis was applied to illustrate prognostic value of

the ceRNA‐mediated functional subpathways.

3.1 | PAH‐related ceRNA‐mediated subpathway
identification

The PAH data set (GSE33463, Table 1) was chosen to illustrate the

effectiveness of the ce‐Subpathway method. With FDR adjusted

P < 0.05, we identified 31 significant ceRNA‐mediated functional

subpathways from all the reconstructed pathway graphs, which cor-

responded to 26 entire pathways (Tables 2, S1 and S2). Lots of

these pathways were ignored by hypergeometric test, GSEA, SPIA or

Subpathway‐GM (Figure 2A, Tables 2 and S2). Hypergeometric test

found 25 significant pathways with FDR adjusted P < 0.05, but 20

(76.92%) significant pathways identified by ce‐Subpathway could not

be detected by hypergeometric test (Figure 2A, Table 2). GSEA iden-

tified only four significant pathways with FDR adjusted P < 0.05,

which were not the same as any significant pathways identified by

ce‐Subpathway (Figure 2A, Table 2). The power of SPIA also seemed

to be limited, 22 (84.62%) significant pathways identified by ce‐Sub-
pathway were ignored by SPIA (Figure 2A, Table 2). The subpathway

identification strategy, Subpathway‐GM, identified lots of subpath-

ways. However, up to 30 significant subpathways corresponding to

25 (96.15%) entire pathways identified by ce‐Subpathway were

undetected by Subpathway‐GM (Figure 2A, Table 2). Surprisingly, up

to 24 significant subpathways identified by ce‐Subpathway, which

corresponded to 20 entire pathways, were simultaneously ignored

by the four non‐ceRNA‐mediated methods (Figure 2A, Table 2). In

addition, we found that up to 25 pathways identified by ce‐Subpath-
way have been well reported to be associated with PAH‐related car-

diovascular disease (Tables 2 and S2). Only one pathway could not

be validated effectively with appropriate references. However, for

example, in 25 significant pathways identified by hypergeometric

test, up to three pathways were not reported to be associated with

PAH by curated literatures (Table S2).

We focused on a significant ceRNA‐mediated subpathway

(path:04110_5), which belonged to “cell cycle” (Figure 3). It was

reported to play key roles in the smooth muscle cell proliferation

and vascular remodelling.22,23 The ce‐Subpathway strategy yielded a

FDR adjusted P‐value of 7.61E‐09, but cell cycle was not considered

as significant in the hypergeometric test, GSEA, SPIA or Subpath-

way‐GM method (FDR adjusted P > 0.4). The key subpathway

region was at the bottom of the pathway. As the crucial component

of this key subpathway region, CDK2 has been demonstrated to

suppress the vascular smooth muscle cell proliferation.24 When using

F IGURE 1 Schematic overview of ce‐Subpathway. A, Obtain mRNA‐related ceRNA interactions and disease‐related DE genes. B, Map
ceRNAs and DE genes to the reconstructed pathway graphs and locate all the ceRNA‐mediated subpathways. C, Evaluate statistical
significance of the subpathways and identify significant ceRNA‐mediated subpathways
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the drug “Mevastatin” to treat the pulmonary artery smooth muscle

cells, CDK2 was found to show decreased activities.25 More impor-

tantly, several other key nodes, such as MCM3 and RBL2, respec-

tively had strong ceRNA interactions with CDK2. Some research has

indicated that phosphorylation of MCM3 by CDK2 could regulate its

function in cell cycle.26 In addition, the expression of RBL2 has a

high correlation with the growth of vascular endothelial cells.27

Strong ceRNA interaction was also found between RBL2 and E2F3.

E2F3 has been reported as an important transcription factor that

controls proliferation of vascular smooth muscle cells.28 The above

results suggest that stronger ceRNA interactions, shorter path length

and greater ce‐scores are the necessary factors in identifying more

important ceRNA‐mediated functional subpathways.

Another ceRNA‐mediated functional subpathway (path:04310_

20) belonged to “Wnt signalling pathway” (Figure 4), which has been

verified as a crucial regulatory mechanism in PAH. The ce‐Subpath-
way method yielded a FDR adjusted P‐value of 4.32E‐06. Key

subpathway identified was located in the canonical pathway region

of Wnt signalling pathway. β‐catenin, one of the key nodes in this

subpathway, was located in the central position of the canonical

pathway region. Activation of β‐catenin would disturb the growth of

normal pulmonary arterial smooth muscle cells, but promotes the

malignant proliferation.29 In the level of miRNAs that mediated

EP300 and JUN, CREBBP and TCF7L2, FBXW11 and EP300 ceRNA

interactions, we found miR‐30 family was extracted, simultaneously.

It has been demonstrated that the miR‐30 family has been a crucial

regulator that exerts functions in human pulmonary endothelial

cells.30 Previous studies have also shown that all genes associated

with these ceRNA interactions are implicated in the pathological pro-

cesses of PAH. For example, EP300 functions as histone acetyltrans-

ferase to regulate transcription of genes via chromatin remodelling,

overexpression of which could alter the expression levels of ECM

proteins and VEGF in endothelial cells.31 In a word, both the com-

mon miRNAs and ceRNAs of the key ceRNA‐mediated subpathways

have been suggested to be closely associated with PAH.

3.2 | MI‐related ceRNA‐mediated subpathway
identification

The MI data set (GSE66360, Table 1) was used to demonstrate the

reliability of ce‐Subpathway in identifying specific subpathways

associated with different disease subtypes. With a strict cut‐off of

FDR adjusted P < 0.05, 22 significant ceRNA‐mediated subpathways

were identified from all the reconstructed pathway graphs (Tables

S1 and S2). They corresponded to 19 entire pathways, up to

89.47% (17/19) of which were well reported to be associated with

MI‐related cardiovascular disease (Figure 2B, Tables 3 and S2). Many

pathways identified by ce‐Subpathway were not detected by hyper-

geometric test, GSEA, SPIA or Subpathway‐GM method (Figure 2B,

Tables 3 and S2). Specifically, these four methods found 16, 44, 23

and 62 significant pathways or subpathways with FDR adjusted

P < 0.05, respectively. However, they ignored 15 (78.95%), 14

(73.68%), 14 (73.68%) and 16 (84.21%) significant pathways identi-

fied by ce‐Subpathway, respectively (Figure 2B, Table 3). What is s

more, 11 significant ceRNA‐mediated subpathways identified by ce‐
Subpathway were simultaneously undetected by the four non‐
ceRNA‐mediated methods, corresponding to 11 entire pathways

(Figure 2B, Table 3).

The most significant of these additional ceRNA‐mediated sub-

pathways (path:04722_6) belonged to the “neurotrophin signalling

pathway,” which has been demonstrated to be involved in the regu-

latory processes of injury of MI.32 We extracted the topological

structure of this subpathway and found numerous MI‐related DE

genes and ceRNAs (Figure 5A). For example, DE genes c‐Jun and

Cdc42 had a strong ceRNA interaction relationship. Some research

has shown that Cdc42 could stimulate the activity of Jun kinase 1

and further mediate transcriptional regulation.33,34 Inhibition of N‐
terminal kinase of Jun would decrease cardiomyocyte apoptosis and

infarct size after myocardial ischaemia and reperfusion.35 The other

additional ceRNA‐mediated subpathway (path:04510_2) belonged to

“focal adhesion” with a FDR of 1.64E‐07. The famous ceRNA PTEN

was found to implicate in ceRNA interactions of this subpathway

(Figure 5B). Studies have reported that PTEN is critically involved in

post‐MI remodelling, the expression level of which is regulated in

infarcted heart.36

Interestingly, by comparing PAH‐related and MI‐related ceRNA‐
mediated subpathways, we found that several corresponding

pathways of them were the same, though only a small fraction of

disease‐related DE genes were overlapped. These pathways included

mitogen‐activated protein kinase (MAPK) signalling pathway, Jak‐
STAT signalling pathway and cell cycle. But it is also worth noting that

different subpathway regions were located. For example, PAH‐related
subpathways were located in Jak‐STAT signalling pathway (path:

04630_2 and path:04630_6), but MI‐related subpathway was located

in Jak‐STAT signalling pathway (path:04630_5). More information

could be seen in Tables 2 and 3. Actually, PAH and MI are the dif-

ferent subtypes of cardiovascular disease that are composed of

more than 10 disease subtypes. Some studies have found the close

correlations in different subtypes of cardiovascular disease. For

example, sustained cardiac hypertrophy and PAH could result in

TABLE 1 The data sets used for ceRNA‐mediated subpathway identification

Disease Data set
No. of
disease samples

No. of
normal samples

No. of
DE genes

No. of
ceRNAs

No. of ceRNA
interactions

PAH GSE33463 80 41 2833 950 2135

MI GSE66360 49 50 1754 822 1492

Breast Cancer The Cancer Genome Atlas data 762 87 14 657 921 1892
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TABLE 2 The significant subpathways identified by ce‐Subpathway using PAH data set

Subpathway ID PathwayName ce‐Subpathway Hypergeometric

Gene set
enrichment
analysis SPIA

Subpathway‐
GM Reference(PMID)

path:04010_2 MAPK signalling pathway 0 0.0054 — — — 27688788; 28055284

path:04510_12# Focal adhesion 6.03E‐10 — — — — 22293597; 28077433;

27274622

path:04110_5# Cell cycle 7.61E‐09 — — — — 27470556; 27581840;

26273643

path:04722_2 Neurotrophin signalling

pathway

7.61E‐09 0.0093 — — — 24462831

path:04910_2# Insulin signalling pathway 3.33E‐08 — — — — 26254106; 25921925

path:04210_9 Apoptosis 2.00E‐07 0.0310 — 0.0368 — 28068653; 28036116

path:04062_6 Chemokine signalling

pathway

3.37E‐07 0.0339 — 0.0026 — 28393260; 28774332

path:04720_3# Long‐term potentiation 3.37E‐07 — — — — 18704488

path:04070_1# Phosphatidylinositol

signalling system

9.24E‐07 — — — — 24084215; 23220709;

29074487

path:04630_2# Jak‐STAT signalling pathway 1.85E‐06 — — — — 24058777; 24058763;

28393260

path:04930_1# Type II diabetes mellitus 1.85E‐06 — — — — 16304314; 23348820

path:04110_3# Cell cycle 3.81E‐06 — — — — 27470556; 27581840;

26273643

path:04310_20# Wnt signalling pathway 4.32E‐06 — — — — 27188753; 26860892

path:00562_1# Inositol phosphate

metabolism

6.68E‐06 — — — — 9847264; 15838259;

23077657

path:04630_6# Jak‐STAT signalling pathway 9.18E‐06 — — — — 24058777; 24058763;

28393260

path:04810_5# Regulation of actin

cytoskeleton

1.15E‐05 — — — — 24283363; 19188659;

29473816

path:04350_21# TGF‐β signalling pathway 1.20E‐05 — — — — 24956016; 18202349

path:04620_14 Toll‐like receptor signalling

pathway

2.19E‐05 2.62E‐05 — 2.73E‐05 — 27418552; 26418144;

27712004

path:04150_3# mTOR signalling pathway 3.67E‐05 — — — — 27258250; 26409044

path:04810_19# Regulation of actin

cytoskeleton

3.71E‐05 — — — — 24283363; 19188659;

29473816

path:04114_1# Oocyte meiosis 3.71E‐05 — — — — 20886366

path:04670_7# Leucocyte transendothelial

migration

6.64E‐05 — — — — 25909334; 25722443

path:00230_8# Purine metabolism 6.64E‐05 — — — — 24656288

path:04115_5# p53 signalling pathway 0.0001 — — — — 27063355; 25290246

path:04020_1# Calcium signalling pathway 0.0004 — — — — 23300272; 15838259;

24770445; 23739180

path:04664_4# Fc epsilon RI signalling

pathway

0.0004 — — — — na

path:04510_10# Focal adhesion 0.0008 — — — — 22293597; 28077433;

27274622

path:04621_1 NOD‐like receptor

signalling pathway

0.0008 0.0009 — 0.0034 6.42E‐05 24736319

path:00020_2# Citrate cycle (TCA cycle) 0.0026 — — — — 23964055; 24533144

path:04010_12 MAPK signalling pathway 0.0031 0.0054 — — — 27688788; 28055284

path:00564_13# Glycerophospholipid

metabolism

0.0035 — — — — 26675529

Subpathways with # symbol are uniquely identified by ce‐Subpathway. The table lists FDR adjusted P‐values.
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heart failure37,38; coronary artery disease could induce the injury of

cardiac ischaemic and then lead to MI.39 There may be similar

molecular mechanisms but different pathogenic factors between the

different subtypes of cardiovascular disease. These results demon-

strate the importance of ce‐Subpathway in investigating the similar

or specific features across various disease subtypes.

3.3 | Cancer‐related ceRNA‐mediated subpathway
identification

Our challenge not only lies in obtaining biologically meaningful

subpathways, but also in interpreting the reliability of ceRNA inter-

actions used in the study. Based on the breast cancer data set from

The Cancer Genome Atlas (TCGA; Table 1), we identified 16

significant ceRNA‐mediated subpathways by ce‐Subpathway.

They corresponded to 12 entire pathways, which were well associ-

ated with breast cancer (Table 4). Such as phosphatidylinositol

signalling system, which is critical to normal and malignant cellular

processes, including proliferation, apoptosis and metabolism.40

Studies have shown that mutations in genes that constitute

the phosphatidylinositol 3‐kinase (PI3K)‐related pathway occur in

>70% of breast cancers.41 Clinical and experimental evidence sug-

gests that PI3K signalling activation promotes resistance to some of

the current breast cancer therapies.42 By extracting topology struc-

ture, the famous ceRNA PTEN was found in the significant subpath-

way region (path:04070_8) of phosphatidylinositol signalling system

(Figure 6A). We then took PTEN‐related ceRNAs for reliability vali-

dation of ceRNA interaction pairs. Specifically, all the nonredundant

ceRNAs associated with PTEN were collected from the correspond-

ing ceRNA interactions as a gene set S. Based on one PTEN gene

knockdown profile of breast cancer cell line (GSE7562), lists of genes

ranked according to their values of fold change, from the most up‐
regulated (at the top of the list) to the most down‐regulated (at the

bottom of the list), which was as a background gene list L. Actually,

when PTEN was knockdown, PTEN‐related ceRNAs should be

expression down‐regulated because ceRNA interaction pairs were

positively correlated. Therefore, GSEA was applied to determine

whether members of the gene set S tended to occur towards the

bottom of the background gene list L, in which case the gene set

was correlated with the phenotypic class distinction. We calculated

F IGURE 2 The pathway identification
results by different methods. Plots of
pathway identification results in PAH (A)
and MI (B) data sets according to the ce‐
Subpathway, hypergeometric test, gene set
enrichment analysis, signalling pathway
impact analysis and Subpathway‐GM
methods, respectively. Plus sign represents
the pathways identified by the
corresponding method with a cut‐off of
FDR <0.05. Bold labels and the characters
near # symbol are the additional pathways
uniquely identified by ce‐Subpathway.
Pathways that have been well reported to
be associated with PAH/MI by curated
literatures are marked with red star
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an enrichment score (ES) that reflected the degree to which the set

S was overrepresented at the bottom of the entire ranked list L and

estimated statistical significance of the ES by using an empirical

phenotype‐based permutation test. As a result, PTEN‐related ceR-

NAs showed the tendency of expression down‐regulated with a FDR

adjusted P‐value of 0.025 (Figure 6B).

F IGURE 3 The cell cycle pathway uniquely identified by ce‐Subpathway. The upper figure is the cell cycle pathway in KEGG. Red node
labels and borders represent ceRNAs or DE genes mapped to the pathway. Nodes near asterisk symbol belong to the subpathway
(path:04110_5) identified by ce‐Subpathway. Key subpathway region is shown in red ellipse. The bottom table lists all the ceRNA interactions
of this subpathway with the corresponding ce‐scores. The same row of the table means more than one shortest paths between the ceRNA
interaction pair
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The similar steps were also performed on EP300‐related ceRNAs.

Based on one oesophageal cancer data set from GEO (GSE20347),

five ceRNA‐mediated subpathways were identified by ce‐Subpath-
way. With a FDR adjusted P‐value of 0.002, EP300‐related ceRNAs

showed the tendency of expression down‐regulated according to

one EP300 gene knockdown profile of oesophageal cancer cell line

(GSE74742) (Figure 6C). The ceRNA interactions used in the study

have been obtained according to rigorous calculation process; here,

the reliability is further validated based on gene knockdown profiles

of their corresponding ceRNAs.

3.4 | Robustness and reproducibility analysis of ce‐
Subpathway

Within the reconstructed pathway graphs, the disease‐related DE

genes and ceRNAs have been mapped to the corresponding nodes of

gene products. Those DE gene nodes and ceRNA interactions were

the necessary components for retaining the topology structure of each

pathway. When some DE genes were removed, ceRNA interactions

between two nodes would be broken to varying degrees. Then,

robustness of the ce‐Subpathway method was tested by performing

TABLE 3 The significant subpathways identified by ce‐Subpathway using MI data set

Subpathway ID PathwayName ce‐Subpathway Hypergeometric

Gene set
enrichment
analysis

Signalling
pathway
impact
analysis

Subpathway‐
GM Reference(PMID)

path:04010_2 MAPK signalling pathway 0 0.0108 0.0153 0.0030 — 27538767; 23264165

path:04722_6# Neurotrophin signalling

pathway

0 — — — — 20122881; 23831387

path:04510_1 Focal adhesion 2.01E‐12 — — — 0.0226 27825850; 26330161

path:04630_5 Jak‐STAT signalling pathway 1.66E‐10 0.0347 0.0235 0.0141 — 15723072; 23128561;

22749532

path:04062_1 Chemokine signalling pathway 1.67E‐08 0.0112 0.0142 9.46E‐09 8.25E‐06 26264282; 15322539;

29933226

path:04720_2# Long‐term potentiation 2.38E‐08 — — — — 15019859; 24361546

path:04110_4# Cell cycle 2.38E‐08 — — — — 18508765; 25904597

path:04114_1# Oocyte meiosis 2.50E‐08 — — — — NA

path:04510_2# Focal adhesion 1.64E‐07 — — — — 27825850; 26330161

path:04350_2 TGF‐β signalling pathway 2.42E‐07 — — — 0.0003 28446968; 27614871

path:00230_1 Purine metabolism 4.95E‐05 — — — 0.0167 25015064

path:04010_3 MAPK signalling pathway 5.10E‐05 0.0108 0.0153 0.0030 — 27538767; 23264165

path:04210_16 Apoptosis 0.0001 0.0108 — 0.0150 — 28602551; 25304741

path:04070_6# Phosphatidylinositol

signalling system

0.0001 — — — — 18679782; 11940366

path:04660_9# T cell receptor signalling

pathway

0.0003 — — — — 27213032; 26646702

path:04912_3# GnRH signalling pathway 0.0007 — — — — 26264282

path:04650_13 Natural killer cell mediated

cytotoxicity

0.0019 — 0.0157 0.0051 — 26725916; 21388427

path:04010_32 MAPK signalling pathway 0.0022 0.0108 0.0153 0.0030 — 27538767; 23264165

path:04670_12 Leucocyte transendothelial

migration

0.0022 — 0.0143 — — 23642836; 29845217

path:04020_1# Calcium signalling pathway 0.0030 — — — — 26067684; 29758552

path:00052_6# Galactose metabolism 0.0103 — — — — 26498380; 22803435

path:00051_5# Fructose and mannose

metabolism

0.0217 — — — — NA

Subpathways with # symbol are uniquely identified by ce‐Subpathway. The table lists FDR adjusted P‐values.

F IGURE 4 The Wnt signalling pathway uniquely identified by ce‐Subpathway. The upper figure is the Wnt signalling pathway in KEGG. Red
node labels and borders near asterisk symbol belong to the subpathway (path:04310_20) identified by ce‐Subpathway. Key subpathway region
is shown in red triangle. The middle table lists all the ceRNA interactions of this subpathway with the corresponding ce‐scores. The bottom
region shows three pairs of ceRNA interactions in this subpathway, which are formed by competing the common miRNAs
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data removal tests using PAH‐related or MI‐related DE genes, respec-

tively. To each set of DE genes, we removed the number of DE genes

from 5% to 30% at 5% intervals with the remaining DE genes as new

input, and repeated the ce‐Subpathway method 20 times for each

removal. In the PAH data set, the number of overlapped significant

subpathways fell slowly compared with the original data, and the ratio

of overlapped subpathways to original significant subpathways

remained 76.11% even after removal of up to 30% DE genes (Fig-

ure 6D).The similar results were also obtained in the MI data set (Fig-

ure 6D). These results indicate that the ce‐Subpathway method is

robust to data removal.

To test the reproducibility of the results across different data

sets, the ce‐Subpathway method was applied to another two inde-

pendent colon cancer data sets from GEO (GSE8671, GSE4183).

About 11 and 10 significant ceRNA‐mediated subpathways were

identified, corresponding to 10 and 9 entire pathways, respectively.

Eight pathways were found highly reproducible across these results

(Figure 6E), all of which have been reported to be associated with

the occurrence and development of colon cancer. For example, focal

adhesion kinase signalling that is overexpressed in metastatic colon

cancer plays a key role in angiogenesis, cell proliferation and survival,

motility and invasion.43 The insulin‐like growth factor‐1 receptor tyr-

osine kinase signalling through the MAPK and phosphatidylinositol

3‐kinase pathways plays a part in transformation and colon tumouri-

genesis.44 The actin‐cytoskeleton pathway is the backbone of cells

that allows migration and mobility of cells within the body, which

has already been implicated in the development and pathogenesis of

invasive metastatic colon cancer.45 These results show the power of

reproducibility of the ce‐Subpathway method.

3.5 | Clinical application test of the ceRNA‐
mediated subpathways

Cancer survival analysis is an essential indicator for effective early

detection and improvement in cancer treatment. To further test the

clinical application ability of the ceRNA‐mediated functional subpath-

ways, we focused on pancreatic cancer for performing survival analy-

sis. Based on one pancreatic cancer data set from GEO (GSE32676),

eight significant ceRNA‐mediated subpathways were identified by

performing the ce‐Subpathway method. The genes in each of these

significant subpathways were identified as a k‐gene signature. Then,

another two independent pancreatic cancer data sets with gene

expression and clinical data were obtained from GEO (GSE57495)

and TCGA as independent training sets for the risk scores, respec-

tively (see Section 2). For instance, the 28 genes in the significant

subpathway (path:04010_21, FDR adjusted P = 3.32E‐05) of MAPK

signalling pathway were identified as a 28‐gene signature. With the

28‐gene signature, patients of the independent training set from

GEO (GSE57495) were divided into a high‐risk group (n = 29) and a

low‐risk group (n = 34). Patients in high‐risk group had significantly

TABLE 4 The significant subpathways identified by ce‐Subpathway using breast cancer data set

Subpathway ID PathwayName ce‐Subpathway (FDR) Reference(PMID)

path:04630_6 Jak‐STAT signalling pathway 4.79E‐06 25104439; 30022447; 29383118

path:04810_7 Regulation of actin cytoskeleton 3.07E‐05 23153535; 23775624

path:04510_1 Focal adhesion 3.13E‐05 24491810; 25631868

path:04510_6 Focal adhesion 3.13E‐05 24491810; 25631868

path:04310_19 Wnt signalling pathway 0.0002 24606421; 25955111; 26129710

path:05215_23 Prostate cancer 0.0002 25421124

path:04010_11 MAPK signalling pathway 0.0003 24882719; 25066297

path:04110_23 Cell cycle 0.0004 25064703; 24369047; 25407488

path:04722_7 Neurotrophin signalling pathway 0.0004 28446206; 27467251

path:00240_13 Pyrimidine metabolism 0.0009 29614418

path:04630_2 Jak‐STAT signalling pathway 0.0012 25104439; 30022447; 29383118

path:04350_26 TGF‐β signalling pathway 0.0106 25823021; 25217524; 26223118

path:04510_24 Focal adhesion 0.0106 24491810; 25631868

path:04530_3 Tight junction 0.0106 23934616; 29719617

path:04010_10 MAPK signalling pathway 0.0154 24882719; 25066297

path:04070_8 Phosphatidylinositol signalling system 0.0155 24774538; 25544707

path:05220_25 Chronic myeloid leukaemia 0.0547 18192121

path:04114_13 Oocyte meiosis 0.0574 28849078; 26804550

F IGURE 5 The MI‐related subpathways where key nodes are annotated. A, Plot of key MI‐related subpathway (path:04722_6) belongs to
neurotrophin signalling pathway; B, Plot of key MI‐related subpathway (path:04510_2) belongs to Focal adhesion. Key ceRNAs are shown with
red ellipse; key DE genes are shown with yellow border
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shorter overall survival than those in low‐risk group (P = 0.0042; Fig-

ure 7A, the second plot). The same model and criteria classified 111

and 66 patients of the other independent training set from TCGA

into high‐risk and low‐risk groups, respectively. The overall survival

time of high‐risk group patients was also significantly shorter than

that of low‐risk group patients (P = 0.0015; Figure 7B, the second

plot). Actually, the significant results could be observed in six and

seven of the eight subpathways based on the two independent pan-

creatic cancer data sets from GEO and TCGA, respectively (Fig-

ure 7A,B). Most importantly, the same six subpathways significantly

distinguished the high‐risk and low‐risk groups in both the GEO and

the TCGA data sets (Table S3). These subpathways were corre-

sponding to MAPK signalling pathway, neurotrophin signalling path-

way, phosphatidylinositol signalling system, calcium signalling

pathway, long‐term potentiation and focal adhesion. It is reported

that novel agents targeting dysregulated MAPK signalling pathways

are being explored in clinical trials as monotherapy or in combination

with cytotoxic chemotherapy for pancreatic cancer.46 Systematic

pathway enrichment analysis of a genome‐wide association study on

cancer survival has also revealed an influence of genes involved in

cell adhesion and calcium signalling on the patients’ clinical out-

come.47

To further illustrate the overall discriminatory power of the

ceRNA‐mediated subpathways, every gene of the six common sub-

pathways was identified as a single‐gene signature for survival analy-

sis. According to the independent training set from GEO

(GSE57495), almost all single‐gene signatures could not distinguish

the high‐risk and low‐risk groups (Table S3). Only one gene

(ATP2A3) in calcium signalling pathway got a significant P‐value of

0.006, but it was still not more significant than the result of its cor-

responding subpathway (path:04020_1), which got a significant P‐
value of 0.0004. The similar results that almost all single‐gene signa-

tures could not distinguish the high‐risk and low‐risk groups were

also observed based on the independent training set from TCGA

(Table S3). Taken together, it has become obvious that the ceRNA‐
mediated subpathways identified by the ce‐Subpathway method

would be an effective predictor of survival outcome in cancer

patients and greatly improve prognostic capabilities.

F IGURE 6 Results of reliability validation and robustness/reproducibility analysis. (A) Plot of key breast cancer‐related subpathway
(path:04070_8) belongs to Phosphatidylinositol signalling system. Key nodes are shown with blue nodes; the direct interactions in the pathway
between two genes are shown with gay dashed lines; the ceRNA interactions are shown with red solid lines, edge width is proportional to the
ce‐score. Results of reliability validation of ceRNA interactions used in the study based on PTEN (B) and EP300 (C) gene knockdown profiles
with a cut‐off of FDR <0.05. (D) Results of robustness analysis of the ce‐Subpathway method. PAH data set is shown with blue broken line;
MI data set is shown with red broken line. (E) Results of reproducibility analysis of the ce‐Subpathway method. The numbers of significant
pathways identified in two different colon cancer data sets are shown with pie charts of different colours
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4 | DISCUSSION

The integrative analysis of ceRNAs and DE genes at the pathway

structure level will help to locate and evaluate key ceRNA‐
mediated functional subpathways. We developed the ce‐

Subpathway approach, which integrated ceRNAs and DE genes rel-

evant to some given condition into pathways and identified

ceRNA‐mediated functional subpathways via ceRNA interactions

within pathway topologies. The algorithm has been developed as a

freely available R‐based tool, which can be applicable to multiple

F IGURE 7 Results of survival analysis of the ceRNA‐mediated subpathways. Survival curves plotted based on two independent pancreatic
cancer data sets with survival information: one from GEO (A) and one from The Cancer Genome Atlas (B)
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species and various studying conditions (disease/non‐disease). In

this study, the ce‐Subpathway method was firstly applied to

human PAH and MI data sets, respectively. The results showed

that most of the pathways identified by ce‐Subpathway were well

reported to be highly associated with the corresponding diseases.

And fewer pathways were not reported to be associated with

PAH by curated literatures using ce‐Subpathway than the other

methods. Compared with the entire pathway identification meth-

ods, ce‐Subpathway could not only locate key subpathways associ-

ated with the given condition but also identify key regions

representative of entire pathways. These key subpathways con-

tained fewer genes than entire pathways, allowing researchers to

use alternative low‐throughput technologies to confirm the local

subpathway regions related to specific condition. Compared with

the non‐ceRNA‐mediated pathway identification methods, ce‐Sub-
pathway was able to identify some additional ceRNA‐mediated

functional subpathways. These subpathway regions contained

stronger ceRNA interactions, which played important roles in eval-

uating the influence of competing endogenous mechanism on key

subpathway identification.

This study focused on identifying subpathways by setting the

threshold ω between key nodes. The threshold ω could indirectly

influence the size of the located subpathway. As ω decreased, the

size of the subpathway would increase because lenient distance

similarity tended to merge more nodes into the same subpathway.

Key nodes within entire pathways would also tend more to be

added to the located subpathways. The limitations of current

ceRNA identification strategy mean that there may be some false‐
positive results in the ceRNA interactions used in the present

study, though this pipeline is popular and has been widely applied

in many ceRNA researches. Thus, we validated the reliability of

ceRNA interactions based on the theory that the ceRNA interac-

tion pairs were positively correlated. The famous ceRNA PTEN was

found in the significant ceRNA‐mediated subpathways. Using the

GSEA method, PTEN‐related ceRNAs showed expression down‐
regulated with a cut‐off of FDR adjusted P < 0.05 when PTEN

was knockdown. These results suggested the reliability of both

ceRNA interactions used in the study and the ceRNA‐mediated

subpathway identification method. Survival analysis was an effec-

tive way to test the clinical application ability of the ceRNA‐
mediated subpathways. With the genes in each significant subpath-

way as a multi‐gene signature, the same six of eight subpathways

were found to significantly distinguish patients of high‐risk and

low‐risk groups in two independent training sets. More importantly,

when every gene of the six common subpathways was as a single‐
gene signature for survival analysis, almost all single‐gene signa-

tures could not distinguish patients of high‐risk and low‐risk group

in the same two independent training sets. Therefore, the overall

discriminatory powers of the ceRNA‐mediated subpathways were

further illustrated.

In the recent years, some studies have connected ceRNAs with

pathways, but they usually annotated the genes associated with ceR-

NAs into some given pathways and got some simple results of

pathway annotation. These studies did not consider the joint power

of ceRNAs/DE genes and pathway topology. They also lacked sys-

tematic algorithm or available software for subpathway identifica-

tion. The ce‐Subpathway method seemed to be the first

implementation of ceRNA interactions within the pathways for the

identification of ceRNA‐mediated functional subpathways effectively.

Still, the ce‐Subpathway method has some limitations. The bench-

marks used throughout to compare the performances of different

pathway identification methods may be biased. However, we know

that the gold standards for expected pathways associated with dis-

eases are not clearly defined at present. We suggest that multiple

integrative methods for pathway identification might need to be

used in further research.
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