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The construction of targeted and activatable materials can largely improve the precision
of disease diagnosis and therapy. However, the currently developed systems either
target a transmembrane antigen or are activatable to release imaging and/or therapeutic
reagents intracellularly. Here, we develop a simple thin-layer glycomaterial through the
self-assembly between fluorescent glycoprobes, in which the carbohydrate-targeting
reagent and the fluorophore are linked to each other by polyethylene glycol with a suitable
chain length, and thin-layer manganese dioxide. The fluorogenic material developed
is both capable of targeting a transmembrane glycoprotein receptor and fluorescently
activatable by intracellular biothiols. The shell thickness of the material was determined to
be important for achieving the biothiol-induced activation of fluorescence. This research
might provide insight into the development of precision-enhanced self-assembled
materials for disease theranostics.
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INTRODUCTION

Carbohydrate-protein interactions are responsible for the activation of many biological
and disease-relevant signaling pathways (Lee and Lee, 1995). During the process of a
certain number of diseases, transmembrane receptors that are selective for carbohydrates
(monosaccharides or oligosaccharides) are overexpressed (Kampen, 2011). As a result,
glycomaterials, which are prepared by covalently or non-covalently conjugating
carbohydrates to a variety of different material substrates including polymers, nanoparticles,
and thin-layer materials, have been developed for targeted disease diagnosis and
therapy (Ji et al., 2016; Zhang et al., 2017; Fu et al., 2018).

Recently, the use of thin-layer materials, such as graphene oxide and graphene-like materials,
for biomedical applications has emerged as a topical research area (Chung et al., 2013; Shareena
et al, 2018). Among the advanced materials developed, thin-layer molybdenum disulfides and
oxides have been proven to be of good biocompatibility with low in vitro and in vivo toxicity
to construct theranostic materials (Liu et al., 2014, 2015; He and Tian, 2016; Yadav et al., 2019).
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Thin-layer manganese dioxide (MnO;), which can be readily
degraded to form manganese ions, has been extensively used
to construct activatable sensing and therapeutic materials in
response to the reducing microenvironments or low pH inside
cancer cells (Zhao et al., 2014; Fan et al., 2015; Chen et al., 2016).

While previous studies mainly focused on the development
of materials that can target a transmembrane antigen or are
activatable for controlled release of imaging and therapeutic

agents, here we develop a thin-layer glycomaterial for both
targeted and activatable imaging of cells. Self-assembly between
fluorescent glycoprobes and thin-layer MnO, produces
fluorogenic glycomaterials, which can target a transmembrane
glycoprotein receptor to deliver the glycoprobes inside cells.
Then, degradation of the thin-layer MnO, backbone by
intracellular biothiols activates the glycoprobe fluorescence,
enabling the targeted, activatable functional cell imaging.
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FIGURE 1 | Structure of the glycoprobes used for self-assembly with thin-layer MnOo.
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FIGURE 2 | Schematic illustration of (A) aggregation and then self-assembly of the glycoprobes with thin-layer MnO», producing the thin-layer glycomaterials with
different shell thicknesses, and (B) the different fluorescence activation mode of the glycomaterials after endocytosis by cells that express asialoglycoprotein receptors.
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MnO» (100 ng mi=1 dissolved in Tris-HCl buffer).
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FIGURE 3 | (A) Representative high-resolution transmission electron microscopic (HRTEM) image of thin-layer MnO» (scale bar = 50 nm). (B) An enlarged view of an
HRTEM image of thin-layer MnO». (C) UV-vis absorption spectrum of thin-layer MnO5 (100 pg mi~1 dissolved in Tris-HCI buffer). (D) Raman spectrum of thin-layer
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FIGURE 4 | Representative HRTEM images of DCM-Gal, DCM-PEGg-Gal, DCM-Gal@MnO, (DCM-Gal/MnOy = 10 pM/10 ng mi~ dissolved in Tris-HCI buffer), and
DCM-PEGg-Gal@MnO, (DCM-PEGg-Gal/MnOy = 10 uM/10 wg mi~" dissolved in Tris-HCI buffer).

Frontiers in Chemistry | www.frontiersin.org

May 2019 | Volume 7 | Article 294


https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

Zhang et al.

Imaging Materials

>

Normalized I

(9]

Normalized I

Normalized I

DCM-Gal
1.2
0.91 2D MnO,
0.6 1 l
0.3 1
0.0-

560 640 720 800
Wavelength (nm)
DCM-Gal@MnO,

1.2
0.9
0.6 1 PNA
0.3 T
0.0+ ' -

560 640 720 800
Wavelength (nm)
DCM-Gal@MnO,

1.2

0.91 GSH

0.6 1 I

0.3 1

0.0

560 640 720 800

Wavelength (nm)

Normalized I¢

O

Normalized I

-

Normalized I

DCM-PEG¢-Gal
1.2
0.9 1 2D MnO,
0.6 1 l
0.3 1
0.0
560 640 720 800
Wavelength (nm)
DCM-PEGgGal @MnO,
1.2
0.9+
0.6+ PNA
0.3+ *
0.0+ - -
560 640 720 800
Wavelength (nm)
DCM-PEGg-Gal @MnO,
1.2
0.9 GSH
0.6 1 T
0.3
0.0

560 640 720 800
Wavelength (nm)

FIGURE 5 | Fluorescence spectra of (A) DCM-Gal (10 M) and (B) DCM-PEGg-Gal (10 uM) with increasing thin-layer MnO» (from top to bottom curve: 0-40 pg
mi=1, interval: 4 ng mi~1 ). Fluorescence spectra of (C) DCM-Gal@MnO» (DCM-Gal/MnOs = 10 uM/40 g mI*1) and (D) DCM-PEGg-Gal@MnOy
(DCM-PEGg-Gal/MnOy = 10 wM/20 pg ml‘*) with increasing PNA (peanut agglutinin, from bottom to top curve: 0-40 M, interval: 5 uM). Fluorescence spectra of
(E) DCM-Gal@MnO, (DCM-Gal/MnOy = 10 nM/40 pg mi=1) and (F) DCM-PEGg-Gal@MnOy, (DCM-PEGg-Gal/MnOs = 10 wM/40 pg mi=T) with increasing GSH
(y-glutathione, from bottom to top curve: 0-500 M, interval: 50 uM).
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Importantly, we demonstrate that the shell thickness is crucial
for achieving the biothiol-responsive fluorescence activation of
the thin-layer glycomaterials.

RESULTS AND DISCUSSION

Two DCM (dicyanomethylene-4H-pyran)-based glycoprobes
[DCM-Gal (Ji et al.,, 2016) and DCM-PEGg-Gal] with linkers
of different lengths connecting a DCM and a galactose
epitope were used (Figurel). An experimental section and
original NMR spectral copies of new compounds are presented
in Supplementary Material. The presence of a hexa-PEG
linkage in the structure of DCM-PEGe-Gal could facilitate
the formation of a PEG shell on the surface of thin-layer
materials in order to enhance the stability of the material in
complex biological environments (Figure2A). We envision
that while the material composite formed between DCM-Gal
and thin-layer MnO, might dissociate directly after interaction
with the asialoglycoprotein receptor (ASGPr) that selectively
recognizes galactoconjugates, that formed between DCM-
PEGe-Gal and thin-layer MnO, could be more stable during
receptor-mediated endocytosis for stimuli-activated fluorescence
imaging (Figure 2B).

To prove our hypothesis, the glycoprobes were used for self-
assembly in Tris-HCl buffer with thin-layer MnO, prepared

by the previously reported method (Zhao et al., 2014). In its
representative high-resolution transmission electron microscopy
(HRTEM) images, we observed thin-flake objects, suggestive of
the formation of thin-layer MnO, (Figure 3A). The orthogonal
distance (~0.25nm) between two consecutive slabs of [MnOg]|
is characteristic of the typical birnessite-type MnO, (Figure 3B;
Kim et al,, 2017). In the UV spectrum of the thin-layer MnO,,
a predominant absorbance peak at ca. 380 nm was detected
(Figure 3C), which is attributable to the d-d transition of Mn
ions in the MnOg octahedra of the thin-layer material (Kai
et al., 2008). Raman spectroscopy was also used for material
characterization. Three typical bands at 647, 575, and 497 cm™!
were observed, which are characteristic of the v; (the symmetric
stretching vibration of the Mn-O bond in the MnOg octahedral
plane), v, (the stretching vibration mode of Mn-O in the MnOg
octahedral basal plane), and v3 (the deformation mode of the
metal-oxygen chain of Mn-O-Mn in the MnO, octahedral
lattice) vibrational features of thin-layer MnO,, respectively
(Figure 3D; Julien et al., 2003, 2004). We also observed that both
DCM-Gal and DCM-PEGg¢-Gal form nanoparticles (Figure 4),
whereas after assembly, the particles were determined to be
adhered onto the surface of thin-layer MnO, (Figure 4).
Subsequently, fluorescence spectroscopy was used for the
analysis of the self-assembly. We observed a gradually decreased
fluorescence of both DCM-Gal (Figure 5A) and DCM-PEGg-Gal
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FIGURE 6 | Fluorescence imaging (A) and quantification (C) of Hep-G2 and sh-ASGPr cells after incubation with DCM-Gal@MnO, (DCM-Gal/MnOs = 10 pM/32 g
mi~T ). Fluorescence imaging (B) and quantification (D) of Hep-G2 and sh-ASGPr cells after incubation with DCM-PEGg-Gal@MnO, (DCM-PEGg-Gal/MnOo = 10
wM/32 g mi~1 ). P < 0.01, **P < 0.005. Error bars mean S. D. (n = 3). Excitation and emission channels used were 460-490 and 560-630 nm, respectively. Cell
nuclei were stained by Hoechst 33342 (excitation and emission channels were 360-400 and 410-480 nm, respectively).
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(Figure 5B) in the presence of increasing thin-layer MnO,. This
suggests the adsorption of the glycoprobes onto the surface of
the material, leading to fluorescence quenching (Zhao et al,
2014). To test its stability toward a carbohydrate-binding protein,
we added peanut agglutinin (PNA) that selectively recognizes
the galactose epitopes on the surface of the material composite.
Interesting, while a gradual fluorescence enhancement was
observed for the DCM-Gal@MnO, group with increasing
PNA (Figure 5C), which is in accordance with our previous
observations that complexation between glycoprobe and PNA
competitively removes the probe molecules from the surface
of the quenching material, the quenched fluorescence of
DCM-PEGg-Gal remained almost unchanged (Figure 5D). This
suggests the importance of the hexa-PEG shell for the protection
of the material composite from disassociation upon interaction
with a galactose-selective lectin. In contrast, the fact that the
presence of GSH led to the fluorescence enhancement of both
glycomaterials, which is the result of degradation of the thin-
layer MnO; backbone, suggests their ability for activatable
fluorescence sensing and imaging (Figures 5E,F).

Next, the glycomaterials were used for cell imaging. Hep-
G2 cells that highly express ASGPr as well as GSH, and a
previously established Hep-G2 cell line with a reduced ASGPr
expression by gene transfection (Fu et al, 2018), were used
to test the receptor-targeting capacity of the materials. We
determined that the fluorescence of both materials was produced
mainly in Hep-G2 rather than in sh-ASGPr cells, suggesting
their good receptor-targeting property because of the exposure of

galactose epitopes on the surface (Figure 6; Burgess et al., 1992).
Then, we used Hep-G2 cells with a depleted GSH concentration
by pretreatment with NEM (a known GSH scavenger) to
measure the fluorescence activity of the materials. A similar
level of fluorescence was determined in Hep-G2 cells with or
without GSH for the DCM-Gal@MnO, group (Figures 7A,C).
In contrast, the fluorescence of DCM-PEG4-Gal@MnO; in Hep-
G2 cells with endogenous GSH was much stronger than in those
with depleted GSH (Figures 7B,D). These results preliminarily
suggest that while the DCM-Gal@MnO; ensemble disassociates
upon interaction with ASGPr, DCM-PEG¢-Gal@MnO,, because
of the presence of a hexa-PEG shell, remained much more stable
upon receptor-mediated endocytosis. However, the subsequent
presence of a high concentration of intracellular GSH led
to material degradation, thus enabling activatable fluorescence
imaging (Figure 2B).

CONCLUSIONS

We have shown in this research that by properly modulating
the shell thickness of self-assembled, thin-layer glycomaterials
can enable targeted and activatable imaging of cells. The
glycomaterial coated with a hexa-PEG shell can effectively protect
the material ensemble from disassociation after incubation with
a lectin that selectively recognizes the carbohydrate epitopes
on the material surface. In the subsequent cell imaging assay,
we also observed that the fluorescence activation of the thickly
shelled glycomaterial was dependent on the presence intracellular
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FIGURE 7 | Fluorescence imaging (A) and quantification (C) of Hep-G2 treated with DCM-Gal@MnO» (DCM-Gal/MnOy = 10 pM/32 g mi~") pretreated with NEM
(N-ethylmaleimide is a known GSH quencher, 500 M) or GSH (300 wM). Fluorescence imaging (B) and quantification (D) of Hep-G2 treated with

DCM-PEGg-Gal@MnO, (DCM-PEGg-Gal/MnOy = 10 nM/32 pg mi~1) pretreated with NEM (500 M) or GSH (300 tM). n.s., not significant; **P < 0.01. Error bars
mean S. D. (n = 3). Excitation and emission channels used were 460-490 and 560-630 nm, respectively. Cell nuclei were stained by Hoechst 33342 (excitation and
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biothiols, while that which lacks the protective shell was directly
dependent on the expression of transmembrane glycoprotein
receptors irrespective of the intracellular GSH concentration.
This implies the importance of properly adjusting the shell
thickness of self-assembled thin-layer materials in order to
enhance the precision of functional cell imaging. We are
currently using this concept for the construction of other thin-
layer MnO,-based materials for the analysis of the biothiol level
in different types of cancer cells such as leukemia cells.
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