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Several neurological diseases share pathological alterations, even though they differ in
their etiology. Neuroinflammation, altered brain glucose metabolism, oxidative stress,
mitochondrial dysfunction and amyloidosis are biological events found in those
neurological disorders. Altered insulin-mediated signaling and brain glucose
hypometabolism are characteristic signs observed in the brains of patients with certain
neurological diseases, but also others such as type 2 diabetes mellitus and vascular
diseases. Thus, significant reductions in insulin receptor autophosphorylation and Akt
kinase activity, and increased GSK-3 activity and insulin resistance, have been reported in
these neurological diseases as contributing to the decline in cognitive function. Supporting
this relationship is the fact that nasal and hippocampal insulin administration has been
found to improve cognitive function. Additionally, brain glucose hypometabolism precedes
the unmistakable clinical manifestations of some of these diseases by years, which may
become a useful early biomarker. Deficiencies in the major pathways of oxidative energy
metabolism have been reported in patients with several of these neurological diseases,
which supports the hypothesis of their metabolic background. This review remarks on the
significance of insulin and brain glucose metabolism alterations as keystone common
pathogenic substrates for certain neurological diseases, highlighting new
potential targets.
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INTRODUCTION

Neurodegenerative diseases such as Alzheimer’s disease (AD),
Parkinson’s disease (PD), Huntington’s disease (HD), and
epilepsy-related disorders (EDs) (1) are characterized by central
progressive alterations affecting many different brain structures.
These neuropathologies and other chronic mental disorders such
as schizophrenia (2) and major depressive disorder (MDD) have
different etiologies but share common pathogenic manifestations
such asneuroinflammation (3), brain glucosehypometabolism (4),
oxidative stress (5), mitochondrial dysfunction (6), amyloidosis
(7), insulin resistance (8, 9), and/ormolecular alterations regarding
insulin receptors and the insulin-induced signal transduction
pathway (10) (Figure 1). In addition, these neurological diseases
show high comorbidity with other pathologies such as type 2
diabetes mellitus (T2DM) and vascular diseases (11).

Neuroinflammation is present in the early stages of these
diseases. The activation of microglia and astrocytes results in
cytokine release (12), contributing to the initiation of the
inflammatory process, which, in turn, may facilitate neural
dysfunction and cell death (13). Brain injury, stroke, hypoxia,
T2DM and vascular dysfunction are also considered risk factors
that contribute to the development of glucose-metabolism
disorders and induce oxidative stress, in addition to being
primary pathways of the progression of the diseases, thus
setting in motion a vicious circle (13). In addition, chronic
inflammation potentiates resistance to insulin and insulin-like
growth factor-1 (IGF-1) in the brain, as manifested in AD and
PD (14). Furthermore, brain inflammatory processes cause
neurotoxicity and hyperexcitability, which may facilitate
epileptiform activity (15). A population-based study in PD
patients, including matched controls, suggested a protective
role for non-steroidal anti-inflammatory agents in PD (16).

Amyloid deposits are also common in AD, PD, and other
neurodegenerative diseases (7, 17). Whereas deposits of islet
Frontiers in Endocrinology | www.frontiersin.org 2
amyloid polypeptide (IAPP) are observed in the islets of
Langerhans in T2DM, amyloid b-peptide (Ab) is the main
component of the brain amyloid plaques in AD. These
peptides are misfolded and self-assemble into oligomers and
fibers that are able to form amyloid insoluble aggregates (18).
The Ab-42 peptide is known to induce neuronal toxicity,
whereas IAPP is toxic in the pancreatic islet cells (19). These
two proteins have a high sequence similarity, and the chaperone
protein pathway preventing IAPP and Ab aggregation might be
common. It was suggested that the limited capacity of this
shared chaperone protein is responsible for the development of
AD and T2DM (20). Inflammatory responses are closely
associated with the development of insulin resistance, and,
under these conditions, the formation and deposition of
amyloid plaques increase.

Studies in experimental animals showed that the
peripheral or central administration of insulin by intranasal,
intracerebroventricular (icv) or intrahippocampal routes has
positive effects on memory and learning processes (21). The
cognitive improvement could be related to increased
hippocampal insulin receptor expression and/or to insulin-
induced signaling transduction (22). In this context, memory
loss due to a hippocampal ischemic lesion can be prevented by
insulin administration (23). Additionally, the central
administration of low doses of streptozotocin to adult rats
induces central resistance by altering the binding of insulin to
its receptor and blocking insulin’s action. Little evidence exists
regarding the desensitization of the insulin receptor (IR);
however, central insulin resistance has been shown to be
related to cognitive and behavioral deficits (24).

Despite the specific molecular and cellular mechanisms,
brain areas predominantly affected, different clinical
presentation and therapeutical approaches used to their mainly
symptomatologic treatment, these neurological illnesses also
share common features.
FIGURE 1 | Expression of common pathogenic manifestations in the brain of patients with several neurological diseases
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RELATIONSHIPS BETWEEN CEREBRAL
GLUCOSE METABOLISM AND
INSULIN ACTION

Brain Glucose Metabolism
Glucose homeostasis requires hormonally and neurally mediated
regulatory actions that contribute to the correct functioning of
the brain and the peripheral tissues. Glucose is not only the main
energy source for the maintenance of neural and non-neural
cellular activity; it also acts as a signaling molecule. Therefore,
glucoregulatory mechanisms are key to ensuring an appropriate
glucose supply to meet the metabolic needs of the central nervous
system as well as the peripheral tissues.

The antagonistic effects of the pancreatic hormones insulin
and glucagon, the activity of the hypothalamic–pituitary–adrenal
axis, and the components of the autonomic nervous system help
to maintain blood glucose levels within a physiological range
depending on the energy status of the organism. Alterations in
physiological glycemic levels have deleterious consequences,
increasing both morbidity and mortality rates. To prevent
marked blood glucose oscillations, glucose sensors in several
locations accurately sense the glucose concentrations in the
extracellular space and set in motion regulatory mechanisms
needed to maintain glucose homeostasis. Glucokinase (GK) has
been shown to act as a glucose sensor in the hypothalamic
neurons of both humans and rats (9, 25, 26), being involved in
the regulation of energy homeostasis, feeding behavior, glucose
metabolism, and the autonomic nervous system (27–29).

In humans under physiological situations, glucagon-like
peptide-1 (GLP-1) was shown to significantly reduce glucose
metabolism in a selective and temporal manner in the
hypothalamus and the brainstem, areas involved in the control
of food intake and glucose sensing (30). These observations
suggest that reversible and brief glucose hypometabolism in
these brain areas may induce important biological effects.

In the brain, virtually all glucose is oxidized to CO2 and H2O
through glycolysis and the mitochondrial respiratory machinery.
The relationship between O2 consumption and CO2 production
in the brain is close to one, from which it follows that
carbohydrates and glucose, in particular, are the exclusive
substrates of oxidative metabolism in the brain (31). Changes
in brain glucose metabolism detected using several technical
approaches have been reported in AD patients. Currently,
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functional neuroimaging techniques such as positron emission
tomography (PET) provide in vivo measurements of glucose
metabolism with very high sensitivity. This imaging
methodology allows us to identify functional changes in brain
metabolic activity even before the appearance of clinical
symptoms. At present, the use of 18F-FDG for PET imaging is
approved in Europe and the USA for the study of glucose
metabolism in certain cardiovascular, neurological, and
oncological diseases (32).

In PET functional imaging, 2-deoxy-2-(18F) fluoro-D-glucose
(18F-FDG) competes with glucose to bind to transporters
localized in the cell membranes of neurons and astrocytes. The
18F-FDG intracellular concentration relates to the hexokinase
activity and glycolysis of brain cells, and changes in glycolytic
activity are associated with neurodegenerative diseases.
Therefore, 18F-FDG-PET provides quantitative tomographic
images of the distribution of neuronal metabolism, allowing
the determination of the changes in regional hypometabolism
observed in several neurological diseases. Thus, PET
neuroimaging is a valuable tool for the early diagnosis of
neurodegenerative diseases, which are characterized by marked
alterations in brain glucose metabolism (Table 1). Regional brain
glucose hypometabolism measured by 18F-FDG-PET imaging by
itself indicates a reduction in cellular glucose utilization but
this cannot be directly attributed to a particular type of cell
(neuronal or non-neuronal) or whether is related to functional
deafferentation or to cellular loss. Despite this caveat, considering
that the affected areas have been well characterized, by means of
other complementary techniques, by glial reactivity and neuronal
dysfunction or death, it is generally accepted that brain glucose
hypometabolism is mostly an overall reflection of neuronal
impairment or death. Regional brain hypometabolism in
neurodegenerative diseases is well-described in animal models
of AD, in which hypometabolism is found in the hippocampus
and temporo-parietal cortex. Thus, 18F-FDG-PET imaging in
patients revealed that glucose metabolic reductions in the
parieto-temporal, frontal and posterior cingulate cortices were
a hallmark of AD (33). This focal alteration in metabolism can
also be observed in brain areas affected by stroke and in epileptic
foci. Likewise, brain glucose hypometabolism is typical in the
striatum in PD models. In psychiatric pathologies such as major
depression, robust hypometabolism is generalized. Furthermore,
18F-FDG-PET imaging can be performed in experimental
models of disease. Thus, in a transgenic mouse model of
TABLE 1 | Some aspects of brain glucose metabolism in health and disease.

Glucose transporters Glucose phosphorylating enzymes Pathways of oxidative/energy
metabolism

References

In
Health

GLUT-1 and GLUT-3, the most abundant
GLUT-2, GLUT-4, and GLUT-8, lower contents
in selective areas

Hexokinase I is the most abundant Normal functioning of glycolysis, Krebs
cycle, oxidative phosphorylation, pentose
route and thiamine metabolism

(10, 25–34)
Glucokinase or hexokinase IV is considered a
cerebral glucose sensor in the control of food
intake

In
Disease

Glucose-metabolism dysfunction increases the
risk of cognitive impairment; reduced GLUT-1
and GLUT-3 expression in several diseases

Characterizing brain glucokinase mutations
related to nosological entities, as happens in
liver and pancreatic beta cells, should be of
interest.

Mitochondrial dysfunction and oxidative
stress; alterations in Krebs cycle, oxidative
phosphorylation and thiamine metabolism

(34–40)
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tauopathy (34) as well as in GSK-3b-overexpressing mice (35),
brain glucose hypometabolism is reflected by a reduction in
18F-FDG (Figure 2).

Brain Insulin Actions
Insulin action inducing glucose uptake in the CNS differs from
that inducing that in the peripheral tissues due to the brain’s
lower content of GLUT-4, which is the only insulin-sensitive
glucose transporter. However, GLUT-1 and GLUT-3’s presence
and action are more relevant in the brain than in peripheral
tissues. This selective tissue distribution of glucose transporters is
necessary for the metabolic activities occurring in physiological
situations and might explain the alterations observed in
pathophysiological conditions (34, 35)

Brain glucose uptake was traditionally considered insulin-
independent (41, 42). It is currently known that insulin acts in
concert with IGF-1 on astrocytes controlling brain glucose
metabolism (43, 44). Thus, insulin and IGF-1 synergistically
stimulate a mitogen-activated protein kinase/protein kinase
D (MAPK/PKD) pathway, resulting in the translocation of
GLUT-1 to the cell membrane through multiple protein–
protein interactions.

The ablation of insulin receptors in astrocytes reduces
th e g lu co s e - induced ac t i v a t i on o f hypo tha l ami c
proopiomelanocortin (POMC) neurons. Accordingly, astrocytic
Frontiers in Endocrinology | www.frontiersin.org 4
insulin signaling co-regulates hypothalamic glucose sensing and
systemic glucose metabolism. Thus, insulin signaling in
hypothalamic astrocytes co-controls CNS glucose sensing and
systemic glucose metabolism via the regulation of glucose uptake
across the blood–brain barrier (BBB) (45). In this context, the
role of hypothalamic GK as a glucose sensor involved in the
control of satiety and body weight is noteworthy. At this point, it
is important to know the functional interrelations between GK
and GLUT-1 in POMC neurons.

Despite the different physiological consequences, the
molecular events through which insulin acts on the brain are
similar to those in the periphery (Table 2).

Insulin’s actions on the brain contribute to regulating energy
expenditure, glucosehomeostasis, feedingbehaviors, reproduction,
cell proliferation and differentiation, neuroprotection,
neuromodulation, and learning and memory (10). When
referring to insulin-induced proliferative effects, the interaction
of insulin and IGF-1 at the receptor molecular level must be
considered. Insulin can act on IGF-1 receptors at high
concentrations. Likewise, IGF-1 can also interact with the insulin
receptor. In addition, there are hybrid receptors inwhich one of the
a-subunits binds to insulin, while the other binds to IGF-1. These
findings, increasing the plasticity of both molecules in growth and
metabolic activities, may be relevant under physiological and
pathological situations.
FIGURE 2 | Glucose uptake in a transgenic model of tauophathy (TAUwlv transgenic mice) compared to control (wild type) animals at the age of 19 months, as
detected by 18F-FDG PET neuroimaging. The upper row shows a MRI mouse brain template (coronal, sagittal and transversal views); the middle and the bottom
rows show the PET image (normalized to SUV -standard uptake value-) corresponding to a representative wild-type and TAUvlw mouse, respectively.
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Insulin is also a potent neuroprotective agent, mainly
inhibiting apoptosis, beta amyloid toxicity, oxidative stress and
ischemia (46–50). Moreover, insulin facilitates learning and
memory by modulating hippocampal synaptic plasticity, which
is importantly regulated by glutamatergic neurotransmission,
which mediates long-term depression (LTD) by reducing
AMPA receptors in the postsynaptic membrane while
stimulating long-term potentiation (LTP). Glutamate also
upregulates GABA receptors in the postsynaptic and dendritic
membranes of the neurons (60–62). Impaired memory ability
and reduced hippocampal synaptic plasticity were shown to be
restored by insulin treatment in an experimental model of
diabetes mellitus. Additionally, it was reported that IGF-1
augments hippocampal synaptic transmission by a mechanism
involving AMPA receptors and PI3K activity (63).

Insulin also affects APP metabolism, activating a-secretases
and regulating Ab levels by promoting Ab transport to the
neuronal gap. Insulin-degrading enzyme (IDE) is responsible
for degrading not only insulin but also Ab, having a higher
affinity for the hormone than for Ab. Then, insulin can prevent
the formation of Ab fibrils, stimulating the internalization of Ab
oligomers and, therefore, inhibiting their binding to neurons,
protecting the synapses from Ab oligomers (64). In states of
insulin resistance, the protective role of insulin regarding Ab
accumulation is diminished, and, in turn, Ab deposits
downregulate the action of insulin. Consequently, Ab peptides
inhibit the binding of insulin to its receptors, altering insulin-
induced signaling pathways (65, 66). It was shown that tau
protein phosphorylation increased significantly in an animal
model of insulin resistance induced by fructose; in AD
transgenic mice, insulin resistance induced by diet facilitated
brain Ab formation.
ALTERATIONS IN GLUCOSE AND INSULIN
METABOLISM IN NEUROLOGICAL
DISEASES

Insulin alterations and changes in glucose metabolism (67) were
suggested to be risk factors for developing certain neurological
diseases (Tables 1, 2). Thus, individuals with elevated circulating
blood glucose concentrations are not only at a higher risk of
developing dementia (20, 68, 69) but also progress more rapidly
from mild cognitive impairment (MCI) to AD. These findings
Frontiers in Endocrinology | www.frontiersin.org 5
suggest that abnormal glucose metabolism may play a role in the
pathogenesis underlying AD. Hypoglycemia is relatively frequent in
diabetic patients treated with either insulin or oral hypoglycemic
agents. Likewise, hypoglycemia is manifested in nondiabetic
patients with insulinoma, severe liver illness, some endocrine
diseases and alcoholism. A chronic state of cerebral glucose
hypometabolism was recently identified in people with several
neurodegenerative diseases such as partial epilepsy, PD, AD,
schizophrenia, and HD, and in MDD patients (13). Brain glucose
hypometabolism appears early in the preclinical stages of these
diseases and contributes to their pathogenic manifestations. Studies
with 18F-FDG-PET imaging showed a significant decrease in brain
glucose metabolism in MCI patients in the earlier stages of AD (70)
as well as in other neurodegenerative diseases such as PD (71).
Altogether, hypometabolism may be an important biomarker of the
pathogenic course, preceding the clinical manifestations of the
disease. The main scientific societies recommend the use of
18F-FDG PET in patients with AD in the prodromal phase or
MCI (72)

Because brain glucose hypometabolism precedes the first
clinical manifestations by years, it is not likely that significant
neuronal loss accounts for the lower 18F-FDG-PET signal (4).
Furthermore, oxidative stress related to inflammation, misfolded
protein toxicity, mitochondrial dysfunction and impaired
glucose metabolism contributes to neuronal death and neural
dysfunction (2, 73).

Brain Glucose Metabolism and
Neuroinflammation in Alzheimer Disease
and Type 2 Diabetes Mellitus Patients
AD is a neurological disorder that causes significant memory loss
and progressive dementia, accompanied by the presence of
amyloid plaques, neurofibrillary tangles and amyloid
angiopathy, as well as the widespread loss of neurons and
synapses (74). More than 40 million people worldwide suffer
from AD. The prevalence is increasing rapidly, being expected to
exceed 130 million patients by 2050 (51). Impaired insulin
secretion and/or insulin resistance were estimated to affect 425
million patients worldwide in 2017, with 90% of the patients
having a diagnosis of T2DM (75).

Preclinical studies reported that the induction of acute
hyperglycemia in a mouse model of AD, using glucose clamps
and in vivo microdialysis techniques, increased Ab and lactate
production in the hippocampal interstitial fluid (ISF), considered
TABLE 2 | Some aspects of physiological and pathophysiological metabolism of insulin in the brain.

Insulin signaling Insulin actions References

In
Health

-Brain insulin receptors have similar properties to those
described in peripheral tissues.

-Acting through IR/IRS-1/PI3K/Akt/mTOR and MAPK
pathways

- On energy expenditure, feeding behavior, glucose homeostasis and reproduction.

- Neuroprotective effects

- Neuromodulatory effects on cognition, learning and memory

(10, 43–50)

Alterations of insulin receptor signaling Insulin resistance
In
Disease

-Reduced brain insulin receptor, PI3K/Akt pathway, and
overactivation in GSK-3b in AD, T2DM, and
schizophrenia

- Alterations in Akt activity in HD

- Present in epilepsy, PD, AD, T2DM, and schizophrenia

- Risk factor for cognitive impairment; insulin improves it

- Affects hippocampal plasticity, APP metabolism, and brain inflammatory
reactions, and increases tau protein concentrations

(51–59)
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biomarkers of altered neural activity. These effects were
exacerbated in aged AD mice with advanced Ab pathology.
Furthermore, and based on the altered ISF Ab levels and
neuronal activity observed after the pharmacological
manipulation of ATP-sensitive potassium (K+-ATP) channels
in the hippocampus, they suggested the involvement of these
channels in mediating the response to hyperglycemia. Therefore,
K+-ATP activation might mediate the response of hippocampal
neurons to hyperglycemia by coupling metabolism with
neuronal activity and ISF Ab levels (76). Likewise, in vitro
studies showed that Ab1-42 incubated with hippocampal slices
produced a significant decrease in glucose uptake (77), which
was related to impaired glycolysis but not to altered
mitochondrial function (70, 78).

Insulin resistance is a risk factor for the development of AD,
being a common finding in AD patients independent of T2DM.
Furthermore, peripheral insulin resistance might also be
accompanied by central insulin resistance, IGF-1 resistance,
and IRS-1 and IRS-2 dysfunction, presumably as a
consequence of Ab oligomers further contributing to cognitive
decline (79). It was proposed that peripheral and central insulin
resistance crosstalk through a “liver–brain axis”, promoting
cognitive dysfunction in T2DM (80).

Clear-cut experimental evidence shows that inflammatory
responses are closely associated with the development of
insulin resistance in obesity and T2DM (81), increasing the
risk of AD. Accordingly, in the cerebrospinal fluid (CSF) of
patients with AD, high concentrations of interleukin 6 (IL-6)
have been reported (82). Studies on experimental animals
suggest that inflammation interacts with the processing and
deposition of b-amyloid peptide (83). Increased levels of
inflammatory cytokines alter hippocampal synaptic plasticity
and the components of spatial learning (84). Chronic
inflammation may contribute to the development of insulin
resistance and T2DM, as well as the association of both AD
and T2DM (85). Additionally, augmented brain TNFa and Ab
contents in obese hyperinsulinemic patients facilitate the
formation of amyloid plaques (86).

Alterations in some insulin signaling pathways such as PI3K/
Akt and GSK-3 are present in central inflammation and insulin
resistance (51). The PI3K pathway inhibits the formation of IL-
12 by dendritic cells, whereas GSK-3 is a kinase involved in tau
hyperphosphorylation and the modulation of Ab metabolism
(87). Some interactions occur between this protein and the
insulin signaling pathway. IR activation phosphorylates and
inhibits GSK-3b (52). In AD and T2DM, GSK-3b activity is
increased, phosphorylating the IR and IRS-1 (53). In addition,
the inhibition of GSK-3 stimulates the production of anti-
inflammatory cytokines such as IL-10, and decreases
proinflammatory cytokines such as IL-1b, IL-6 and IFN-ϒ in
response to Toll-like receptors (88). These findings have been
observed in AD patients and in animal models. Accordingly, the
PI3K/Akt/GSK-3 pathway may play a relevant role by mediating
the inhibitory effect of insulin on inflammation.

18F-FDG-PET imaging has revealed reduced glucose uptake
in several brain areas in AD patients (89, 90). This brain glucose
Frontiers in Endocrinology | www.frontiersin.org 6
hypometabolism is present in both nondiabetic and diabetic
patients with AD. However, it is important to remember that
glucose metabolism dysfunction in diabetic patients increases the
risk of cognitive impairment (91). In transgenic mice
overexpressing the tau protein, marked hippocampal glucose
hypometabolism and a significant beneficial effect of insulin
improving cognitive function were reported (34).

Brain Glucose Metabolism in Parkinson’s
Disease: Relationship Between Diabetes
Mellitus and Parkinson’s Disease
Parkinson’s disease (PD) is a neurodegenerative disorder caused
by a progressive deterioration of the dopaminergic neurons of
the substantia nigra in the midbrain (92). PD patients exhibit
widespread cortical hypoperfusion and reduced brain glucose
metabolism (71). As in AD patients, these metabolic
abnormalities are expressed in the initial stages of the disease,
suggesting that they might be important for an early diagnosis of
the disease or for initiating potential treatment.

Several pieces of epidemiological and molecular evidence
show that insulin alterations such as DM are related to PD
(93). The high density of insulin receptors in the dopaminergic
neurons of the ventral tegmentum and substantia nigra suggests
that those neurons might be targets for the action of insulin (54,
94–97). In addition, insulin receptors’ mRNA expression and
immunoreactivity in the neurons of the substantia nigra are
reduced in PD patients (98), and dysfunctional insulin-mediated
signaling occurs before the death of dopaminergic neurons.
Therefore, it seems that a relationship between insulin
dysregulation and PD exists.

Approximately half of the patients with a diagnosis of PD are
either glucose-intolerant and/or diabetics (99). Data obtained
from postmortem studies, experimental animal models and cell
cultures support the idea that the neuroinflammatory processes
related to microglial activation, astrogliosis, and lymphocyte
infiltration are involved in the loss of neurons in PD (100–
102). Considering the role of neuroinflammation in insulin
resistance and the role of the components involved in insulin
signaling transduction mediating inflammatory processes, it
could be deduced that neuroinflammation may facilitate the
crosstalk between insulin dysfunction and PD. In this context,
the antidiabetic drug pioglitazone, acting through peroxisome
proliferator-activated receptor gamma (PPAR-Υ) receptors, was
interestingly shown to reduce neuroinflammation, suggesting
that it might protect dopaminergic neurons in PD (103).

Insulin dysfunction has also been related to the progression of
PD. It was shown that dopamine synthesis in the synaptosomes
of the striatum in diabetic rats was significantly lower than that
in the controls, and insulin resistance reduced the release and
clearance of dopamine by dopaminergic neurons (104).

Insulin has regulatory effects on the expression and activity of
tyrosine hydroxylase, the limiting enzyme responsible for
dopamine synthesis (105). Thus, tyrosine hydroxylase activity
and dopamine concentrations are reduced in the PD brain;
reduced tyrosine hydroxylase mRNA expression was reported
in the dopaminergic neurons of diabetic rats (106). In addition,
May 2022 | Volume 13 | Article 873301
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insulin has been shown to increase the expression of the
dopamine transporter and to promote presynaptic dopamine
reuptake in the tegmentum ventral and substantia nigra
(107, 108).

18F-FDG-PET imaging studies showed that glucose
metabolism is elevated in the putamen, an increase that is
usually accompanied by low 18F-DOPA uptake. Other brain
regions of the associative cortex show a decline in glucose
metabolism that increases as the disease progresses.
Importantly, progressive cortical hypometabolism in temporo-
parietal and occipital regions marks the transition from normal
cognition to dementia (109).

Alterations in Cerebral Glucose
Metabolism and Insulin in Patients With
Huntington’s Disease
Huntington’s disease (HD) is a neurodegenerative genetic
disorder characterized by the abnormal formation of
polyglutamine aggregates, known as huntingtin, which
progressively results in neuron dysfunction and tissue loss in
the striatum and cerebral cortex. The clinical manifestations of
HD include disordered movements, cognitive decline, and
psychiatric symptoms (55). Additionally, HD is not only
associated with altered insulin metabolism and diabetes
mellitus, but also has a neuroinflammatory component that
plays a relevant role in the development and progression of
the disease (110). Insulin-sensitizer drugs, such as
thiazolidinediones, and anti-inflammatory drugs, such as
inhibitors of cyclooxygenase (COX-2), have been shown to
have protective effects in experimental models of HD (111, 112).

The incidence of DM is higher in HD patients (113), who
have abnormal glucose tolerance (114), likely as a consequence of
reduced b-cell mass, insulin content, and b-cell replication, and
altered exocytosis (115). The glibenclamide treatment of diabetes
in a transgenic mice model of HD showed beneficial effects,
suggesting a stimulatory action on insulin exocytosis (116).

Insulin plays a key role in regulating genes involved in the
pathogenesis of HD, and insulin dysregulation affects the
neuropathology of HD (117). The activity of the protein kinase
Akt, one of the main components of the insulin signaling
pathway, is altered in HD. The activation of Akt in the insulin
signaling cascade inhibits cell death in primary cell cultures of
the striatum. Results from postmortem studies with HD samples
demonstrate that caspase-3 degrades Akt, abolishing its effect on
cell survival (55).

Another mechanism underlying the effect of insulin on the
pathogenesis of HD is the ability of this hormone to promote the
clearance of huntingtin aggregates. Although neurons have a
certain ability to clear these protein aggregates, the continuous
production of the mutant protein, as occurs in HD, compromises
this ability. We suggest that a vicious circle between the
pathogenesis of HD and insulin-related alterations might
develop, contributing to the progression of the disease. In
addition, metformin is considered by some authors as
therapeutically useful for neurological diseases such as HD (118).
Frontiers in Endocrinology | www.frontiersin.org 7
18F-FDG-PET imaging studies in HD revealed an early and
marked reduction in glucose metabolism in the caudate and
putamen nucleus that, in further advanced stages, extends to
other brain areas such as the thalamus and brain cortex (119).

Epilepsy and Brain Glucose
Hypometabolism
Epilepsy is a heterogeneous neurological chronic disease
characterized by recurrent spontaneous seizures. It is one of
the most important neurologic syndromes, with a high
prevalence, affecting around 0.5–2% of the world’s population.
Among the different forms of this disease, temporal lobe epilepsy
(TLE) is the most prevalent in adults. The development of
epilepsy is associated with a wide spectrum of neuronal
alterations, including neuroinflammation, neurochemical
imbalances, synaptic modifications in specific brain areas, and
metabolic activity disturbances. 18F-FDG-PET imaging
techniques, commonly used in TLE patients, have been
demonstrated to be highly sensitive, allowing for the
localization of the epileptic focus. During the seizure or ictal
phase of the disease, the brain metabolism and cerebral blood
flow increase in the epileptic focus. By contrast, after the seizure,
during the interictal phase, the epileptogenic zone is
characterized by pronounced glucose hypometabolism (120).

Under physiological conditions, brain metabolism is mainly
fueled by glucose through both aerobic and anaerobic pathways
(121). It was suggested that altered glucose metabolism is
probably a key initiating factor promoting epileptogenesis.
Energy deficiency could underlie the brain hypometabolism
featured by 18F-FDG-PET imaging in patients and in animal
models of epilepsy (122, 123).

In epilepsy, during seizure, brain glucose hypermetabolism
occurs (124–126), and the metabolic rate of glucose and oxygen
consumption increases. It was suggested that the aerobic
pathway is unable to supply the amount of energy required to
deal with the demands imposed by the seizure. The energy
necessary to sustain a neuronal-hyperactivity-induced seizure
might be obtained via increased blood glucose uptake and/or
increased glycolytic astrocyte activity coupled to the lactate
shuttle (121). The inhibition of lactate dehydrogenase (LDH)
reduces hippocampal lactate, eliciting neuronal inhibition and
reducing seizures and epileptiform activity (127). It has long
been known that a ketogenic diet is a nonpharmacological
alternative treatment for children with refractory epilepsy. Less
is known about its effectiveness in adult patients. Nevertheless,
the mechanisms underlying the antiepileptogenic effect of
ketogenic diets are yet to be fully unveiled. Furthermore,
ketogenic diets seem to act through many distinct and
unrelated mechanisms that ultimately converge in an overall
antiepileptogenic effect. Nevertheless, it seems that ketogenic
diets, by leading to the generation of ketone bodies as alternative
fuel, reduce hippocampal lactate by weakening the astrocyte–
neuron lactate shuttle. Thus, both LDH inhibition and ketogenic
diets seem to converge in at least one common mechanism
related to their antiepileptogenic properties.
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Among the various animal models of epilepsy that have been
developed, the most frequently used are those that induce partial
seizures through kindling or status epilepticus (SE). Kindling is
the procedure through which the progressive development of
seizures is achieved in response to an initial subconvulsive
electric or chemical stimulus applied repeatedly and
intermittently (128).

In addition to its clinical application, 18F-FDG-PET imaging
has been used to characterize several animal models of epilepsy,
such as the lithium–pilocarpine status epilepticus and amygdala
electrical kindling models (12, 129). For studies in those models
as well as in other animal models of epilepsy, 18F-FDG-PET
imaging reveals a significant reduction in cerebral glucose
metabolism. In the silent stage of the pentylenetetrazol (PTZ)
kindling model (130), this glucose hypometabolism was
considered to be a reliable and predictive index for the epilepsy
outcome, clearly correlating hypometabolism imaging in the
entorhinal cortex and epileptogenesis with spontaneous
seizures (Figure 2). This finding suggests that a reduction in
brain glucose metabolism is effectively associated with convulsive
seizures. Although the mechanisms underpinning brain glucose
hypometabolism in epilepsy are not yet fully understood, it was
suggested that epilepsy-induced brain hypometabolism could be
due to neural loss (131), the alteration of cerebral blood flow
(132), or the deafferentation of epileptic neurons (133).

Altered insulin signaling in the brains of genetic-absence
epilepsy rats from Strasbourg was found (134), suggesting a
role for this hormone in this disorder and a possible relationship
of it with brain glucose alterations.

Even though the mechanisms underlying brain glucose
hypometabolism in epilepsy and their potential contributions
to the neuropathology of epilepsy are still unknown, it is
reasonable to suggest the involvement of multiple and likely
concurrent processes such as neuronal excitability dysfunction,
neuroinflammation and microglial activation, disturbed brain
metabolism, neuronal death, and/or disruption of cerebral
blood flow.

Alterations of Cerebral Glucose
Metabolism and of Insulin Action in
Patients With Schizophrenia
Schizophrenia is a psychiatric disorder characterized by
abnormal behavior and psychotic symptoms such as
hallucinations, false beliefs, confused thinking, reduced social
engagement, and emotional expression. At the neurochemical
level, these patients have alterations in dopaminergic and
glutamatergic neurotransmission. Although the mechanisms by
which they occur are unknown, progressive inflammation and
neurodegeneration have been suggested as the potential main
mechanisms contributing to this disease (135, 136). Similar to
the other neuropathologies discussed in this review, alterations in
the secretion of and sensitivity to insulin also occur in
schizophrenic patients (56, 137). Schizophrenic individuals
have elevated circulating insulin levels, which corresponds to a
state of insulin resistance, and are more susceptible to suffering
from T2DM (138), and they have altered tolerance to glucose
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overload. Additionally, schizophrenic patients with normal body
weights and corporal mass indices have anomalous tolerance to
glucose, and they have abnormalities in lipid and energy
metabolism (139).

It is known that the signal transduction mediated by the
insulin receptor located in the prefrontal dorsolateral cortex is
reduced, as is the autophosphorylation of the insulin receptor
(138). Clozapine administration in animal models of insulin
resistance reduced the signaling deficiency for the insulin
receptor (138).

Patients with schizophrenia were found to have frontal
hypometabolism in 18F-FDG-PET studies, and this was found
to be strongly associated with cognitive deficits (140).

Alterations in Cerebral Insulin Action in
Patients With Major Depressive Disorder
Robust evidence supports the idea that DM is associated with
changes in mood and anxiety (141). Many studies have
established a marked relationship between depressive
alterations and changes in insulin metabolism. The prevalence
of depression in T2DM patients is three times greater than that
in the general population (142). This is also observed in the
pediatric population, with depression being two to three times
more prevalent in diabetic children and adolescents than in their
nondiabetic counterparts. Mood alterations during the
postpartum period have also been related to the abrupt
decrease in circulating insulin levels after delivery (143).

Insu l in i s known to have e ffec t s on serotonin
neurotransmission, which plays an important role in behavior
and mood disorders. Most of the antidepressant drugs act by
increasing the synaptic concentrations of serotonin and other
monoamines such as dopamine and norepinephrine (144).
Insulin metabolism alters brain monoamine activity both in
diabetic humans and in animal models of DM (11). The
serotonin content in the hypothalamus and brain stem of
streptozotocin-diabetic rats is reduced (145), and changes in
the expression and function of brain dopamine and serotonin
receptors were also observed in the brain cortices of such
animals (139). Thus, although only the density of the 5HT2a
receptor was increased, both 5HT2a and 5HT1a receptors
showed a reduced sensitivity in response to their agonists,
which was restored to the values found in the control animals
after insulin treatment (139).

Depression has negative effects on glycemic control, being a
high-risk factor for the development of DM (146). It was
suggested that the persistent activation of the hypothalamus–
pituitary–adrenal gland axis in depression may facilitate the
occurrence of T2DM (147).

Depression is also associated with neuroinflammatory and
neurodegenerative processes (148). Thus, the levels of
proinflammatory cytokines are increased in the blood plasma,
CSF, and samples of postmortem brains of patients with severe
depression; interestingly, treatment with antidepressant drugs
normalizes the elevated levels of cytokines (149). The
administration of cytokines, such as IL-1b, induces anxiety
behavior and depression, whereas treatment with anti-
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inflammatory agents, such as long-chain polyunsaturated fatty
acids, produces antidepressant effects (150, 151).

One of the mechanisms described as responsible for the
depressive state induced by inflammation is altered brain
monoaminergic neurotransmission. Accordingly, the central
administration of IL-1b increases the production of dopamine,
norepinephrine and serotonin, which also occurs in diabetic
brains (150).

As previously mentioned, insulin dysfunction plays a crucial
role in neuroinflammatory processes. Thus, neuroinflammation
might be a common phenomenon that connects the
neurodegenerative and neuropsychiatric diseases with insulin
dysfunction (152, 153).

Molecular, functional and structural changes have been
detected in the brains of major-depressive-disorder patients,
mainly by means of imaging techniques such as magnetic
resonance imaging (MRI) and positron emission tomography
(PET) (154). An anomalous default mode network, as revealed
by resting-state functional MRI, is probably associated with
aberrant metabolic and serotonergic functions. These findings
indicate that further investigations are important to shed light on
the serotonergic network system associated with the behavior
and genetic variations in major depressive disorder.
IMPAIRED GLUCOSE TOLERANCE AND
RESISTANCE TO INSULIN ACTION:
COMMON FEATURES OF SEVERAL
NOSOLOGICAL ENTITIES

Many studies support a relationship between pathological
conditions characterized by insulin dysfunction, such as
impaired glucose tolerance, insulin resistance, and DM, and
AD (155).

Insulin resistance, understood as a target organ’s reduced
sensitivity to insulin, results in hyperinsulinemia but not in high
insulin concentrations in the CSF, where the insulin
concentrations are reduced. The latter may be explained by
reduced insulin clearance and/or low insulin uptake from the
peripheral sources (57). Accordingly, the mRNA expression and
concentrations of insulin and IGF-1, and their transducers are
reduced in the brains of AD patients (156). Furthermore, the
administration of those proteins ameliorates some of the typical
neuroanatomical signs of the brains of AD patients such as
atrophy and mass loss (157).

Insulin resistance is known to contribute to the development
of cognitive dysfunction due to, at least in part, the loss of the
neuroprotective effects attributed to insulin. Thus, in several
rodent models, a lack of insulin leads to neurodegeneration
(158); accordingly, nasal or intrahippocampal insulin
administration has been shown to improve spatial memory
ability and cognitive function (58, 59). Similarly, pioglitazone,
an insulin sensitizer, ameliorates the impairment in learning and
memory functions. These findings support a possible
neuroprotective role for insulin in other brain-damage
conditions such as ischemia, apoptosis, oxidative stress and Ab
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toxicity (51). The mechanisms underpinning the effects of
insulin resistance on cognitive impairment include those
affecting hippocampal plasticity, APP metabolism, increased
tau protein concentrations, and neuroinflammation (57).

Altered cognitive function seems to be more frequent in
patients with metabolic syndrome and those with central
obesity (159, 160) than in the general population. Similarly,
insulin resistance promotes the development of MCI and
AD (161).

Impaired insulin transduction with reduced insulin and IGF-
1 receptors (IR and IGF-1R, respectively); insulin and IGF-1
mRNA expression and protein concentrations; and downstream
signaling elements, such as insulin receptor substrates 1 and 2
(IRS-1 and IRS-2) and phosphatidylinositol 3-kinase (PI3K),
were observed in the brains of AD patients (156). Thus, AD is
being associated with hypoactive IR/IRS-1/PI3K insulin
signaling, even more noticeable with hypoactivity of the IGF-
1R/IRS-2/PI3K signaling pathway (80, 162, 163).

Senile plaques composed of Ab-peptide extracellular
aggregates are a typical neuropathological feature of AD (164,
165) that also have significant effects on insulin signaling. Thus,
Ab-peptides were shown to inhibit the binding of insulin to its
receptors, to reduce receptor autophosphorylation, to induce its
downregulation by internalization and removal, and to impair
insulin-induced signaling pathways (166, 167). Altogether, Ab
peptides contribute to the development of central insulin
resistance; accordingly, the neuroprotective effects of insulin
might be reduced in the AD brain as a consequence of both
insulin expression and function being downregulated (168).
Furthermore, the relationship between Ab-peptides and insulin
is reciprocal, as insulin induces the release of intracellular
synaptic Ab-peptide (48) and regulates the expression of
insulin-degrading enzyme (IDE), a protease involved in the
clearance of Ab (169). Altogether, the reduced neuroprotective
actions of insulin in AD and T2DM patients contribute to an
increase in the brain´s vulnerability to neurodegeneration.

Intraneuronal neurofibrillary tangles (NFTs) (164, 165),
mainly composed of hyperphosphorylated tau protein, are also
a feature of the AD brain (170). Additionally, NFTs not only play
an important role in AD, but their concentrations in the CSF are
elevated in MCI patients with insulin resistance. However, the
cerebel lum is nei ther affected by reduced glucose
hypometabolism nor devoid of NFTs (171).

The neuroprotective effects of insulin also seem to extend to
anti-inflammatory-related mechanisms. Inflammatory factors
such as IL-1, IL-6, and tumor necrosis factor-a (TNF-a) are
augmented in the brains of AD patients (81), indicating the
presence of a nonspecific immune inflammatory reaction in the
early phase of brain plaque formation. Microglial cells contribute
to the brain´s cellular immune reaction, playing a
neuroprotective role via the phagocytosis of pathogenic
microorganisms and dangerous particles (172). A lack of
insulin-mediated actions in insulin resistance potentiates the
microglia- and astrocyte-mediated inflammatory response in
AD pathology. Thus, insulin resistance increases plasma
insulin reactivity, reduces insulin sensitivity, and activates
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proinflammatory cytokines in the brain such as C-reactive
protein and IL-6 (173). Augmented levels of proinflammatory
cytokines can alter spatial learning related to hippocampal
synaptic plasticity (84).

Glucose hypometabolism, likely related to insulin
dysfunction, includes altered insulin transduction signaling,
conditioned by different risk factors. In addition, glucose
intolerance is observed in T2DM, schizophrenia, and HD and
in more than 50% of PD patients (Table 3). In HD patients, both
insulin secretion and its metabolism are altered (174).
Furthermore, insulin was shown to play an important role in
the control of the genes involved in HD etiopathology (55),
inducing the expression of dopamine transporters and increasing
dopamine clearance (117, 175).
Frontiers in Endocrinology | www.frontiersin.org 10
In this context, the nasal administration of insulin was shown
to improve not only the metabolic parameters but also memory
and learning in PD, AD, and T2DM patients. In HD patients, a
significant reduction in IR and Akt kinase autophosphorylation
as well as increased GSK-3b activity was found. Therefore,
central insulin resistance may be due, at least in part, to a slow
pathological progression of nosological entities, such as epilepsy,
AD, T2DM and schizophrenia. In turn, central insulin resistance
might facilitate the deterioration in hippocampal and cortical
neurons with the progression of the illness, from its beginning,
during its expansion, to its obvious clinical manifestations 15–20
years later (89). Further studies are needed to unveil to what
extent this hypothesis might be valid, as well as the possibility
that some neurodegenerative diseases such as AD or PD may be
TABLE 3 | Alterations of glucose metabolism and of insulin action in brain of several neurological diseases and Type 2 Diabetes Mellitus.

DISEASES GLUCOSE
HYPOMETABOLISM

NEURO-
INFLAMMATION

GLUCOSE
INTOLERANCE

INSULIN
EFFECTS

INSULIN
RESISTANCE

ALTERATIONS OF INSULIN
SIGNAL TRANDUCTION

REFERENCES

EPILEPSY ✓ ✓ ✓ Although
Diabetes is an
established risk
factor for
acquired
epilepsy, there is
a lack of reports
showing how
neural
hiperactivity
could influence
brain insulin
signaling

✓ Neuroprotective levels of IGF-1
exacerbate epileptogenesis
after brain injury. These effects
of IGF-1 were mediated by
Akt-mTOR-signaling, which are
also transducers of insulin
action. However alterations in
the insulin signaling of genetic
absence of epilepsy in rats
from Strasbourg has been
found

(120, 130,
134)

PARKINSON ✓ ✓ >50% ↑ Expression of
Dopamine
transporter

✓ Alterations of insulin signal
transduction

(54, 71, 98,
99, 104–109)

↑ Dopamine
clearance

ALZHEIMER ✓ ✓ ✓ Nasal insulin
administration
improved
learning and
memory

✓ Reduced brain insulin receptor/
PI3K/Akt pathway and
overactivation of GSK-3b

(52, 53, 81–
85, 88–91)

SCHIZOPHRENIA ✓ ✓ ✓ Alteration of
secretion and
sensitivity to
insulin

✓ Reduced brain insulin receptor/
PI3K/Akt pathway and
overactivation of GSK-3b

(56, 135–140)

HUNTINGTON ✓ ✓ ✓ Alteration of
insulin secretion

✓ Alteration of Akt activity (55, 110–118)

↑ expression HD
genes

MAJOR
DEPRESIVE
DISORDERS

✓ ✓ ✓ Changes of
cerebral
monoamine
activities,
modifications of
serotonin
receptors

✓ - (141–148,
150–154)

T2DM ✓ ✓ ✓ Metabolic
parameters,
memory and
learning
improved

✓ Reduced brain insulin receptor/
PI3K/Akt pathway and
overactivation of GSK-3b

(34, 51–53,
75, 80–91)
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the consequence of a slow deteriorative process caused by viral,
bacterial or fungal infections, or by the propagation of prion-like
misfolded proteins (176–179).
SIGNIFICANCE OF OTHER
BIOMOLECULES BESIDES INSULIN THAT
MAY AFFECT BRAIN GLUCOSE
HYPOMETABOLISM AND CENTRAL
INSULIN RESISTANCE

Based upon the large amount of information gathered in the last
few decades regarding the central actions and effects of other
hormones and regulatory peptides, we considered it necessary to
mention some of the most relevant (Table 4). Thus, included in
this group are the adipokines, molecules that regulate several
metabolic actions, energy expenditure, insulin sensitivity and
neuroendocrine function (190, 191).

Adiponectin acts through its receptors that are broadly
expressed in the brain (192), increases insulin sensitivity (193),
and promotes fatty acid oxidation and glucose metabolism (194).
The hypertrophic adipose cells of obese mice, a seemingly
inflammatory environment, synthesize less adiponectin, and
the metabolism of fatty acids and glucose is altered. These
metabolic alterations persistently observed in the AD brain
were suggested to be a stimulus or risk factor for the illness
(195). Reduced levels of adiponectin coexist with DM, which
increases its relevance (196), whereas the overexpression of
adiponectin was shown to prevent the effects of high-fat-diet-
induced obesity (183).

Microbial molecules produced in the gut microbiome have also
been related to insulin resistance, inflammation and dopamine
function (184, 185). Obesity is associated with insulin resistance
and an altered microbiome (186). Molecules produced in the gut
microbiome, such as lipopolysaccharide (Table 4), may induce
neuroinflammation, insulin resistance and depressive behavior
(186–188). Furthermore, some microorganisms can produce
precursors of the neurotransmitter dopamine, which may alter
insulin- and dopamine-mediated functions (189).
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Under physiological conditions, cannabinoids have
neuroprotective and anti-inflammatory effects; they also
increase brain glucose uptake by acting through CB2R,
suggesting the powerful beneficial effects of these agonists
under pathological situations. Additionally, cannabinoid
agonists decrease microglial activation, thereby reducing
inflammation and cognitive deficits and reducing brain b-
amyloid (Ab)-induced cytokine release (128, 180, 181).
THERAPEUTIC APPROACHES

Although many neurodegenerative diseases were initially
described several decades ago, an effective therapeutic
treatment has yet to be found. AD treatments, based on the
amyloid (197) and tau hyperphosphorylation (198) hypothesis,
have been used with poor results. Because thiamine deficiency is
present in AD patients, drugs targeting altered thiamine
metabolism have been also used, producing conflicting results
(188). Finally, the use of cocktail therapies, combining drugs
acting on multiple pathogenic cascades, has been implemented to
treat AD (199).

An important aspect to consider is the therapeutic treatment
starting time in the course of the disease. Both AD and T2DM
have obvious clinical manifestations 15 to 20 years after the
beginning of the pathological entity. This offers a long period of
time for starting new therapeutic approaches while the eventual
biological targets of the disease are still active.

Among the therapeutic approaches, the use of drugs that
modify cerebral metabolic activity is promising. When testing
the effects of a new drug on the brain, it is important to check if it
can cross the BBB. The noninvasive intranasal route of
administration bypasses the BBB to target therapeutics to the
brain to treat neurodegenerative disorders such as stroke, AD
and PD. Thus, intranasal therapeutics reach the brain directly
from the nasal cavity by traveling intracellularly along the
olfactory and trigeminal neural pathways (200). Intranasal
administration improves brain glucose use and memory in
healthy people and in AD patients (201, 202). In addition,
when intranasal insulin reaches the brain, it stimulates an
TABLE 4 | Roles of other molecules in addition to insulin that may modulate brain glucose metabolism and central insulin signal transduction.

Molecular candidates that alter brain glucose
metabolism and central insulin actions

Biological effects References

Endocannabinoid System - Constituted by CB1 and CB2 receptors activated by endocannabinoid ligands

- Blocking of CB1 receptors improves insulin sensitivity

- Cannabinoid CB2 receptors agonists have neuroprotective and anti-inflammatory effects,
stimulate brain glucose uptake, and reduce brain Ab-induced cytokine release

(128, 180–182)

Adiponectin ↑Brain glucose metabolism, fatty oxidation, and brain insulin sensitivity (183, 184)
↓Adiponectin levels, contributing to the severity of T2DM
↑Adiponectin levels prevent the effect of high-fat-diet-induced obesity

Molecules from gut microbiome (such as
lipopolysaccharides)

Induce:

-Neuroinflammation

-Insulin resistance

-Depression behavior

(180, 181,
183–189)
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enzyme that is also capable of degrading and clearing Ab from
the brain and downregulating GSK-3 (166, 167). In addition,
insulin protects insulin receptors and synapses from Ab
oligomers, preventing the negative impact of Ab in neurons
(48). Overall, the available evidence indicates that intranasal
administration provides an effective supply of insulin to the
cerebrospinal fluid compartment with direct access, providing
insights into the effects of insulin on the human brain and
cognitive function. Many studies support a beneficial effect of
insulin on improving cognitive function, although some
inconsistent results have been reported. Some possible
explanations for the lack of improved cognitive outcomes are
(i) the type of intranasal delivery device used, which may differ in
efficiency in delivering insulin to the CNS (203); (ii) the type of
insulin used; (iii) the type of treatment (acute vs. long-term)
when considering the slow onset of insulin-induced memory
enhancement; (iv) the CSF-to-plasma insulin ratio in the
subjects, which may influence the sensitivity to the cognitive
effects of CNS insulin (204); and (v) the cognitive
outcomes evaluated.

Today, promising therapeutics include insulin-sensitizing
agents such as metformin and PPAR-ϒ agonists, incretin
insulin-mimetic molecules, and insulin secretagogues such as
glucagon-like peptide-1 (GLP-1) and gastric inhibitory
peptide (GIP).

Metformin is a drug broadly used to treat T2DM, improving
fasting insulin levels and insulin-dependent hepatic glucose
production. Metformin acts differently from insulin by
activating AMPK. It was recently reported that metformin can
cross the BBB (205). Considering metformin’s insulin-sensitizing
properties, it would be reasonable to suggest that metformin may
play a beneficial role in dementia, associated with insulin
resistance. In this context, an epidemiological study described
that metformin treatment reduced the incidence of dementia in
diabetic patients (206).

PPAR-ϒ agonists have been used in the treatment of T2DM
because they improve insulin sensitivity (207). Additionally, they
reduce both Ab accumulation and neuroinflammation (208).
Thus, PPAR-ϒ agonists may improve pathologies related to AD,
MCI and T2DM. Treatment with the PPAR-ϒ agonist
rosiglitazone was shown not only to reduce fasting insulin
levels but also to improve attention and memory in patients
during the first stages of AD (209).

GLP-1 stimulates insulin secretion, acting in a glucose-
dependent manner. Drugs including gliptins, such as exenatide
and liraglutide, mimic the action of GLP-1; other drugs, such as
sitagliptin and linagliptin, reduce the degradation of GLP-1,
being useful in the therapy of diabetes. GLP-1 readily crosses
the BBB, producing several actions through GLP-1 brain
receptors. Both exenatide and liraglutide were found to block
processes related to neurodegeneration and AD progression in
mouse models (210). These findings have been attributed to the
neuroprotective properties of those agents (211, 212), reducing
Ab, the neuritic plaque load, and microglial activation (202, 206).
Furthermore, GLP-1 mimetics stimulate neurogenesis and
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improve object recognition and spatial memory, as well as
reducing insulin resistance, in MCI and AD (182, 210).

Recently, a further step has been made by the use of multiple
receptor agonists to treat diabetes mellitus (213, 214). The dual
agonist DA3-CH was more effective than liraglutide in
promoting neuroprotection in a mouse model of Parkinson´s
disease (213). Thus, dual GLP-1/GIP receptor agonists have
better neuroprotective effects than single GLP-1 analogues
(214). These results suggest that activating more than one
incretin receptor type offers an advantage over using single
receptor agonists. In this regard, the effects of triple GLP-1/
GIP/glucagon receptor agonists in the APP/PS1 transgenic AD
mouse model reduced the total amounts of b-amyloid,
neuroinflammation and oxidative stress in the cortex and
hippocampus (215). The triple receptor agonist significantly
reversed memory deficits, reduced the mitochondrial levels of
the proapoptotic signaling molecule BAX, and increased Bcl-2
and BDNF, as well as increasing the levels of synaptophysin and
neurogenesis in the dentate gyrus (215). These findings are
promising for the design of future AD treatments.

Target of rapamycin (mTOR) is a serine/threonine kinase
that, as a component of the first mTOR complex (mTORC1),
promotes cellular growth and limits catabolic processes such as
autophagy (Figure 3) (216). Therefore, the activation of the
PI3K/Akt/mTOR pathway may decrease the autophagic process,
facilitating the accumulation of Ab42. These data support a
potential link between Ab and insulin signaling, which may
contribute to insulin resistance.

Although rapamycin prevents the formation of the mTORC1
complex, its potential therapeutic effects are limited because of its
low solubility and poor intestinal absorption. Thus, analog
molecules such as temsirolimus (Figure 3), soluble in water
and suitable for intravenous and oral administration, have been
developed. Temsirolimus promotes the autophagic clearance of
Ab and improves spatial cognitive functions in an experimental
model of AD.
CONCLUSIONS

Until 1978, it was believed that insulin did not play any biological
role in the brain. However, since then, a number of studies
revealing the presence of high cerebral concentrations of this
hormone as much as 25-fold higher than those in the blood
circulation, and the presence of insulin receptors in the brain, have
opened new frameworks within which to consider the potential
central role of insulin. The broad presence of IR suggests a
neuromodulatory function for insulin in the brain. Alterations
in these functional activities may contribute to the manifestations
of several clinical pathologies. Nevertheless, the significance of
brain-insulin-mediated effects as reflected by the consequences of
restoring, even partially, its altered activity strongly suggests that
insulin plays a relevant specific role. These findings encourage the
deepening of the research into the mechanisms, signaling
pathways, and cause/risk factor nature of these metabolic
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alterations in the context of neurodegenerative illnesses and future
effective therapeutic interventions.

Deficiencies in the major pathways of oxidative and energy
metabolism have been reported in patients with neurodegenerative
diseases, as extensively discussed throughout this review.
Nevertheless, whether those deficiencies are the expression of a
single or multiple metabolic alterations needs to be elucidated.

Contributions to brain glucose hypometabolism may be
related to glucose transporter alterations, intracellular glucose
metabolic abnormalities, changes in thiamine metabolism, and
modifications of cerebral metabolic sensors. Reduced GLUT-1
and GLUT-3 expression has mainly been described in the
cerebral cortices of AD patients (36–38).

In addition to insulin-mediated pathways, the presence of
altered concentrations of thiamine-diphosphate-dependent
enzymes (pyruvate dehydrogenase , a-ketoglutarate
dehydrogenase and transketolase) in the brains of AD patients
supports a role of mitochondrial dysfunction in brain glucose
hypometabolism (39, 40).

Lastly, ageing is associated with AD, T2DM and obesity. All
these pathologies share several common clinical and biochemical
manifestations, such as chronic inflammation, alterations in insulin
signaling and insulin resistance, and altered energy metabolism,
which contribute to a significant decline in cognitive function with a
high risk of dementia. Many patients with profound mental
disorders such as schizophrenia and bipolar disorders suffer from
metabolic alterations, such as DM and metabolic syndrome (217–
220). Comorbidity between mental and metabolic illness may be
explained by common risk factors such as stress, which can promote
metabolic syndrome and insulin resistance. Accordingly,
proinflammatory mediators, elevated concentrations of stress
hormones, and insulin resistance favor the expression of mental
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and metabolic alterations. Interestingly, the medications used to
treat metabolic illness have beneficial effects on cognition, such as
liraglutide, an agonist of the GLP-1 receptor used to control T2DM
(221). In addition, patients with mood disorders have an increased
risk of metabolic illnesses, indicating a close relationship between
insulin resistance and depression (222). Furthermore, of special
relevance is the understanding of insulin resistance, even more so in
patients suffering frommore than one neurological disorder, such as
T2DM and AD patients. Both nosological entities are considered
the most prevalent nontransmissible diseases in this century.
Accordingly, it is crucial, for scientific, health, economic and
social reasons, to gain further insights into brain glucose
metabolism and central insulin signaling in neurological disorders.
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Copyright © 2022 Blaźquez, Hurtado-Carneiro, LeBaut-Ayuso, Velaźquez, Garcıá-
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