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During perceptual decision-making, the brain encodes the upcom-
ing decision and the stimulus information in a mixed representa-
tion. Paradigms suitable for studying decision computations in
isolation rely on stimulus comparisons, with choices depending
on relative rather than absolute properties of the stimuli. The
adoption of tasks requiring relative perceptual judgments in mice
would be advantageous in view of the powerful tools available
for the dissection of brain circuits. However, whether and how
mice can perform a relative visual discrimination task has not yet
been fully established. Here, we show that mice can solve a com-
plex orientation discrimination task in which the choices are
decoupled from the orientation of individual stimuli. Moreover,
we demonstrate a typical discrimination acuity of 9°, challenging
the common belief that mice are poor visual discriminators. We
reached these conclusions by introducing a probabilistic choice
model that explained behavioral strategies in 40 mice and demon-
strated that the circularity of the stimulus space is an additional
source of choice variability for trials with fixed difficulty. Further-
more, history biases in the model changed with task engagement,
demonstrating behavioral sensitivity to the availability of cogni-
tive resources. In conclusion, our results reveal that mice adopt a
diverse set of strategies in a task that decouples decision-relevant
information from stimulus-specific information, thus demonstrat-
ing their usefulness as an animal model for studying neural rep-
resentations of relative categories in perceptual decision-
making research.

animal behavior | probabilistic modeling | orientation discrimination

The focus of perceptual decision-making research is to reveal
the processes by which sensory information is used to inform

decisions and guide behavior (1). When considering the neural
underpinnings of these processes, both sensory and decision in-
formation are often found to be encoded by the same neural
populations, making the identification of unique neural signa-
tures of decision-making challenging (2–4). To overcome this
problem, behavioral tasks that rely on relative rather than ab-
solute values of stimulus properties can be advantageous (5–8).
In these tasks, the same amount of information about the correct
choice can be given by many combinations of stimuli, which allows
the separation of the sensory and decision components of neural
activity. Effectively, these tasks introduce invariance of choice
categories with respect to specific stimuli.
In visual decision-making, a task with these characteristics is

an orientation discrimination task featuring invariance with re-
spect to specific orientations, which requires a subject to make
relative orientation comparisons of stimuli. The convenience of
this task relates to the well-characterized neural encoding of
stimulus orientations in the striatal visual cortex of all mamma-
lian species (9, 10). The mouse animal model, which features an
unmatched abundant set of experimental tools for the dissection
of neural circuits (11–13), performing a relative orientation dis-
crimination task could be a promising study system for examining
the neural mechanisms underlying sensory decision-making.
However, whether mice can be trained in a relative orientation

discrimination task, and which strategies they may adopt in this
task, have been unknown.
Here, we implemented a two-alternative forced-choice (2AFC)

discrimination task for mice in which they had to report the more
vertical orientation of two simultaneously presented grating stimuli.
Importantly, the vertical orientation was not shown in the majority
of trials, and the same value of “relative verticality” was given by
many pairs of oriented gratings. Animals could adopt similar but
not optimal choice strategies, albeit at the cost of water reward,
which allowed us to explore a continuum of naturally arising
strategies. To characterize these strategies, we designed a proba-
bilistic choice model that quantified how animals combined in-
formation from the two stimuli. We expanded the model to account
for trial history–induced biases and analyzed the dependence of
these biases on the engagement state of the animal. Finally, with the
help of the model, we estimated orientation discrimination acuity
and showed that mice perform this task with high levels of accuracy
and sensitivity to small differences in orientation.
While the use of complex visual discrimination tasks in mice

can be challenging because of the difficulty in training animals,
modeling their choice strategies, parameterizing visual objects,
and finding their neural representations, our complex discrim-
ination task addresses these problems by extending the existing
orientation discrimination protocols (14–18). We suggest that
our task will allow for the exploration of links between neural
and behavioral variability (19) in the context of heuristics and
suboptimal choice strategies in rodent perceptual decision-
making (20).
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Results
Relative Orientation Discrimination Task.
Task details. We trained transgenic mice (n = 40) in a 2AFC
orientation discrimination task using an automated setup in which
animals voluntarily fixed their heads to initiate an experimental
session (Fig. 1 A, Top), as previously described (21). In this task,
two oriented Gabor patches were simultaneously shown on the left
and right sides of a screen; to obtain water, animals had to iden-
tify the patch that was more vertically oriented (n = 28; more
horizontally, n = 12) and move it to the center of the screen by
rotating a wheel manipulator (7, 21). Crucially, because the target
in most trials was not vertical, the animals had to compare the
angular distance to the vertical (verticality) of the two orientations.
The same physical stimulus could thus be a target or a nontarget in
different trials, thereby making the task invariant relative to the
orientation of individual stimuli (Fig. 1 A, Middle). The orienta-
tions of both stimuli (θL, θR) were sampled at random from angles
between −90° and 90°, with a minimal angular difference of 9° (3°
for one animal) and positive and negative angles corresponding to
clockwise and counterclockwise orientations relative to vertical
(Fig. 1 A, Bottom). We used this 9° spacing for most animals to
sample a high number of responses for every angle condition, which
was important for subsequent imaging experiments (not shown in
this study). We analyzed a total of 1,313,355 trials, ranging from
4,591 to 82,065 per animal, with an average of 32,834 ± 2,962 trials
per animal (mean ± SE) in 256 ± 22.28 sessions of 128.02 ± 1.34
trials each (SI Appendix, Fig. S1 and Table S1).
Mice achieved a high success rate in a relative orientation discrimination
task. As an initial step in the analysis of choice behavior, we
quantified performance as a function of task difficulty using a

standard cumulative Gaussian psychometric function (22). We
modeled the probability of choosing the right stimulus, P(R), as
a function of the angular separation Δθ = |θL| − |θR| between
the two orientations, where | · | denotes the distance from ver-
tical (θ = 0°), with small angular separations corresponding to
difficult conditions and large angular separations correspond-
ing to easy conditions. An angular separation Δθ = 0° corre-
sponds to two equally vertical orientations, which are not
necessarily parallel. Conditions with Δθ< 0 and Δθ> 0 corre-
spond to a more vertical orientation on, respectively, the left
and right sides (example animal, Fig. 1B; population, Fig. 1C).
Mice reached an average performance of 74.7 ± 0.7% correct,
with an average sensitivity parameter of the psychometric curve
σ = 42.93 ± 1.18°. Animals retained their performance level after
introducing changes in spatial frequencies and stimulus sizes,
suggesting their decision-making strategy did not rely upon
these low-level statistical properties of the stimuli (average psy-
chometric curves over the three sessions before and after
changing either of these parameters did not differ from each
other, SI Appendix, Fig. S2).
As this task disentangles any given probability of choice from

specific orientations, a fixed difficulty Δθ corresponding to one
point on the psychometric curve is given by many possible (θL, θR)
pairs of orientations. For example, Δθ = 30° corresponds to ori-
entation pairs (30°, 0°), (−60°, 30°) and many others (Fig. 1D).
Conversely, no given orientation was always rewarded because for
any orientation (except 0°) there was a possibility that the other
orientation was more vertical. For equally vertical orientation
pairs, a randomly chosen side was rewarded. Consequently, this
task design compels the animal to estimate the verticality of the
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Fig. 1. Mice were trained in an invariant orientation discrimination task. (A, Top) Schematic of a mouse during an experimental session. (Middle) Epochs of
one trial. OL: open loop, during which the wheel manipulator did not move the stimuli on the screen. CL: closed loop, during which the wheel manipulator
did move the stimuli. (Bottom) Convention for the angle signs. (B) Psychometric curve of an example animal. Solid line: best fit of the cumulative Gaussian
psychometric function. Circles: data points, circle sizes represent numbers of trials, colors correspond to colors in D, and gray circles are data points not
explicitly marked in D. (C) Psychometric curves for all animals in the study. Solid black line: population average. (D) Many orientation pairs give the same task-
relevant information quantified by angular separation or difficulty (Δθ). Conditions with a fixed Δθ in the 2D stimulus space (colored lines) correspond to Δθ
conditions (circles) of the same color in B. (Right) Five example stimuli for one of the four branches of constant Δθ = −18° (θL ≤ 0, θR ≥ 0). (E) Probability of
right choice of example animals 2 (Left) and 29 (Right) in the stimulus space as in D. Reference SI Appendix, Fig. S3 for other examples.
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left and right orientations |θL| and |θR| and compare their esti-
mates rather than detect a learned orientation.
Animals may not strictly adhere to this ideal strategy, so long

as they obtain a sufficient amount of water reward in each ex-
perimental session. This amount can be difficult to estimate
precisely because it varies significantly from animal to animal
and depends on age, sex, food intake, and genetic background.
For instance, with the help of the choice model described in-
depth in the next sections, we computed choice variability as-
sociated with one orientation (as a geometric mean of two
model-derived concentrations; see Success Rate with a One-Sided
Strategy) and used it to estimate that an animal looking at only
one of the two stimuli will perform at 63.1 ± 0.6% correct. The
animal will thus exceed the 50% chance level but, on average, will
not be able to maintain its weight at the pretraining level, assumed
to be a heathy reference baseline. In the following section, we
introduce in more detail the model that quantifies how animals
combine information from the two orientations and capture the
broad spectrum of strategies from nearly ideal (Fig. 1 E, Left,
example animal no. 2) to a predominantly one-sided strategy
(Fig. 1 E, Right, example animal no. 29).

Probabilistic Choice Model.
Accounting for stimulus space and biases in the model. The psychometric
curve quantifies an animal’s behavior along a single dimension of
difficulty, Δθ. However, given the task structure, the complete
representation of the stimulus space is two-dimensional (2D),
with a unique stimulus condition corresponding to a pair of an-
gles (θL, θR). In this space, a fixed Δθ is given by all stimulus
conditions along the iso-difficulty lines (branches) that lie in the
four quadrants of the space and correspond to four different
combinations of angle signs (Fig. 1D). We therefore considered
the probability of choosing the right orientation, P(R), for all
stimulus conditions in this space.
To gain better insight into the factors that affect the animals’

choices, we developed a psychometric model that provides func-
tional mapping from the 2D stimulus space to the probability of
the right choice, P(R). We assume that in every trial, a mouse
makes noisy estimates (θpL, θpR) of both orientations (θL, θR),
compares their verticalities (

⃒⃒
θpL

⃒⃒
,
⃒⃒
θpR

⃒⃒
), and makes a choice

(Fig. 2A). The probability of a right-side choice P(R) in this
procedure is expressed as an integral of the distribution of esti-
mates p(θpR, θpL) over the

⃒⃒
θpR

⃒⃒
<
⃒⃒
θpL

⃒⃒
subspace (Fig. 2B) (see Ma-

terials and Methods, Eqs. 1–4). The shape of the P(R) surface
over the stimulus space (θL, θR) (Fig. 2 C, Left) is thus deter-
mined only by the parameters of the distribution p(θpR, θpL), which
we represent as a product of the animal’s likelihood function
over percepts and its prior distribution.
We model the likelihood p(x, y) as a product of circular von

Mises functions p(x|θR; κR) and p(y|θL; κL) centered at the values
of θR and θL equal to the true orientations and with variability for
each target quantified by the concentration parameters κR and
κL. High concentrations correspond to low variability in the
percepts, and κ is thus qualitatively inverse to the SD and can be
interpreted as the certainty (23, 24). For example, a distribution
of percepts p(x, y) is broader and shallower along the axis of
lower concentration (Fig. 2 D, Left Column, Top), making P(R)
more independent of the respective stimulus (Fig. 2 D, Left
Column, Middle).
Percepts of each orientation can be systematically biased, with

an animal consistently making choices as if the right or left ori-
entation were rotated more clockwise or counterclockwise.
These systematic errors are accounted for by translational biases
bR and bL (Fig. 2 D, Center Column, example: bR > 0, bL= 0),
which move p(x, y) and consequently the P(R) surface relative to
the angle axes without changing their values.

Both the translational biases and the certainty parameters
change the slope of the psychometric curve but not its left–right
choice bias (Fig. 2 D, Bottom Row), with the effects generally
indistinguishable in the Δθ space as opposed to the complete
stimulus space. A lower or higher certainty results in a shallower
or steeper P(R), respectively, as well as a shallower or steeper
psychometric curve. Conversely, a translational bias displaces the
entire P(R) surface, decreasing overall performance for every Δθ
in the space of the psychometric curve.
To model a choice bias toward the right or left, we introduced

a family of prior distribution functions, or choice priors
pb(x, y; κb), parameterized by prior concentrations κb (Fig. 2E).
These choice priors cause an orientation on the right or left to
effectively appear more vertical—as opposed to more clockwise
or counterclockwise—or equivalently make an animal more
certain about the verticality of that stimulus or can be associated
with procedural factors that similarly bias choices (Fig. 2 D, Right
Column) (Materials and Methods, Eq. 2). For example, the choice
prior for a right-side bias has a peak at (90°, 0°) (Fig. 2 E, Right,
κb > 0) and increases the probability of a right-side choice for any
pair of orientations (Fig. 2 D, Right Column) by biasing p(θpR, θpL)
to the

⃒⃒
θpR

⃒⃒
<
⃒⃒
θpL

⃒⃒
region (Fig. 2 D, Right Column, green arrows).

Concentrations, translational biases, and a prior concentration
{κR, κL, bR, bL, κb} thus determined our model of choice, which
allows for a more complete analysis of P(R) than the psycho-
metric curve. The model predicts a previously unexplored
property of P(R)—its variation along the branches of a fixed Δθ.
A model with zero biases and an equal certainty for both ori-
entations (κR = κL) predicts a decrease in P(R) whenever either
orientation is close to 0° or 90° and an increase when close to 45°
(Fig. 2 B and C). We parameterized this variation using the ref-
erence orientation θref = min(|θL|, |θR|) (i.e., the orientation of the
more vertical stimulus). The source of this variation is clear from
the position of p(θpR, θpL) relative to the category boundary⃒⃒
θpR

⃒⃒
=
⃒⃒
θpL

⃒⃒
when considered along one branch of a fixed Δθ

(Fig. 2B); the probability mass of orientation estimates that result
in error judgments (e.g.,

⃒⃒
θpR

⃒⃒
>
⃒⃒
θpL

⃒⃒
when |θR|< |θL|) is higher

around θref = 0° and θref = 90° than around θref = 45°. This effect
arises from the variability in both orientation estimates and their
interaction with the category boundary in the circular space and
cannot be replicated by a psychometric curve with a single input
variable of Δθ.
In summary, by combining information from two orientations,

our model predicts a dependency of probability of choice on not
only difficulty but also reference orientation. This latter vari-
ability necessarily follows from the circularity in the input stimulus
space, given a limited certainty in orientation estimates.
The model captures the animals’ choices. Next, we analyzed the
choices of the mice in the 2D stimulus space. For the population
of animals, P(R) varied with difficulty Δθ, as expected from the
psychometric curves (Fig. 1 B and C), and with the reference θref
(Fig. 2F, population average, n = 40), as predicted by our model
(Fig. 2 B and C). For a fixed Δθ> 0, P(R) was higher (and choices
were more often correct) when the orientations were far from
horizontal or vertical (Fig. 2F), while for Δθ< 0, P(R) was
smaller (and the choices were also more often correct) when the
orientations were far from horizontal or vertical.
The model reproduced this performance variation for indi-

vidual animals (Fig. 2G, example animal). However, due to in-
dividual biases, the P(R) curves for fixed Δθ were more distorted
than in the unbiased case (cf. Fig. 2 C, Right). Counterintuitively,
P(R) for the same Δθ in different quadrants of the stimulus space
could represent, on average, opposite choices (Fig. 2 G, Two Right
Panels), which our model accounted for thanks to translational
biases. The model successfully captured animal-specific differences
in choice probabilities (SI Appendix, Fig. S3), explained the data
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Fig. 2. The choice model characterizes individual biases and strategies and predicts variation of performance with reference orientation, as found in the data. (A) Choice
model schematic. The angles of two oriented Gabor patches (white dashed lines, Left Column) are estimated as samples from circular distributions (density: purple,
estimates: black crosses). Their absolute values are measured as angular distances to the vertical and compared with each other (Middle Column), which generates a
choice. (B) Distribution p(θ*R , θ*L ) of orientation estimates, as in A, in 2D space for (θL, θR) = (30°, 0°) (red cross) in an unbiased model with (κR, κL) = (2, 2), and a sample

from this distribution (black cross). Probability mass inside the shaded areas (
�
�
�θ*R

�
�
�<

�
�
�θ*L

�
�
�) is equal to the probability of right choice P(R). Dashed lines: distribution quartiles.

(C, Left) P(R) of model in B evaluated at all stimulus pairs (θL, θR). Red and black lines are one example branch of Δθ = 18° and Δθ = −18°, respectively. (Right) P(R) along
the branches of constantΔθmarked on the Leftwith red and black lines. (D) Effect of model parameters on animals’ likelihood distributions over percepts (Top Row), P(R)
surface assuming uniform priors (Middle Row), and the corresponding psychometric curves (Bottom Row). Red crosses: distributionmeans before parametermanipulation;
green arrows: transformation of the distributions with parameter change; blue psychometric curves: before parameter change; red curves: after parameter change. The
Center panel in theMiddle Column shows P(R) values displaced relative to Δθ isolines (solid black: example isoline for Δθ = 15°). (E) Choice priors pb(x, y)with κb equal
to −1 (Left; left-choice bias) and 1 (Right; right-choice bias). (F, Left) Population average P(R) (n = 40mice), with an example branch ofΔθ = 9° andΔθ = −9°markedwith
red and black lines, respectively. (Center) Population average of the model P(R), n = 40. (Right) P(R) values along the Δθ = ±9° branches in data (dots with error bars
representmean± CI) andmodel (black lines with shaded areas aremean ± CI). Reference SI Appendix, Fig. S3 for P(R) of every animal. (G) Examplemouse, Left to Right: 1)
data P(R); 2) P(R) of the fitted model; 3) P(R) along the red dashed and solid lines on the Left predicted by the model (lines) and computed from the data (dots with error
bars, darker dots correspond to the dashed line); and 4) P(R) along the black dashed and solid lines on the Left, as predicted by the model (lines) and computed from the
data (dots with error bars, darker dots correspond to the dashed line). Reference SI Appendix, Fig. S3D for the model of P(R) for every animal. (H, Left) Population
summary of model parameters fitted to all mice (n= 35; n = 5 animals with κR or κL estimated on the edge of the allowed range of values are excluded). (Middle) Ratio of
log(κR + 1) and log(κL + 1) with the smaller of the two values divided by the larger value for each mouse (n = 35). Circles: individual animals; Box plot: population
summary; Red line: median value; Box borders: 25th and 75th percentiles. Whiskers are up to most extreme parameter values. Red crosses: outliers. (Right) log(κR + 1)
and log(κL + 1) across the population are significantly anticorrelated. Linear regression line for all animals together. Red circles: 10 mice with best performance.

4 of 11 | PNAS Lyamzin et al.
https://doi.org/10.1073/pnas.2103952118 Probabilistic discrimination of relative stimulus features in mice

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103952118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103952118/-/DCSupplemental
https://doi.org/10.1073/pnas.2103952118


significantly better than the psychometric curve (ΔAIC [Akaike
Information Criterion] = 798.8 ± 141.9; ΔAIC > 0 for all animals),
and explained significantly more deviance (25) (fraction of de-
viance explained [ΔFDE] = 9.03 ± 1.48%, p = 1.07 · 10−6,
signed-rank test).
Across the population of animals, the average stimulus con-

centration values were high and positive (κR = 2.22 ± 0.69, p =
3.73 · 10−7; κL = 1.76 ± 0.52, p = 1.34 · 10−7, t tests) (Fig. 2 H,
Left), showing that the animals used both targets for the decision.
The bias concentration κb was small (κb = −0.06 ± 0.05, p = 0.01),
indicating a mixed bias across the population. The translational
biases (bR = 0.14 ± 0.05, p = 3.71 · 10−6; bL = 0.19 ± 0.05, p =
1.21 · 10−7) were similarly small but significant.
Although the stimulus protocol, reward sizes, and session

schedules were designed to motivate animals to use information
about both orientations equally, we found that the strategies of
individual animals ranged from a balanced orientation comparison
to a reliance on one target more than the other. We quantified
this range of strategies with the ratio of the log of the concen-
trations κR and κL, with ratios closer to 1 representing more
balanced strategies (Fig. 2 H, Center). The right and left concen-
trations were significantly anticorrelated (ρ = − 0.57, p = 4.45 · 10−4;
t test, criterion α = 5 · 10−3 corrected for multiple comparisons),
reflecting a trade-off in animals that preferentially used infor-
mation from one of the stimuli (Fig. 2 H, Right). Despite this
trade-off, the best-performing animals also had higher concen-
trations overall (p < 0.05; analysis of covariance, F-test of in-
tercept with fixed slope), showing that while the task permitted
relative flexibility in choice strategies, a more accurate estima-
tion of the orientations was necessary to achieve a high success
rate. Other parameters of the model did not significantly cor-
relate with each other or with the concentration ratios.
In summary, our model accounted for biases in the animals’

behavior and explained the performance variation with θref . In-
dividual animals weighted sensory information from the two
orientations differently, following strategies that were sufficient
to obtain needed amounts of the water reward, but were not
perfectly aligned with the true stimulus–reward space. These
sufficiently good strategies can be interpreted as approximations
of the true task structure that subjects resort to in cases of
complex problems (19). Nevertheless, while left and right con-
centrations were anticorrelated across the population, high suc-
cess rates required overall high levels of certainty in the
orientation estimates.
Discrimination acuity. We next used our model to estimate the
minimal orientation difference that the animals could reliably
discriminate. A change in a pair of orientations that results in a
significant change in P(R) is the smallest for conditions with the
largest gradient of P(R). Because the numerical gradient directly
computed from the data can be too noisy, we used our model to
more accurately find the maximum gradient conditions. How-
ever, after identifying these conditions, we used experimentally
obtained trial outcomes to test the significance of P(R) change.
Following this procedure, we compared the probability of a

right-side choice in stimulus conditions with the highest gradient
and in neighboring conditions (Fig. 3). Specifically, for every
animal, using the model P(R) (Fig. 3A, example animal), we
computed the absolute value of the numerical gradient |∇P(R)|
(Fig. 3B) and identified orientation pairs with the top 5% largest
gradient values and a nearly chance performance (maximum
gradient conditions; Fig. 3C, white), which differed across ani-
mals due to differences in biases and concentrations. We then
examined the four pooled neighboring conditions in which either
the left or right orientation differed from the maximum gradient
pair of stimuli by 9° and which we grouped by an increase or a
decrease in P(R) (Fig. 3C, four colors for four neighboring
conditions). For this example animal, all four neighboring

conditions had a P(R) significantly different from the maximum
gradient one (Fig. 3D). We found that a change in either left or
right orientation by 9° with respect to the maximum gradient
conditions resulted in a significant change in P(R) for 62.5%
(n = 25) of the animals, and a change of 27° resulted in a sig-
nificant change for all of the animals (n = 40; Fig. 3E). For the
only animal tested with a 3° sampling of stimuli (Fig. 3 F–I), we
found that conditions in which both orientations changed by 3°
relative to the maximum gradient conditions—amounting to a
total change of 6°—resulted in a significantly different P(R) (p <
0.0005 for directions both along and against the gradient).
In summary, our model allowed for an in-depth analysis of

discrimination acuity by utilizing a complete picture of the P(R)
gradient and identifying stimulus conditions in which the sensi-
tivity to angle change was the highest. We found that the typical
orientation discrimination acuity was 9°, given that in most ani-
mals, an angle change of this magnitude could be significantly
detected based on the change of the probability of choice. Fur-
thermore, we found that individual animals can exhibit even finer
discrimination acuity, demonstrating that one animal exhibited
significantly different behavior in conditions that differed by 6°.
Effects of trial history. Choice strategies are determined not only by
preferential weighting of available sensory information but also
by trial history (6, 26–29). To account for history-related biases,
we included a history prior ph(x, y), parameterized with a con-
centration parameter κh and a term h that linearly depended on
the choice r and target orientation s in the previous trial, through
history weights (26, 27) h = shs + rhr. A pair of weights (hs, hr)
determined the choice strategy of an animal, such as win stay
(Fig. 4A, model example) or lose stay (Fig. 4B, example animal)
throughout all trials and in combination with the choice and
target of the previous trial (r, s) resulted in the history-dependent
change of the P(R) (SI Appendix, Fig. S4 A–E) and the psycho-
metric curve (Fig. 4 A and B) (26).
Through the flexible family of history priors, our model cap-

tured a variety of strategies in addition to win stay (SI Appendix,
Fig. S4F). Most of our mice showed a mild tendency toward the
stay strategy, followed by win stay and, rarely, lose stay (Fig. 4C),
which is largely consistent with a previous report (30). The
history-dependent model explained the data significantly better
than the history-independent model (ΔAIC = 211.8 ± 40.1;
ΔAIC > 0 for all but four animals), and it also explained sig-
nificantly more deviance (ΔFDE = 5.07 ± 0.98%, p = 8.1 · 10−6,
signed-rank test).
We investigated whether the animals relied on history to a

different extent during periods of relatively high and low en-
gagement in the task, which we identified based on reaction
times (RT). Long RTs are indicative of a lower task engagement
due to, for example, lower arousal (31, 32). Very short RTs can
also be a sign of lower task engagement accompanied by im-
pulsive behavior and a hyperaroused state (31, 33, 34). Indeed,
trials with intermediate RTs had higher success rates, on average,
than trials with short RTs (p = 9.9 · 10−4, Wilcoxon test; SI Ap-
pendix, Fig. S5D) or long RTs (p = 1.9 · 10−7, Wilcoxon test; SI
Appendix, Fig. S5E). We thus considered trials with the shortest
10% and the longest 10% RTs in every session and tested if the
inclusion of history terms gave a significantly larger increase in
the explanatory power compared to the trials with intermediate
RTs. We found that the difference between the trial-average log
likelihoods of the models with and without a history prior was
larger for the trials with very short RTs (low engagement, ΔLl)
than for trials with intermediate RTs (high engagement, ΔLh)
(ΔLl >ΔLh, p = 3.9 · 10−5, Wilcoxon test; Fig. 4D), and we found
a similar qualitative tendency for long RTs (p = 0.088, Wilcoxon
text; SI Appendix, Fig. S5A). The greater influence of history
biases appeared visually as a stronger modulation of history-
conditioned P(R) maps computed from short RT trials versus
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intermediate RT trials (Fig. 4E, cf. 1 to 2 modulation [short RT]
and 3 to 4 modulation [intermediate RT]).
Fluctuations in performance could be another indicator of changes

in engagement, and we found that choices were indeed more affected
by history biases during periods of relatively low performance
(ΔLl >ΔLh, p = 2.12 · 10−7, Wilcoxon test; SI Appendix, Fig.
S5 B and C).
In summary, after expanding our model to capture history-

dependent biases, we found that the most prominent strategies
were win stay and stay, and choices were affected by history
biases to a greater extent during periods of lower engagement.
Our observations demonstrate that choice heuristics can fluctu-
ate together with the cognitive state of the subject.

Discussion
Using high-throughput automated cages with voluntary head
fixation, we trained a large cohort of mice (n = 40; 1,313,355
trials) in a complex variant of a 2AFC orientation discrimination
task. The task required the mice to measure the relative orien-
tations of two stimuli, thereby decoupling choice from the par-
ticular orientation of an individual stimulus. We quantified their
behavior with a model of choice that accounted for the circu-
larity of the stimulus space and for individual choice biases and
strategies. The model explained variations in the probability of
choice not only with task difficulty Δθ but also with the reference
orientation θref , an effect not reported previously. With the help
of the model, we found that the typical maximum acuity of ori-
entation discrimination in expert animals is 9° and can be as
small as 6° in individual animals. Our model could be easily ex-
tended to examine history biases that are ubiquitous in human
and animal psychophysical experiments (6, 26–29), revealing that

a modulation of history components due to the animals’ en-
gagement affects choices more strongly when engagement is
relatively low. Our work responds to the need for a visual task
that depends on relative choice categories and is invariant to
specific visual stimuli but that can be performed by mice, relies
on basic visual features, and allows for straightforward quanti-
fication within a probabilistic modeling framework. We argue
that in addition to these advantages, our task can be useful in
engaging higher visual areas in the computation of decision (35)
and can provide valuable insight into the relationship between
neural and behavioral variability (19, 24, 36–38).

Behavioral Assays for Studies of Perceptual Invariances and Their
Quantifications. Our task will be particularly advantageous for
the study of the neural mechanisms underlying perceptual in-
variances. With its availability of unique experimental toolboxes,
the mouse is currently the animal model of choice for the dis-
section of neural circuits (11–13). However, while visual behaviors
elicited by low-level visual features have been well characterized
(10, 39), intermediate (e.g., textures) and high-level visual features
(e.g., objects) are largely unexplored in this species. Therefore,
mouse studies that utilize complex visual stimuli are challenged by
1) the well-known difficulty of parameterizing complex objects
(35, 40, 41); 2) the unknown neural substrate that encodes these
parameters; 3) the uncertainty about whether mice can be trained
in the task within a reasonable time, if at all; and 4) the difficulty
of inferring behavioral strategies given the parametric complexity
of the stimulus space (42, 43). Our task represents a convenient
solution: it builds upon existing orientation discrimination tasks
in mice (14–18) in which a specific orientation is to be chosen over
a distractor orientation (14, 16–18, 44–46), or in which a change
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Fig. 3. Mice reach a typical orientation acuity of 9°. (A–D) Steps of acuity analysis for an example animal. (A) P(R) model surface of an example mouse. (B)
|∇P(R)| absolute value of the gradient of P(R) surface in A. (C) Four stimulus conditions (white) with |∇P(R)| in the top 5% of values and P(R) close to chance
level (0.48 < P(R) < 0.52). Arrows of the same color show angle change yielding one group of neighboring conditions: PL+ (yellow; L+ for left stimulus change
that increases P(R)), PR+ (green), PL− (blue), PR− (red). Insets (Right) show these conditions in the stimulus space. (D) Pooled P(R) in maximum gradient con-
ditions (white), P0.5 = 0.52 ± 0.04, differs from P(R) in the four neighboring conditions PL+ = 0.67 ± 0.04, p < 2.5 · 10−4 (yellow), PR+ = 0.63 ± 0.05, p < 2.5 · 10−3

(green), PL− = 0.40 ± 0.05, p < 2.5 · 10−3 (blue), PR− = 0.39 ± 0.05, p < 2.5 · 10−4 (red) (binomial CIs, χ2 test, df = 1, n = 4 comparisons). (E) Population summary
of analysis in A through D: cumulative number of animals for which at least one direction of angle change gives a P(R) significantly different from P0.5 as a
function of angle change magnitude. (F and G) Similar to A and B for an animal trained with 3° angle binning. (H) Maximum gradient conditions (white, same
criteria as in C) and neighboring conditions obtained by changing both angles by ±3° in the direction of P(R) increase (P+, red) and decrease (P−, green). (I)
Pooled P(R) in three groups highlighted in H: P0.5 = 0.52 ± 0.04, P+ = 0.69 ± 0.07 (red), P− = 0.36 ± 0.05 (green), both different from P0.5 with p < 0.0005 (χ2 test,
df = 1; n = 2 comparisons).
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Change in P(R) is more pronounced between 1 and 2 (low engagement) than between 3 and 4 (high engagement). Color scale as in A and B.
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relative to a specific orientation is to be detected (47–50). How-
ever, it complicates discrimination by introducing well-controlled
invariances (to specific orientations, spatial frequency, and stim-
ulus size), exploring stimulus dimensions that are easy to param-
eterize and that have a clear neural representation, and can be
learned by mice in a reasonable time.
Our model helped estimate the typical orientation discrimi-

nation acuity at a 9° angle difference, reaching 6° for one mouse
tested with the smallest angular separation of 3°. The orientation
discrimination acuity of mice has previously been measured in a
2AFC task with a distractor (17) and change detection tasks
(47–50). Acuity measures have been reported as thresholds or
just noticeable differences (JNDs) and have commonly relied on
model-derived values, such as the model-based inverse of
a certain success rate (47, 48), the mean of the fitted Gaussian
(49, 50), or

̅̅̅
2

√
times its SD (49, 50). We developed an acuity

estimation procedure suitable for our stimulus space in which
we identified stimulus conditions with the highest gradient of
model-predicted P(R) and compared the performance in these
and neighboring conditions. Our approach took advantage of
the complete stimulus space representation of P(R) instead of
relying on a cruder psychometric model to compute a JND or
threshold value.

Task- and Behavior-Related Factors Influencing Choice. By parame-
terizing biases, history effects, and orientation certainties, our
model showed that the animals largely followed the intended
choice strategy. This was apparent from concentration values that
were significantly different from zero in most animals, indicating
that, overall, the mice used information from both stimuli. How-
ever, model parameters also exhibited variations that could be
interpreted as animal-specific choice heuristics. One such heuristic
was evident in the trade-off of concentration values, with some
animals unequally weighting stimulus information. Accuracy of
orientation estimation was still necessary for high success rates,
but even among the best-performing animals, right and left con-
centrations were anticorrelated. This trade-off demonstrates that
the animals followed a range of sufficiently good strategies for
solving the discrimination problem.
Such strategies can be interpreted as examples of suboptimal

or approximate inference in an uncertain environment. Suboptimal
inference is sometimes thought of as an adaptive phenomenon, a
way for a subject to deal with the complexity of the task at hand by
constructing and acting upon its approximate model (19). Adher-
ence to a suboptimal strategy can be linked to limited cognitive
resources (51, 52), which in our task fluctuated together with task
engagement. Indeed, we found that history-dependent biases—
another manifestation of suboptimal behavior—are stronger during
periods of lower engagement characterized by impulsive wheel
rotations immediately after stimulus onset. We demonstrated this
by introducing history priors—in a form that allows for their ana-
lytical inclusion in our model—which increased the explanatory
power of the model more in periods of lower engagement than in
periods of higher engagement. In addition, we obtained a con-
gruent result if the task engagement was defined based on streaks
of relatively good or bad performance. These fluctuations of the
history biases are driven by the internal state of the animal, are
independent of the stimulus protocol, and will thus occur in
addition to difficulty- or confidence-dependent fluctuations, as
recently described (53). During periods of decreased perfor-
mance, higher explanatory power of history terms is not guar-
anteed, but it is consistent with switching between history-driven
and stimulus-driven choice modes (54).

Limitations of Our Approach. Although we believe that our work
substantially advances the understanding of mouse behavior dur-
ing complex orientation discrimination, our approach has

limitations at the level of model design and strategy interpretation.
First, our model assumes fixed psychometric parameters across
sessions and trials, and thus a more flexible, dynamically pa-
rameterized model could provide better insight into the biases
and choice strategies of mice. Second, the goodness of fit of the
model with respect to the variation of P(R) with θref could be
further improved; in some animals, this variation was larger than
the model prediction (SI Appendix, Fig. S6, example animal),
which could be explained by a dependency of κR and κL on the
proximity to the category boundary (

⃒⃒
θpR

⃒⃒
=
⃒⃒
θpL

⃒⃒
) (55). Finally, the

interpretation of concentration values might not be directly re-
latable to perceptual sensitivity, since the concentration values
were likely decreased by nonsensory factors, such as noise in the
decision computation (19, 24, 56), inherent priors (57), and
choice heuristics (19, 20).

Future Directions and Potential Implications. Because our task relies
on perceptual invariances and decouples the decision informa-
tion from specific sensory stimuli, it can be useful for exploring
the neural basis of decision-making in future studies. A similar
task design relying on combinations of stimuli has been used
extensively in the body of decision-making literature (3, 58–62),
but it has not been reported in mouse orientation discrimination
experiments.
Furthermore, our task can provide valuable insight into the

relationship between neural and behavioral variability. Whether
behavioral variability arises predominantly from sensory sources
(37) or from the deterministic or stochastic suboptimality of
decision computation (19) is one of the central questions in the
neuroscience of decision-making. The complexity of our orien-
tation discrimination task will increase the role of suboptimal
decision computation, as has been predicted theoretically (19,
20, 51), and will provide an opportunity to study the correlates of
this suboptimality in neural responses.
Finally, our task is well suited for isolating the contributions of

visual cortical areas in the computation of decisions. The im-
portance of a particular visual area for decision-making depends
on the type of task (63); mice with a lesioned or silenced visual
cortex have shown better-than-chance performance in detection
paradigms (47, 64), possibly reflecting a predominant role of the
superior colliculus (49), while for orientation discrimination tasks
with a distractor, the visual cortex is necessary (45, 46, 65). Our in-
crementally more complex version of the orientation discrimination
task could provide further insight into the role of primary visual
cortex (V1) and downstream visual areas in the computation of
decisions (35) and could therefore be a useful addition to common
behavioral protocols for mice.

Materials and Methods
Experimental Model and Subject Details. All surgical and experimental pro-
cedures were approved by the Support Unit for Animal Resources Devel-
opment of The Institute of Physical and Chemical Research (Japan) (RIKEN)
Center for Brain Science. We used n = 40 transgenic mice: Thy1-GCaMP6f
(n = 37), Camk2-tTA TRE-GCaMP6s (n = 2), Emx1-tTA TRE-GCaMP6s (n = 1),
with a total of 30 male and 10 female animals, aged 4 to 25 mo. Animals
were implanted with a coverslip and a head post. After the implantation of
the head post and recovery from the surgery, for 2 wk mice were placed in
habituation cages with enriched environment, where they learned to obtain
water from an apparatus similar to the automatically latching part of the
behavioral setup. Next, mice were placed under a water restriction plan for 2
wk, obtaining 3 mL water a day during the first week and 2 mL during the
second, with a target of maintaining their body weight at 75 to 80% of the
initial weight. If at this or any later point their weight dropped below the
target level, mice were given additional water proportionate to the weight
to be restored. After 2 wk, animals were moved to the training cages. For
further details, reference SI Appendix, Supplementary Methods.

Behavioral Training. During training, animals were housed in individual cages
connected to automated setups (21) (O’Hara & CO., LTD., https://ohara-time.co.jp/)
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where two experimental sessions per animal per day were carried out. Ses-
sions were initiated by animals themselves as they entered the setup and
their head plate was automatically latched. Animals were trained in a 2AFC
orientation discrimination task. Two oriented Gabor patches (20° visual angle
static sinusoidal gratings, sf = 0.08 cpd, with randomized spatial phase, and
windowed by a 2D Gaussian envelope with 4σ equal to stimulus diameter)
were shown on the left and right side of a screen positioned in front of the
animal (liquid crystal display monitor, 25 cm distance from the animal,
33.6 cm × 59.8 cm [∼58°×100°dva], 1,080 × 1,920 pixels, PROLITE B2776HDS-
B1, IIYAMA) at ±35° eccentricity relative to the body’s midline. Mice reported
which of the two stimuli was more vertical (more horizontal for n = 12 ani-
mals; task details in SI Appendix, Phases of training) by rotating a rubber
wheel with their front paws, which shifted the stimuli horizontally on the
screen. For a response to be correct, the target stimulus had to be shifted to
the center of the screen, upon which the animal was rewarded with 4 μL
water (amount adjusted for a few animals with nontypical weight and age).
Incorrect responses were discouraged with a prolonged (10 s) intertrial in-
terval (ITI) and a flickering checkerboard stimulus (2 Hz). If no response was
made within 10 s (time-out trials), neither reward nor discouragement
was given.

All trials consisted of an open-loop period (OL, 1.5 s) during which the
wheel manipulator did not move the stimuli on the screen and a closed-loop
period (CL: 0 to 10 s) during which the wheel controlled their position. In-
tertrial interval was randomized (ITI: 3 to 5 s). Stimuli appeared on the screen
at the beginning of the OL.

Data Selection. We analyzed trials from sessions in which the average success
rate was at least 60%, and the proportion of time-out trials did not exceed
20%. We only used animals that had reached the minimal angular difference
of 9° and included the choice data from preceding sessions with minimal
differences starting from 30°. We excluded the first trial of every session, all
time-out trials, and every trial that followed a time-out. The two dimensions
of the stimulus space were flipped for horizontal-reporting animals when
fitting our model. Same stimulus space transformation was done for all the
population summaries where mice trained on horizontal targets were
pooled together with mice trained on vertical targets.

Psychometric Curve. We fitted the animal’s probability of making a right
choice P(R) as a function of task difficulty using a psychometric function
ψ(Δθ; α, β, γ, λ) = γ + (1 − γ − λ)F(Δθ; α, β), where F(x) is a Gaussian cumulative
probability function, α and β are the mean and SD, γ and λ are left and right
(L/R) lapse rates, and Δθ is the difference in the angular distance to the
vertical, Δθ = |θL| − |θR|. CIs were computed by bootstrapping (n = 999).

Model Design. On each trial i, the animal was shown a pair of stimuli {θRi , θLi}
and made a right or a left choice ri, which we set by convention to be ri = 1
or ri = 0, respectively. We denote response and correct target on the pre-
vious trial as rhi and shi, respectively, with rhi = −1 or rhi = 1 if the animal
chose left or right, respectively, and shi = −1 or shi = 1 if the correct answer
was respectively left or right, and shi = 0 if targets had an equal verticality.

A choice in trial i was based on animal’s estimates {θ*Ri, θ*Li} of the presented

stimulus orientations {θRi , θLi}. We model θ*Ri and θ*Li as random variables dis-

tributed according to a posterior distribution p(θ*R , θ*L ) obtained after com-
bining an animal’s likelihood distribution over percepts p(x, y) with prior
terms pb(x, y) and ph(x, y) that model choice bias and history-dependent
bias, respectively. We reserve the (x, y) notation for the random variables

modeling percepts and biases and (θ*R , θ
*
L ) to refer specifically to the poste-

rior over animal’s estimates, to which the decision rule is applied. We model
the likelihood as a product of von Mises distributions p(x) and p(y) centered
at θRi and θLi, respectively, with additional angle estimation biases (trans-
lational biases) bR, bL and with concentrations κR, κL (high concentration
means smaller spread, with κ analogous to 1=σ of a normal distribution;
only κ≥ 0 were allowed) (Fig. 2 B and D):

p(x) = C(κR)eκRcos(x−bR−θRi )
p(y) = C(κL)eκLcos(y−bL−θLi ),

[1]

where C(κ) = 1=2πI0(κ), and I0 is modified Bessel function of order 0. A bias
prior pb(x, y) that induces choice bias for right or left stimuli, and a history
prior ph(x, y) that models choice dependency on previous choice and stim-
ulus (rhi and shi), are modeled as follows:

pb(x, y) = C2
b(κb)eκb(cos(x)−cos(y)), [2]

ph(x, y) = C2
h(κh)ehiκh(cos(x)−cos(y)). [3]

Here, κb is a concentration parameter that regulates the strength and sign of
choice bias, κh is a concentration parameter of history prior, hi = hsshi + hrrhi
determines the influence of the previous stimulus shi and choice rhi with
respective weights hs and hr fixed for a given animal, and Ch = 1=2πI0(κhhi)
and Cb = 1=2πI0(κb) are normalization constants.

Since by convention we set vertical orientation to zero, the angle with the
smaller absolute value is the correct choice. Hence, the probability of
choosing right on a given trial is given by the following:

P(R)i = p(ri = 1) = p(⃒⃒θ*Ri ⃒⃒<⃒⃒θ*Li ⃒⃒)
= ∫∫|x|<|y| p(x, y)pb(x, y)ph(x, y)dxdy∫∫p(x, y)pb(x, y)ph(x, y)dxdy .

[4]

Overall, the model has eight fitted parameters (hr ,hs, κR, κL, κh,bR,bL, κb) or
five parameters (κR, κL,bR,bL, κb) when we fit a history-free model. All an-
gles were converted from (−90°, 90°) range to (−180°, 180°) to satisfy
periodicity.

Ourmodel design follows similarmodels of perceptual inference (23, 57, 66)
with two distinctions. First, since our animals never report point estimates of
the observed orientations—usually modeled as maximum a posteriori—
estimates only enter our model as not directly observed random variables.
Second, since all orientations in our study are presented at 100% contrast,
without added noise or any other form of stochasticity, and are displayed for
the full duration of the trial (11.5 s or less if the choice is made earlier), we
assume that the sensory evidence given by a specific orientation is the same
on all trials.
Optimization. To fit the model, we minimize the log-likelihood cost function:

L = − ∑
i=1...N

ri log P(R)i + (1 − ri)log(1 − P(R)i), [5]

using MATLAB built-in function fmincon. At every iteration of the optimizer
we evaluated Eq. 4, first computing values of all probability densities on a
grid of 300 by 300 points in the 2D domain [−π, π] × [−π, π] and integrating
numerically using MATLAB function trapz over |x|< |y| for the numerator
and over the whole domain for the denominator. We ran these calculations
on GPU (NVIDIA RTX 2080Ti) using MATLAB Parallel Computing Toolbox.

Success Rate with a One-Sided Strategy. We estimated the success rate that
animals could reach when taking into account only one stimulus by first
computing P(R) for every trial using amodel where one concentration was set
to zero and the other one to

̅̅̅̅̅̅̅̅̅
κRκL

√
of that animal. We sampled choices using

the stimulus conditions as they appeared in the experimental dataset
1,000 times and computed an average percent correct over repetitions and
an average across animals.

Maximum Perceptual Acuity. By analogy with a one-dimensional psychometric
curve, we defined points of maximum perceptual acuity in the stimulus
space as conditions (pairs of angles) where the change in P(R)was the largest
for a small fixed change in the stimuli. We found these conditions from the
probability surface P(R) given by the full model by computing the squared

norm of the gradient vector, g(θR, θL) = ( d
dθR

P(R))2 + ( d
dθL

P(R))2, and selecting

{θR, θL} conditions for which the values of g were in the top 5%. Among
these conditions, we analyzed those with P(R) ≈ 0.5 (0.48 ≤ P(R) ≤ 0.52),
which we call maximum gradient conditions (Fig. 3 C and H, white) with a
pooled right-choice probability of P0.5. For n = 28 animals this procedure
gave at least three unique maximum gradient conditions. For n = 12 animals,
the initial criterion gave fewer than three maximum gradient conditions,
and we expanded the allowed range to have at least three: we set (0.47 ≤
P(R) ≤ 0.53) for n = 7 animals, (0.46 ≤ P(R) ≤ 0.54) for n = 1, (0.42 ≤ P(R) ≤
0.58) for n = 1, (0.40 ≤ P(R) ≤ 0.60) for n = 1, (0.38 ≤ P(R) ≤ 0.62) for n = 1,
and (0.28 ≤ P(R) ≤ 0.72) for n = 1.

We then determined the neighboring conditions by changing one orien-
tation at a time by 9°, which resulted in an increase (“+”) or decrease (“−”) of
P(R) relative to P0.5 (Fig. 3C). For example, PR- corresponded to the probability
of right choice pooled from all conditions in which θR changed relative to
maximum gradient conditions in the direction of P(R) decrease. Here, the
stimulus space was binned to a 9° grid. In a separate analysis, for an animal
with 3° condition binning, we changed both orientations simultaneously by
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+−3°, “along” and “against” the gradient of P(R), and obtaining P+ and P+,
respectively (Fig. 3H).

We tested that probabilities in the neighboring conditions (PL+, PR+, PL-, PR-

in case of 9°-binned conditions, and P+, P− in case of 3°-binned conditions)
were significantly different from maximum gradient probabilities P0.5 using
a two-tailed χ2 test with df = 1 and doing pairwise comparisons of right-choice
frequencies, with a correction for multiple comparisons. For a population
summary (Fig. 3E), we computed PL+, PR+, PL-, PR- with increasing angle in-
crements of 9°, 18°, and 27° and reported the cumulative number of animals
for which at least one of the four probabilities was significantly different
from P0.5, using a two-tailed χ2 test with df = 1 and a criterion α = 0.05/4.

History Biases during High and Low Engagement.We first identified periods of
high and low engagement in every session. For a given session, we computed
a running estimate of the RT in a slidingwindow of 10 trials. RTs were defined
as the first rotation of the wheel after stimulus presentation, with trials that
had wheel rotations before the stimulus excluded from the analysis. Low and
high RTs were defined as the lower and upper 10% of the distribution of RTs
of every session and intermediate RTs as the remaining values. We consid-
ered trials with intermediate RTs as trials with a relatively high engagement,
and trials with short and long RTs as low-engagement trials.

In a complementary analysis (SI Appendix, Fig. S5 B and C), we identified
periods of high and low engagement based on the success rate. We com-
puted a running estimate of the success rate in a sliding window of 10 trials
and centered the running estimate by subtracting the mean success rate of
the session. All trials with the centered success rate estimate exceeding a
fixed threshold of 10% were labeled as high engagement, and all trials in
which the centered success rate estimate was lower than −10% were labeled
as low engagement. We confirmed the stability of our results using
threshold values of 5%, 15%, and 20%. When identifying engagement
epochs, time-out trials were counted as failures, but we discarded these
trials for all the analysis that followed, consistently with the rest of
this study.

Next, for both themain (RT-based) and the alternative (performance-based)
engagement criterion, we computed the log-likelihood L of outcomes in high-
and low-engagement trials (rh and rl, respectively) given the probabilities
predicted by the full model that accounted for trial history and by a history-
free model fitted separately (ph and p0, respectively) (see Model Design). For
binary outcomes r and model-derived probabilities p, we computed trial
wise the log likelihood using the formula L(r,p) = r log(p) + (1 − r)log(1 − p)
with stimulus conditions binned to a 9° grid. Applying two different trial
selections and two different models, we obtained L(rh,ph) for the log like-
lihoods of high-engagement trial outcomes given the model with history,
L(rl ,ph) for the log likelihoods of low-engagement trial outcomes given the
model with history, L(rh,p0) for the log likelihoods of high-engagement
trials given the history-free model, and L(rl ,p0) for the log likelihoods of
low-engagement trials given the history-free model. We next computed the
differences of log-likelihood averages between models with and without
history terms, using high-engagement trials, ΔLh = ÆL(rh,ph)æ − ÆL(rh,p0)æ
and low-engagement trials, ΔLl = ÆL(rl ,ph)æ − ÆL(rl ,p0)æ, (Fig. 4D).

For SI Appendix, Fig. S5C, we computed the average of each of these
log likelihoods across all trials for every pair of orientations (θL, θR) thus
obtaining maps of ÆL(r*,p*)æθ as a function of orientations (θL, θR). We dis-

carded any stimulus conditions where the number of trials was < 10. We
computed the difference between history-dependent and history-free maps
of ÆL(r*,p*)æθ separately for high- and low-performance trials, that is,

ΔLhθ = ÆL(rh,ph)æθ − ÆL(rh,p0)æθ and ΔLlθ = ÆL(rl ,ph)æθ − ÆL(rl ,p0)æ θ, and for all
trials together, ΔLθ = ÆL(y,ph)æθ − Æ L(y,p0)æθ. For the population summary
(SI Appendix, Fig. S5C) of ΔLθ, ΔLhθ, and ΔLlθ, we normalized ΔL* maps of

every animal by the SD across all stimulus conditions and averaged the
resulting maps across animals.

Model Comparison.
AIC.Wecompared the cumulativeGaussianpsychometricmodel to ourhistory-free
model, and the history-free model to the model with history priors, using the
Akaike Information Criterion (AIC) defined as AIC = −2L + 2k where k is the

number of parameters (4 for Gaussian model, 5 for the history-free model, 8
for model with history) and L is the log-likelihood value of the best fit. We
computed L using the following binomial log-likelihood formula:

L = ∑
i

yini log(pi) + ni(1 − yi)log(1 − pi) + log( ni

yini
),

where i corresponds to a 9°-binned unique stimulus condition defined by (θL, θR) for
the history-free to Gaussian model comparison and (θL, θR, rh, sh) for the history-
free to the history-dependent model comparison, yi is the proportion of successes,
ni is the total number of trials, and pi is the success rate given by either one of three
models. We computed and reported ΔAIC = AIC(Gauss) − AIC(HistFree) and
ΔAIC = AIC(HistFree) − AIC(HistDependent) for the final quantification.
Fraction of explained deviance. To estimate how much explanatory power is
gained by fitting the history-free model in comparison to the Gaussian
psychometric model, and by the history-dependent model in comparison to
the history-free model, we computed the fraction of explained deviance.
Deviance is defined as two times the log of the ratio of the saturated model

likelihood l(θmax ; y) to optimal model likelihood l(θ̂; y):

D = 2 log(l(θmax ; y)
l(θ̂; y) ), [6]

where y are observations, θ̂ are estimated parameters, and θmax are pa-
rameters of the saturated model.

For binomial data, deviance is as follows:

D = 2∑
i

yini log(yipi
) − (1 − yi)ni log(1 − yi

1 − pi
), [7]

where yini is the number of successes for stimulus condition i, ni is the
number of trials, and pi is the probability of success in condition i given by

the fitted model with parameters θ̂. For the cumulative Gaussian psycho-
metric function ψ(Δθ; α, β, γ, λ), a stimulus condition is defined by a pair of
angles {θR, θL} in a history-free model and a pair of angles with trial history
{θR, θL, sh, rh} in a model with history.

We first computed the deviance of the null model, with the same P(R) = pnull

rate for all conditions (computed as a grand average P(R) across trials). We
then used the formula for deviance D [7], with pi = pnull when computing null
deviance Dnull, pi = pi(HF) as predicted by history-free model when computing
history-free deviance DHF, pi = pi(HD) as predicted by the history-dependent
model when computing history-dependent deviance DHD, and pi = pi(Gauss)
as predicted by the Gaussian model when computing Gaussian deviance DGauss.
Here, a condition i corresponded to a unique pair of orientations (θL, θR)when
comparing the Gaussian model with the history-free model and to a pair of
orientations together with history inputs (θL, θR, sh, rh) when comparing the
history-free model and the history-dependent model; the fraction of right
choices yi and the total number of trials per condition ni changed accordingly.
We computed the fraction of explained deviance (FDE) for the three models
as FDEHF = 100% · (Dnull − DHF )=Dnull, FDEHD = 100% · (Dnull − DHD)=Dnull, and
FDEGauss = 100% · (Dnull − DGauss)=Dnull, and finally, we computed difference
in the fraction of deviance explained as ΔFDE = FDEHF − FDEGauss or
ΔFDE = FDEHD − FDEHF. For this analysis, we trained each model on 50%
randomly sampled trials and computed deviances from the other 50% of
trials. We tested the significance of ΔFDE> 0 for a population of animals
using the Wilcoxon signed-rank test.

Data Availability. Code and Data have been deposited on GitHub and Zenodo
(67) and are publicly accessible at https://github.com/CBS-NCB/mouseChoice
and https://zenodo.org/record/5091324#.YPbo0ehKiHs, respectively.
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