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Abstract

Background: Metabolic networks represent all chemical reactions that occur between molecular metabolites in an
organism’s cells. They offer biological context in which to integrate, analyze, and interpret omic measurements, but their
large scale and extensive connectivity present unique challenges. While it is practical to simplify these networks by placing
constraints on compartments and hubs, it is unclear how these simplifications alter the structure of metabolic networks
and the interpretation of metabolomic experiments. Results: We curated and adapted the latest systemic model of human
metabolism and developed customizable tools to define metabolic networks with and without compartmentalization in
subcellular organelles and with or without inclusion of prolific metabolite hubs. Compartmentalization made networks
larger, less dense, and more modular, whereas hubs made networks larger, more dense, and less modular. When present,
these hubs also dominated shortest paths in the network, yet their exclusion exposed the subtler prominence of other
metabolites that are typically more relevant to metabolomic experiments. We applied the non-compartmental network
without metabolite hubs in a retrospective, exploratory analysis of metabolomic measurements from 5 studies on human
tissues. Network clusters identified individual reactions that might experience differential regulation between
experimental conditions, several of which were not apparent in the original publications. Conclusions: Exclusion of specific
metabolite hubs exposes modularity in both compartmental and non-compartmental metabolic networks, improving
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detection of relevant clusters in omic measurements. Better computational detection of metabolic network clusters in large
data sets has potential to identify differential regulation of individual genes, transcripts, and proteins.
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Background

Life is inherently unstable, and cellular metabolism acts as its
vanguard, continually adapting to sustain balance. This sys-
tem is complex, requiring cooperation and coordination be-
tween many types of biochemical entities [1]. Large, poly-
meric molecules—lipids, sugars, nucleic acids, and peptides—
compose the cellular structure and machinery to propagate
hereditary information; however, alone these biomacromole-
cues are lifeless. Genes and transcripts encode the proteins that
act as enzymes to catalyze chemical reactions between smaller
constituent molecules, metabolites, and these reactions both
assemble biomacromolecules and supply energy to drive their
functions. Eukaryotic cells further compartmentalize groups of
these reactions within membrane-bound organelles, using pro-
tein transporters to regulate the exchange of metabolites be-
tween environments. This dynamic interdependence consti-
tutes metabolic regulation.

There is a growing need for strategies to investigate
metabolic adaptation in human health and disease. Traditional,
reductionist biology tends to conceptualize cellular metabolism
as a collection of separate pathways or processes (groups of reac-
tions) that perform their own unique functions with little inter-
action. However, a growing body of work has demonstrated sur-
prising versatility in the metabolic system, especially in human
diseases such as obesity, diabetes, and cancer [2–4]. Connectiv-
ity in metabolism is such that local perturbations such as muta-
tions or post-translational modifications of individual enzymes
or transporters can impose pervasive effects that blur distinc-
tions between typical pathways and cellular compartments. It
is also common for multiple perturbations to combine coopera-
tively and thereby aggravate complex diseases [5]. Consequently,
the appropriate study of metabolic mechanisms in these dis-
eases requires experimentation at a systemic level. Modern “-
omic” technologies measure the abundance and modification of
genes, transcripts, proteins, and metabolites with nearly com-
prehensive coverage [6]; however, there is a need for strategies
to integrate this system-wide biological context with functional
interpretations of these measurements [7,8].

Biological networks are abstract projections that are useful
for studying these complex, real systems. Interestingly, even
the global structures of molecular biological networks are in-
formative; patterns of efficient communication between spe-
cialized modules suggest competing mechanisms of stochas-
tic evolution and natural selection [9]. Furthermore, networks
are computer-readable, semantic models; and combining this
framework with rich compilations of biological knowledge can
provide context for integration, analysis, and interpretation
of experimental data [8]. By mapping measurements to these
networks, clusters or patterns of differential measurements
implicate specific types of perturbation [10]. While there has
been more emphasis on networks that represent gene-gene or
protein-protein interactions, metabolic networks have their own
special considerations because they depict a distinct dimension
of cellular biology.

Because metabolic networks are abstract projections, their
definitions can emphasize different aspects of the metabolic
system. This versatility argues for customizability, in particu-

lar with regard to compartments and hubs. Subcellular com-
partmentalization within membranous organelles is an impor-
tant dimension of metabolism in eukaryotic cells, yet standard
metabolomic measurements on bulk samples do not discrimi-
nate between pools of metabolites in separate compartments.
Hence, for the sake of analyzing and interpreting these mea-
surements, it may or may not be reasonable to simplify cellular
metabolism by ignoring compartmentalization [11]. Also, a few
metabolites, such as water, dioxygen, and carbon dioxide, are
especially common reactants and products in metabolic reac-
tions, and these metabolites dominate connectivity in metabolic
networks as hubs [9]. It can be practical to exclude these hub
metabolites from metabolic networks in order to expose more
subtle network structures [11]. It is unclear how these simplifi-
cations for compartmentalization and hubs alter the structures
and properties of metabolic networks.

Here we describe alternative definitions of metabolic net-
works and their relevance in application to experiments. We hy-
pothesized that alternative representations of metabolism using
compartmental or non-compartmental network models with or
without metabolite hubs would differentially influence the in-
terpretations of metabolomic experiments. We also explored the
potential for algorithms to detect biologically relevant clusters of
metabolomic measurements on these networks. Our goal was to
define these networks and describe their differences while also
providing methods and tools for future use in the community. To
this end, we curated and adapted the latest systemic model of
human metabolism [12]. We designed and developed a web ap-
plication, DyMetaboNet [13], with a dynamic, visual interface to
illustrate alternative definitions of metabolic networks. We also
created a software package, MetaboNet [14], with procedures to
define these networks from customizable parameters. We then
compared these networks by various graph theory metrics to
elucidate their differences. Finally, we demonstrated the appli-
cation of 1 network definition as biological context in a retro-
spective analysis of metabolomic measurements from multiple
previous studies. All of our data are available in a public archive
[15]. This work informs the future development of standard tools
for interpretation of omic measurements in metabolic experi-
ments.

Data Description
Metabolic model

Systemic metabolic models summarize all chemical reactions
between small-molecular metabolites that occur within an
organism. Another name for these models is genome-scale
metabolic reconstructions, with major applications in com-
putational simulations to predict broader cellular growth and
to resolve finer metabolic flux balance analysis through spe-
cific pathways [16,17]. These models are also of more gen-
eral utility as they integrate multiple types of functional in-
formation within computer-readable summaries [16,17]. Infor-
mation about metabolites includes common names and chem-
ical attributes such as formula, mass, and charge. Informa-
tion about reactions includes common names, directional-
ity and reversibility, reactant and product metabolites, and
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compartments where they occur. Importantly, both metabolites
and reactions include references to external databases that offer
both supporting evidence and supplemental information. Rele-
vant references for metabolites include the Human Metabolome
Database (HMDB) [18], PubChem [19], Chemical Entities of Bi-
ological Interest (ChEBI) [20], and Kyoto Encyclopedia of Genes
and Genomes (KEGG) [21]. Relevant references for reactions in-
clude KEGG [21], MetaCyc [22], and Reactome [23]. Also rele-
vant to reactions are references for genes, transcripts, and pro-
teins such as Entrez Gene [24], Human Genome Organization
(HUGO) Gene Nomenclature Committee (HGNC) [25], Reference
Sequence (RefSeq) [26], Ensembl [27], UniProt [28], and ExPASy
Enzyme Nomenclature Database (ExPASy) [29,30]. Often these
metabolic models are specific to cellular metabolism within a
single species, and the model of human metabolism has evolved
through many iterations and much effort from a broad, collabo-
rative community [12,31–35]. Several projects have further de-
fined tissue-specific versions of the human model for greater
specificity and accuracy [16, 17]. It is also valuable to integrate
and compare models from multiple species, and repositories of
common information across multiple species allow standard-
ization, quality control, and comparison. These repositories in-
clude BiGG [36] and MetaNetX [37], and relevant tools include
MetExplore [38]. Metabolic models are commonly available from
repositories in an open format, which is a standard definition
of XML known as the Systems Biology Markup Language (SBML)
[39].

Metabolomic measurements

Metabolomic technologies separate, identify, and quantify small
molecules from biological samples. While some studies use
nuclear magnetic resonance (NMR), larger studies commonly
use chromatography with gas (GC) or liquid (LC) mobile phases
that integrate with various forms of mass spectrometry (MS);
and combining measurements from multiple technologies in-
creases the breadth of a study. Each type of technology has its
own parameters and requirements for processing and analyz-
ing the data. In particular, normalization to total signal in each
sample corrects for loss of material and fluctuation in detector
sensitivity. Furthermore, measurements commonly lack abso-
lute calibration such that values only represent relative com-
parisons between samples. Many data sets from metabolomic
studies are not publicly available; however, there are initiatives
to include more of these data in public repositories, such as
the Metabolomics Workbench [40]. Whereas targeted techniques
specifically study signals from up to 800 unique and identifiable
analytes [11], untargeted studies tend to give much broader cov-
erage and instead search for observable differences in analytes
before their identification. Importantly, there are both chemical
and technical constraints on the measurable metabolome, and
the distribution of detectable metabolites across metabolism is
likely nonuniform. This limitation might influence the integra-
tion and analysis of metabolomic measurements on metabolic
networks.

Analyses
MetaboNet: Tools for definition and analysis of human
metabolic networks

MetaboNet [14] is our main collection of parameters and tools to
define and analyze metabolic networks. This installable package
of code in the Python programming language supports our data

transformations and analyses. We host the most current version
of this package within a repository on GitHub, and stable version
v1.0.0 has a persistent archive [14]. Accompanying the reposi-
tory on GitHub [14] is a tutorial that explains how to install the
package, access necessary external data files, curate the human
metabolic model, define customizable metabolic networks, ana-
lyze these networks, and integrate metabolomic measurements
for functional study. We also published many of MetaboNet’s in-
termediate and final export files in a data archive [15]. Some
users may find it more convenient to access these standard ex-
port files unless they require further customization of parame-
ters.

Curation and adaptation of the human metabolic model

We curated the latest systemic model of human metabolism
and adapted it to provide biological context in metabolic ex-
periments. In particular, our goal was to filter irrelevant reac-
tions from the model while also optimizing our ability to match
metabolomic measurements to metabolites. Steps 1 and 2 of cu-
ration both comprised enhancements to the information about
metabolites and reactions. We accessed the latest model of hu-
man metabolism, Recon version 2M.2 [12,41], and adjusted its
format to facilitate importation into MetaNetX [37]. This latter
tool was useful to standardize identifiers, control for consensus,
and include supplemental reference information about metabo-
lites and reactions. We next matched metabolites to entries in
HMDB [18] to standardize common names and to increase cov-
erage of references both to HMDB [18] and to PubChem [19]. Step
3 comprised applying filters and correcting errors. We removed
metabolites and reactions that were primarily relevant to simu-
lations of growth and metabolic flux, such as biomass accumula-
tion, protein assembly and degradation, and exchange with the
extracellular space or boundary of the system. We next made 197
custom edits for metabolites and 102 custom edits for reactions
to improve accuracy and avoid redundancy. Step 3 simplified the
model’s scale substantially (Table 1), effectively reducing noise
from our subsequent analyses. Whereas in the original version
of the human metabolic model, only 68.07% of 5,772 reactions
included references to either Entrez Gene [24] or ExPASy [29,30],
75.73% of our remaining 3,486 final reactions include these ref-
erences (Table 1). These external references provide supporting
evidence and greater confidence in these final reactions. Simi-
larly, only 55.13% of the original 1,725 metabolites included ref-
erences to either HMDB [18] or PubChem [19], but in our final
version of the model 59.52% of 1,722 metabolites include these
references (Table 1). These common metabolite identifiers offer
handles by which to match metabolites to metabolomic mea-
surements. A partial explanation for the incomplete coverage
of references for metabolites is that both metabolomic exper-
iments and databases likely share a bias for stable, detectable
compounds rather than transient metabolic intermediates. Our
final adaptation of the human metabolic model is accessible in
multiple files and formats within a data archive [15]. This model
is the basis by which we define and study metabolic networks.

DyMetaboNet: Web application for visual exploration of
metabolic networks

To begin our study of human metabolic networks, we designed
and developed a tool to visualize the definition and exploration
of the human metabolic network. This tool is an experimen-
tal prototype that does not intend to replace the broader func-
tionality of major tools in network biology [42]. Rather, our
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Table 1: Curation of human metabolic model

Parameter Metabolites Reactions Compartments Processes

Step 1
Count 1,725 5,772 10 113
MetaNetX 1,682 (97.51%) 4,474 (77.51%)
PubChem or HMDB 951 (55.13%)
Gene or enzyme 3929 (68.07%)

Step 2
Count 1,725 5,772 10 113
MetaNetX 1,682 (97.51%) 4,474 (77.51%)
PubChem or HMDB 1,021 (59.19%)
Gene or enzyme 3,929 (68.07%)

Step 3
Count 1,722 3,486 8 109
MetaNetX 1,679 (97.50%) 2,771 (79.49%)
PubChem or HMDB 1,025 (59.52%)
Gene or enzyme 2,640 (75.73%)

Curation of systemic model of human metabolism. The goal of curation was to adapt the model for definition of networks to represent intracellular metabolism,
and to improve integration of metabolomic measurements. Step 1 was after integration of Recon 2M.2 [12] with MetaNetX [37]. Step 2 was after deriving names and
references for metabolites from HMDB [18]. Step 3 was after curation of individual metabolites and reactions. Summaries comprise counts of metabolites, reactions,

compartments, and processes. Summaries also comprise coverage of metabolites with references to MetaNetX [37], HMDB [18], and PubChem [19], and coverage of
reactions with references to MetaNetX [37], Entrez Gene [24], and ExPASy [29,30].

application aims to enhance accessibility and visual interactiv-
ity, with integration of basic filters, queries, and visual repre-
sentations for qualitative exploration. Indeed, this tool empha-
sized to us some major challenges to the feasibility of applying
metabolic networks in metabolomic experiments.

DyMetaboNet [13] is a dynamic, interactive, and qualitative
partner to MetaboNet [14]. We host the most current version
of this application within a repository on GitHub, and stable
version v1.0.0 has a persistent archive [13]. This web applica-
tion executes code in the JavaScript programming language to
control the behavior of visual elements in the web document.
DyMetaboNet runs within the user’s internet browser without
the need to maintain a remote server or install special, local
software. The application’s graphical interface interactively con-
trols the definition of networks and their visual representation
(Fig. 2), with toggles to represent the network with (Fig. 1A) or
without (Fig. 1B) compartmentalization, with inclusion (Fig. 1C)
or exclusion (Fig. 1D) of nodes for specific metabolites, and with
filters by cellular compartments and metabolic processes of in-
terest. For example the user might want to consider only reac-
tions and metabolites within the mitochondrion compartment
or those that participate in the citric acid cycle process (Fig. 2B).
As the user alters these controls, DyMetaboNet defines the net-
work accordingly and displays its visual representation nearly
in real time, at least for small networks. We acknowledge that
there is substantial latency to compute the layout of larger net-
works, but visual representation is obscure for networks of this
scale anyway. Furthermore, DyMetaboNet supports basic graph
traversal queries to select subnetworks by proximity (breadth-
first search) (Fig. 2C), shortest paths between source and target
nodes (directional, simple shortest paths), and pairwise shortest
paths between multiple target nodes of interest (Fig. 2D). A query
by proximity might be useful where the user needs to know all
reactions in which a single metabolite, such as pyruvate, par-
ticipates (Fig. 2C). A query by shortest paths might be useful
when the user has measurements for ≥2 metabolites and needs
to know how these relate to each other (Fig. 2D). The user can
export tables of information about metabolites and reactions
within these networks and subnetworks. We prepared a screen-
capture video demonstration of these features of DyMetaboNet

and made this video accessible in a data archive [15]. With its
interactive integration of definition, query, and visualization,
DyMetaboNet enables a qualitative appreciation for the scale
and complexity of the human metabolic network.

During our design and development of DyMetaboNet [13], we
recognized a need to describe further the variable structure of
the metabolic network. It soon became apparent to us that the
complexity of the metabolic network involved not only its scale
but also its extent of interconnectivity. Because DyMetaboNet
is a visual interface, both of these aspects made visual repre-
sentations obscure. Furthermore, a goal of DyMetaboNet was to
support graph traversal queries, such as by proximity and short-
est paths. Without intervention, we found that such queries
were uninformative because common metabolites such as wa-
ter dominated the network’s connectivity and hence its short-
est paths. Finally, DyMetaboNet’s qualitative perspective em-
phasized extreme differences between alternative but reason-
able definitions of the metabolic network. These observations
impressed us as major challenges to the feasibility of contextu-
alizing metabolomic experiments on appropriate metabolic net-
works. We therefore decided to pursue deeper analysis of the
metabolic network’s structure and its dependence on reasonable
differences in definition.

Definition of metabolic networks

We defined multiple network representations of human
metabolism. Networks are abstract simplifications of complex
systems, and alternative representations can be reasonable
while emphasizing different aspects of the underlying infor-
mation. We chose to keep some definitions consistent while
altering other constraints to evaluate their influence. All of
our definitions represent metabolism in a directional bipartite
network [43] with distinct types of nodes for reactions and
metabolites (Fig. 1D). This representation is intuitive for in-
teractions between distinct biological entities: metabolites are
small molecules, whereas reactions are chemical events that
comprise roles of genes, transcripts, and proteins. Accordingly,
nodes in this network store attributes that match their type of
biological entity. Directional links between these nodes depict
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Figure 1: Definition of metabolic networks with simplifications for compartments and hubs. A, Compartmental network. Boxes and ellipses represent compartments.

A compartmental network distinguishes between compartmental instances of otherwise chemically identical metabolites (Metabolites 1 and 4, Metabolites 2 and 3)
and reactions. Compartmental networks also include reactions to represent transport (Reactions B and C) between compartments. B, Non-compartmental version of
network from A. A non-compartmental network combines representations of otherwise chemically identical metabolites and reactions to consensus representations

(Metabolites 1 and 2) and also excludes transport reactions. C, Network with hubs. Metabolite hubs (Metabolite 2) participate in many reactions and impart excessive
connectivity to the network. D, Network from C without hubs. Selective exclusion of metabolite hubs simplifies the network and reveals major structural themes such
as linear or cyclical pathways.

relations between metabolites and reactions, including which
metabolites participate as reactants and products and whether
the reaction is reversible (Fig. 1D). Whereas all links in our
networks are weightless, we think it worthwhile to comment
briefly on the alternative. Assigning weights to reactions’
links might reasonably represent the metabolically significant
conversion of chemical mass or the rates of metabolic flux;
however, these metrics can be variable (specific to tissue and
experimental condition) and difficult to measure. Keeping these
aspects (bipartite nodes for metabolites and reactions, direc-
tional weightless links) of our definitions consistent allowed us
to compare differences when varying other constraints. These
additional constraints include compartmentalization (Fig. 1A
and 1B), filters by compartment and process, and exclusion of
nodes for specific metabolites (Fig. 1C and 1D). During our work
on DyMetaboNet [13], we found these factors to have a strong
effect on the metabolic network’s structure.

Constraint 1: Compartmentalization
Our first constraint involves compartmentalization. Compart-
mental networks (Fig. 1A) include compartment-specific in-
stances of otherwise chemically identical metabolites and reac-
tions. These networks also include reactions to represent trans-
port between compartments. Non-compartmental networks
(Fig. 1B) aggregate these chemically identical metabolites and
reactions into single, consensus representations that are each
unique. These networks also exclude transport reactions be-
cause these are irrelevant without compartments.

Constraint 2: Filters by compartments and processes
Our second constraint involves filters by specific cellular com-
partments and metabolic processes. These compartments and
processes define sets of metabolites and reactions of interest.
For example the user might want to consider only reactions and
metabolites within the mitochondrion compartment. Similarly,
the user might want to consider only reactions and metabo-
lites that participate in the citric acid cycle process (Fig. 2B).
MetaboNet [14] makes these filters customizable. In subsequent
analyses, we included metabolites and reactions from all com-
partments and processes to establish a perspective on the en-
tirety of cellular metabolism.

Constraint 3: Exclusion of specific metabolites
Our third constraint relates to the exclusion of specific metabo-
lites from the metabolic network. This exclusion means that the
network does not include nodes to represent these metabolites,
and consequently there are also no links to or from them. Re-
gardless of exclusion of nodes and links for a metabolite, reac-
tions themselves still include information about all metabolites
that participate as reactants and products.

Metabolite hubs are special candidates for exclusion from the
metabolic network. A few metabolites are common reactants
and products in metabolic reactions, such that they contribute a
large proportion of the connectivity in metabolic networks (Ta-
ble S1) [11]. These metabolites are hubs, and they are of special
interest because they dominate the network’s structure. Exclu-
sion of these hubs simplifies connectivity (Fig. 1C and 1D, Fig. 2A



6 Compartment and hub definitions tune metabolic networks for metabolomic interpretations

Figure 2: Screen images from DyMetaboNet web application. DyMetaboNet is a web application that defines and visualizes custom metabolic networks within the
internet browser. A, With hubs, the citric acid cycle has dense connectivity that obscures its cyclical structure. B, Exclusion of hubs coenzyme A, carbon dioxide,
proton, and nicotinamide adenine dinucleotide (NAD1+) reveals the overall cyclical structure of the citric acid cycle. C, Queries by proximity (breadth-first search)
include nodes within a specific range of links to a focal node. For example, the user might need to know all reactions in which pyruvate participates. D, Connection

queries (pairwise simple shortest paths) allow construction of subnetworks between multiple metabolites of interest. For example, the user might need to know
how pyruvate, citrate, oxoglutarate, succinate, fumarate, malate, gutamate, glutamine, aspartate, and asparagine relate to each other. This project’s data archive [15]
includes a screen-capture video of DyMetaboNet that demonstrates these features and more.

and 2B) and improves resolution to detect trends in other, less
dominant metabolites. We divided these hubs into 2 conceptual
categories on the basis of their relevance to metabolic regulation
and experiments.

Category 1 hubs Category 1 metabolite hubs are less relevant to
metabolic regulation and experiments. Many of these metabo-
lites are prolifically abundant in the cell. While they are all
chemically essential to metabolic reactions, some of these
metabolites, such as water, dioxygen, and carbon dioxide, are
unlikely to participate in the type of metabolic regulation that
is commonly relevant to experiments. Furthermore, perturba-
tions in the abundance of these metabolites would be difficult
to interpret, and some of these metabolites are undetectable in
metabolomic measurements. Category 1 hubs (Table S1) include
proton, water, dioxygen, phosphate, diphosphate, carbon diox-
ide, sulfate, hydrogen peroxide, ammonium, sulfite, sodium, hy-
drogen carbonate, and hydroxide.

Category 2 hubs Category 2 metabolite hubs are more relevant
to metabolic regulation and experiments. The abundance of

these metabolites in the cell fluctuates in metabolic regulation,
and they are relevant to many metabolic experiments. However,
some of these metabolites participate in so many reactions that
they dominate connectivity in the metabolic network. Exclusion
of these metabolites from the metabolic network reveals more
subtle trends involving the influences of other metabolites that
are of greater interest in some contexts. Category 2 hubs (Ta-
ble S1) include coenzyme A, acetyl coenzyme A, acyl carrier pro-
tein, carnitine, nicotinamide adenine dinucleotides, flavin ade-
nine dinucleotides, and nucleoside phosphates.

This constraint for exclusion of specific metabolites is very
sensitive and requires customization to the context of each
metabolic experiment. Consequently, MetaboNet [14] makes
the selection of these metabolites customizable. For our sub-
sequent analyses herein, we chose to evaluate the extreme
condition with exclusion of all metabolite hubs in Category
1 and all metabolite hubs in Category 2 with degrees >50
(Table S1 and S2). Degree is a metric of a node’s connectivity
in a network that we discuss in greater detail below. We found
that the exclusion of these hubs simplified metabolic networks
profoundly and exposed intrinsic structure that enhanced the
potential to detect relevant clusters in our retrospective analyses
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A B

C D

Figure 3: Global structures of metabolic networks. Alternative definitions of metabolic networks differ in global structure. Visual representations of metabolic net-
works in Cytoscape [42] with identical visual styles and layout parameters. A, Compartmental network with hubs. B, Compartmental network without hubs. C,
Non-compartmental network with hubs. D, Non-compartmental network without hubs.

of metabolomic measurements. This extreme approach may not
be appropriate for all experiments, and metabolite hubs in Cat-
egory 2 deserve particular attention in the selection of metabo-
lites for exclusion.

Analysis of metabolic networks

We next set out to describe and compare our metabolic networks
both qualitatively and quantitatively. MetaboNet [14] exports
networks to file formats compatible for import to Cytoscape [42],
and we used this latter tool to visualize global networks at high

resolution (Fig. 3). Within MetaboNet, we also applied multiple
metrics from graph theory (Table S2) to describe and compare
our metabolic networks (Table 2). These bipartite networks have
distinct metrics of centrality, centralization, path length, cluster
coefficient, small-world coefficient, and degree assortativity
relative to their nodes for metabolites and reactions [43]. We
chose to concentrate our analyses on these metrics relative to
metabolites (Table 2) because our primary interest is in the flow
of mass within the metabolic network and its measurement in
metabolomic experiments. Complete metrics for all networks
are available in an archive of MetaboNet’s complete export
data [15].
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Like many other real systems, metabolism is a small
world [9]. The small-world pattern appears pervasively across
networks representing real systems, including friendships be-
tween people and connections between internet servers. In a
small world of friendships, any person knows another person
vicariously through a few other people; whereas in the small
world of the internet, any computer communicates with an-
other computer by transferring information through a few inter-
mediate servers. In addition to their short path lengths, small-
world networks share strong modularity. This structure favors
specialization and versatility while also allowing for coopera-
tive communication. These characteristics imply some combi-
nation of stochasticity and selection in the formation of these
networks, and the same principles apply to the evolution of bio-
logical systems [9]. All of our metabolic networks have extreme
values (�1.0) of the σ (sigma) small-world coefficient (Tables 2
and S2), and both compartmental and non-compartmental net-
works with hubs have mean path lengths that are less than the
natural logarithms of their orders (Table 2 and S2). This strong,
small-world character suggests that the metabolic system relies
heavily on modularity but also that there is efficient communi-
cation and cooperation between these modules [9]. Importantly,
this structure implies that both regulatory signals and perturba-
tions pervade the entire system readily.

Compartmentalization confers major structural properties to
metabolic networks. In their global visualizations, compartmen-
tal (Fig. 3A and 3B) and non-compartmental (Fig. 3C and 3D)
metabolic networks are noticeably distinct; however, this dif-
ference is most apparent between the networks with hubs (Fig.
3A and 3C). In this case, compartmentalization introduces dra-
matic clusters or modules throughout the network (Fig. 3A), giv-
ing the impression that compartments divide and disperse the
metabolic system, decreasing its connectivity. This effect is less
apparent between the networks without hubs (Fig. 3B and 3D).
To explore these differences further, we applied multiple metrics
from graph theory (Tables 2 and S2). The most obvious obser-
vation from this analysis is that both compartmental networks
have greater orders and sizes than their non-compartmental
counterparts (Table 2). This difference in non-compartmental
networks reflects the absence of replicate nodes for compart-
mental instances of chemically identical metabolites and reac-
tions (Fig. 1) along with the exclusion of reactions that mediate
transport across membranes (Fig. 1). Another observation is that
compartmentalization creates networks with less density and
centralization (Table 2). Consistent with their global visualiza-
tions (Fig. 3), these shifts in density, close-range (degree) central-
ization, and long-range (betweenness) centralization are greater
in the networks with hubs (1.79-, 4.24-, and 2.93-fold, respec-
tively) than in those without hubs (1.47-, 3.05-, and 2.03-fold, re-
spectively) (Table 2). Compartmentalization also imparts greater
cluster coefficients, with the shift greater with hubs (2.85-
fold) than without them (1.90-fold) (Table 2). Whereas mean
path lengths and degree assortativity vary little, compartmen-
talization imparts greater small-world coefficients both with
hubs (3.70-fold) and without (2.79-fold) (Table 2). Together these
observations have interesting biological implications. Compart-
mentalization decreases connectivity in metabolism (density,
centralization) to avoid excessive communication and interac-
tion, such as through enzyme promiscuity and spurious al-
losteric interactions between metabolites and proteins [44]. Con-
versely, compartmentalization also increases modularity (clus-
ter coefficient), allowing for specialization and regulation within
separate chemical environments. Surprisingly, this increase in
modularity combines with subtle changes to path lengths such
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that compartmentalization actually enhances the small-world
character of metabolic networks. Furthermore, it is interesting
that hubs effectively exaggerate most of these effects, and we
consider them next.

Metabolite hubs dominate connectivity within metabolic
networks. In their global visualizations, networks with (Fig. 3A
and 3C) and without (Fig. 3B and 3D) hubs are strikingly dis-
tinct. These hubs introduce apparent connectivity to both com-
partmental (Fig. 3A and 3B) and non-compartmental (Fig. 3C
and 3D) networks. As before, metrics from graph theory (Ta-
ble 2 and S2) elucidate these differences. An obvious obser-
vation is that networks without hubs have lesser orders and
smaller sizes than their counterparts (Table 2), due to the ex-
clusion of nodes for these metabolites (Table S1). Also intuitive
from their definition is the observation that hubs impart greater
density and centralization (Table 2). These shifts in density,
close-range (degree) centralization, and long-range (between-
ness) centralization are greater in non-compartmental networks
(1.86-, 15.9-, and 3.63-fold, respectively) than in compartmental
networks (1.53-, 11.5-, and 2.51-fold, respectively) (Table 2). No-
tably, hubs decrease mean path lengths (Table 2) for both non-
compartmental (3.07-fold) and compartmental networks (2.01-
fold), suggesting that these hubs dominate the majority of short-
est paths in their networks. Hubs also decrease cluster coeffi-
cients and small-world coefficients (Table 2) both without (2.07-
and 2.23-fold, respectively) and with (1.38- and 1.68-fold, respec-
tively) compartments. Hubs also decrease assortativity with and
without compartmentalization (Table 2). Together these obser-
vations are relevant to the study of metabolic networks. Metabo-
lite hubs are likely to dominate shortest paths in network traver-
sal queries, and they also are likely to obscure detection of
clusters of interest. Their influence is even more profound in
non-compartmental networks. Accordingly, the selection of hub
metabolites for exclusion (Table S1) from the network is an im-
portant parameter.

Ranks of metabolites in metabolic networks

To compare metabolic networks from a complementary per-
spective, we considered their profiles of prominent metabo-
lite nodes. We noticed that metabolites’ nodes in these net-
works have degrees that follow roughly exponential distribu-
tions (Fig. 4A and 4F), an indication of a scale-free network [9].
Importantly, the exclusion of metabolite hubs has its greatest
effect on those few nodes with the greatest degrees in both
compartmental (Fig. 4A) and non-compartmental (Fig. 4F) net-
works. We next sought to rank metabolites by relative influence
or weight, combining metrics for degree centrality and between-
ness centrality. Hence, our ranks (Fig. 4B–C and 4G–H) represent
the close-range (degree centrality) and long-range (betweenness
centrality) influence of metabolites in metabolic networks [45].
In both compartmental and non-compartmental networks, the
exclusion of hubs changes dramatically the metabolites with
prominent influences (Fig. 4B–E and 4G–J). Specifically, the exclu-
sion of hubs such as proton, water, coenzyme A, nicotinamide
adenine dinucleotides, adenosine triphosphate, hydrogen phos-
phate, and dioxygen (Fig. 4B, 4D, 4G, and 4I) allows for other
metabolites to rise to prominence, such as glutamate, pyruvate,
glycine, oxoglutarate, and cholesterol (Fig. 4C, 4E, 4H, and 4J).
These latter metabolites are more common targets of interest
in metabolic regulation and metabolomic experiments.

Glutamate is an impressive example of connection and
cooperation in metabolism. While not equal to hub status, this
metabolite is particularly promiscuous in metabolic reactions.

In both the compartmental and non-compartmental networks
without hubs, glutamate is the top-ranking metabolite in terms
of both its close and long-range influence (Fig. 4C and 4H). In
the non-compartmental metabolic network without hubs, this
amino acid participates in >60 reactions in ≥3 different cellular
compartments, belonging to ∼30 different metabolic processes.
Furthermore, glutamate belongs to 25 different sets within
MetaboAnalyst’s default library for metabolite set enrichment
analysis [46]. Whereas analyses of sets isolate glutamate’s
various roles, analyses of networks integrate these for a holistic
perspective. Glutamate illustrates the importance of studying
metabolism as an entire system, not as arbitrarily separate sets
of distinct pathways. Perturbations of this central metabolite
are likely to have pervasive effects on the metabolic system,
but they might also be difficult to interpret in any specific
context. Glutamate’s metabolic sets [46] include malate-
aspartate shuttle, glucose-alanine cycle, alanine metabolism,
glutathione metabolism, cysteine metabolism, phenylalanine
and tyrosine metabolism, folate metabolism, urea cycle, lysine
degradation, ammonia recycling, amino sugar metabolism,
β-alanine metabolism, aspartate metabolism, nicotinate and
nicotinamide metabolism, propanoate metabolism, histidine
metabolism, glutamate metabolism, arginine and proline
metabolism, Warburg effect, glycine and serine metabolism,
tryptophan metabolism, valine, leucine and isoleucine degra-
dation, arachidonic acid metabolism, tyrosine metabolism, and
purine metabolism.

Selection of metabolic networks for application to
metabolomic experiments

Reasonable definitions of metabolic networks differ to the ex-
tent that their application to metabolic experiments warrants
careful selection. These networks offer potential to facilitate
design of experiments and to contextualize functional inter-
pretations of metabolomic measurements. Importantly, our
analyses demonstrate that constraints by compartmentaliza-
tion and metabolite hubs alter the structure of the metabolic
network substantially (Fig. 3 and 4, Table 2). Hence, it is reason-
able to assume that any subsequent integration and analysis of
measurements will depend on the definition of the network it-
self. The first constraint to consider is compartmentalization.
Standard metabolomic techniques do not distinguish between
cellular compartments; rather, a measurement for an analyte,
such as glutamate, represents the total abundance of that ana-
lyte in all types of cells and in all sub-cellular organelles within
a sample. Mapping non-compartmental metabolomic measure-
ments onto a compartmental metabolic network would require
replication across compartmental instances of each metabo-
lite, and it would be difficult or impossible for this replica-
tion to represent the respective sizes of compartmental pools
of the metabolite accurately. Selection of a non-compartmental
network would avoid the risk of introducing artifacts or bias
from this replication of measurements. On the other hand, se-
lection of a compartmental network could enhance functional
interpretation by introducing relevant biological context. The
second constraint to consider is the inclusion of metabolite
hubs. These hubs would tend to dominate topological queries
on the network, and they would also obscure the detection of
clusters of relevant measurements within the network. Hence,
the careful selection of hubs for exclusion is very important.
Rather than attempting an exhaustive comparison, we se-
lected the non-compartmental network with exclusion of de-
fault metabolite hubs (Table S1). We then performed a trial of
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Figure 4: Properties of metabolites’ nodes in metabolic networks. Alternative definitions of metabolic networks differ in dominant influence of metabolites’ nodes. A–E,
Compartmental metabolic networks. F–J, Non-compartmental metabolic networks. A, F, Histograms for counts of metabolite nodes with specific degrees in networks
with and without hubs. B, C, G, H, Parallel coordinates charts for ranks of metabolites’ nodes in metabolic networks by degree centrality (”degree”), betweenness

centrality (”betweenness”), or a mean of these ranks (”total”). B, G, Ranks of metabolites’ nodes in metabolic networks with hubs. C, H, Ranks of metabolites’ nodes
in metabolic networks without hubs. D, E, I, J, Word cloud visual representations of the influences of metabolites’ nodes in metabolic networks with nodes’ degrees
scaled to font size by a factor of 1.0. D, I, Influences of metabolites’ nodes in metabolic networks with hubs. E, J, Influences of metabolites’ nodes in metabolic networks
without hubs.

integration and analysis of metabolomic measurements on this
network.

Preparation of metabolomic measurements

Having selected the non-compartmental metabolic network
without hubs, we next prepared to evaluate its application to
retrospective analyses on real metabolomic measurements. Be-
cause our model and networks represent intracellular human

metabolism, we searched for studies on solid human tissues
rather than plasma, serum, other body fluids, or excrement. We
selected 5 studies with publicly accessible metabolomic mea-
surements [40] on samples from lung, fat, liver, and muscle tis-
sues from human participants (Table S3) [47–53]. Studies 1, 2, and
5 are of particular interest because they include pairs of samples
from the same persons across experimental groups, and studies
1, 2, 3, and 4 have previous publications that analyze and inter-
pret trends in metabolites [47,49,51].
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We organized metabolomic measurements to compare ex-
perimental groups in each study. Each of the 5 studies in-
cludes measurements for ≥125 identifiable analytes, of which
≥73 (>58%) match to metabolites in our model of human
metabolism (Table S3). We normalized these measurements to
the total signals for each sample to control for confounding
variance from sample loss or instrument sensitivity. We then
compared each metabolite’s abundance between experimen-
tal groups (Table S3), calculating probabilities (P-values) by the
Student t-test and also calculating the base-2 logarithms of
fold changes. For each study, we visualized these fold changes
and probabilities simultaneously in volcano plots (Fig. 5A, S1A,
S2A, S3A, S4A). These plots effectively emphasized metabolites
with both great differential abundance and great precision in
their measurements, and demonstrated trends of accumula-
tion and depletion in metabolites (Fig. 5 and S1-S4) that were
consistent with those in previous publications of these studies
[47,49,51].

Analysis of metabolomic measurements by set and
network enrichment strategies

As a trial application, we compared analyses of metabolomic
measurements by a standard set enrichment method and by
a general cluster enrichment method on our metabolic net-
work. For the analysis by metabolite set enrichment, we used
MetaboAnalyst [46], a versatile and popular tool with an ac-
cessible web interface (Table S4). For the analyses by enrich-
ment in the network’s clusters, we integrated fold changes
and P -values from metabolomic measurements to matching
metabolites in the non-compartmental metabolic network with-
out hubs. We then exported this network with measurements
to Cytoscape [42], within which we used the jActiveModules
application [54,55] to detect clusters with enrichment in mea-
surement P -values. Finally, we searched for clusters exhibit-
ing patterns of both accumulation and depletion in proximal
metabolites (Fig. 5 and S1–S4, Tables S5 and S6). Further details
on these analyses including methods, observations, and prelim-
inary interpretations are in the the Methods and Supplement
sections .

Our analyses reiterated some of the advantages of model-
ing biological systems as networks rather than disjoint sets
[11,56]. We found that the set enrichment analysis was prone to
over-interpretation of measurements from a few prominent an-
alytes, with vulnerability to artifacts and false-positive results
(Table S4). In contrast, searching for network clusters exposed
trends in a greater diversity of analytes (Fig. 5 and S1–S4, Ta-
ble S5), most of which did not occur in the top 10 hits from
set enrichment analysis (Table S4). Furthermore, several clusters
were novel even after comparison to the original publications on
these studies [47,49, 51]. Interestingly, several of these clusters’
reactions occupied intersections between major metabolic pro-
cesses and between separate intracellular compartments (Fig.
5 and S1–S4, Table S6). In conclusion, the network enrichment
analysis demonstrated sensitivity to even subtle trends, with
resolution to identify individual genes, transcripts, and proteins
that were candidates for differential regulation between exper-
imental conditions (Table S6). Our definition of the metabolic
network suited these analyses and demonstrated potential for
further integration in methods for high-resolution and high-
throughput analysis of omic measurements from metabolic ex-
periments.

Discussion

In this project, we describe the effects of compartmentaliza-
tion and metabolite hubs on distinct definitions of systemic
metabolic networks. To do so, we derived information about
metabolic reactions from our own custom curation of the lat-
est model of human metabolism [12] and its integration with
other databases [18, 19, 37]. We developed both a visually inter-
active web application, DyMetaboNet [13], and a customizable
package of parameters and code, MetaboNet [14], to define dif-
ferent network representations of human cellular metabolism.
By applying metrics from graph theory—such as centraliza-
tion, mean shortest path, cluster coefficient, small-world coeffi-
cient, and assortativity—to these networks, we described ma-
jor structural distinctions that depend on compartmentaliza-
tion and metabolite hubs. These factors differentiate the bio-
logical context accessible for integration and analysis of omic
measurements within these networks. As a trial application, we
selected the non-compartmental network without metabolite
hubs for a retrospective analysis of metabolomic measurements
[40] from multiple studies on human tissues (Table S3) [47,49,51].
We found that a general network enrichment strategy [42,54,55]
has potential to detect biologically relevant differences at junc-
tions between metabolic pathways.

Compartmentalization of metabolic reactions and interme-
diates within intracellular organelles and membranes estab-
lishes regulatory environments with chemical specialization.
Extensive interconnectivity between reactions within these sep-
arate environments contributes to the overall modularity of
the network, a structure that enhances the evolution, versatil-
ity, and robustness of the entire system [9,57]. Indeed, we ob-
served that compartmentalization increases the cluster coeffi-
cients and small-world coefficients of metabolic networks. Com-
partments are also important to avoid excessive interactions
within metabolism, such as through feed-forward and feed-back
allosteric activation or inhibition [44], as well as enzyme promis-
cuity; however, these partitions do not entirely isolate their envi-
ronments. There is extensive, efficient communication and co-
operation across cellular borders, with specific signaling mecha-
nisms, transport events, and even physical connections between
organelles to regulate and enhance these processes [58]. Con-
sistent with this communication between compartments was
our somewhat surprising observation that compartmentaliza-
tion does not appreciably alter the mean shortest path length
between metabolite nodes within the network. Compartmen-
talization certainly contributes major regulation to eukaryotic
metabolism, and its representation in metabolic networks war-
rants careful consideration.

Hubs are a common and influential pattern in network
representations of real systems, with particular relevance to
metabolism. Early studies on the topological structures of bi-
ological networks (gene interactions, protein interactions, and
metabolic reactions) [9,57] described their disassortativity, with
selection against direct connections between hubs. This struc-
ture contrasts with the assortativity that is common in other real
systems, such as social networks in which very friendly peo-
ple are more likely to know other very friendly people. While
disassortativity enhances modularity in biological networks, at
the extreme it leaves these systems vulnerable to loss of essen-
tial modules. Further analysis of biological networks revealed
a dichotomous combination of disassortative major hubs with
assortative minor hubs [59], balancing the benefits of modular-
ity while mitigating the vulnerabilities of disconnection. Here,
we studied structural dependencies by omitting metabolite hubs
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Figure 5: Integration and analysis of metabolomic measurements on metabolic networks, Study 1. Metabolomic Study 1 (Table S3) compared the abundances of
177 metabolites between cancerous and normal lung tissues. Clusters of enrichment in fold changes are detectable by integrating measurements within the non-
compartmental network without hubs (Fig. 3D). A, Volcano plot of P-values and fold changes in metabolites. B, Scale for color representation of fold changes on
nodes in clusters. Extremes of color scale represent the minimal and maximal fold changes in the entire study. C–E. Clusters in metabolic network are detectable by

enrichment of P-values and fold changes. Metabolite nodes in clusters represent fold changes by color fill, and they represent P-value by border thickness (P-value <

0.05).

from metabolic networks; however, we acknowledge that an al-
ternative and more moderate simplification of these hubs would
be to assign weights to all links in the network, with lesser
weights for links to and from hubs. We designated metabo-
lite hubs on the bases of their chemical and metabolic prop-
erties and their connections within the network; very small
molecules and ions with prolific abundances in and around the
cell (e.g., proton, water, dioxygen, carbon dioxide, phosphate)
were hubs along with metabolites with degrees beyond a specific
threshold (e.g., coenzyme A, nicotinamide and flavin adenine
dinucleotides, adenosine phosphates). We found that exclud-
ing nodes and links for these metabolite hubs exposed impres-
sive structural dependencies in metabolic networks. Not only
do hubs dominate shortest path lengths between metabolite
nodes, they also decrease the apparent modularity in terms of
cluster coefficients and small-world coefficients. Furthermore,
we found that these hubs also decrease the assortativity (in-
crease the disassortativity) of their networks, emphasizing the
relevance of the disassortative and assortative dichotomy in
metabolism as a quantitative explanation and justification for
this strategy of simplification [11,59]. Careful representation of

hubs in metabolic networks can expose subtle structure and also
improve resolution in network traversal queries.

Together, MetaboNet [14] and DyMetaboNet [13] demonstrate
useful methods and designs for analysis of metabolomic data.
DyMetaboNet emphasizes qualitative exploration of a coherent
metabolic system, by integrating the definition and query of net-
works with their visual representations in an interactive inter-
face. In particular, network queries by proximity (breadth-first
search) and paths between 2 or more targets (pairwise short-
est simple paths) enhance this exploration. DyMetaboNet’s per-
spective contrasts with other tools that represent metabolism as
a collection of discrete pathways, each with its own static, man-
ually drawn map. Examples include KEGG Atlas [21], Reactome
[23], and Escher [60]. A limitation is DyMetaboNet’s requirement
for automatic layouts in order to draw diagrams of custom net-
works. These automatic layouts are often less readable than
manual layouts and are computationally expensive for large net-
works. Also, DyMetaboNet’s compact web application excels at
accessibility, interactivity, and integration of controls and vi-
sualizations, but these advantages disappear owing to latency
for larger networks or tasks that require more functionality. In
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these scenarios, broader-feature applications such as Cytoscape
and Metscape [42,61] are preferable. Indeed, after defining global
metabolic networks in MetaboNet, we transferred these to Cy-
toscape for further visualization and analysis. Within Cytoscape,
we used the jActiveModules [54,55] application to detect generic
enrichment in P-values on clusters of proximal nodes. Our use
of this general cluster enrichment method was exploratory,
and we acknowledge the potential for novel network enrich-
ment algorithms to account for reaction directionality and pat-
terns of accumulation and depletion in proximal metabolites.
Integrating such a metabolism-specific clustering algorithm, to-
gether with detection of patterns across functional categories of
reactions (processes, compartments) [46] and chemical classes
of metabolites [11], might help to prioritize and quantify targets
in metabolomic measurements [10].

Potential Implications

Biological models offer the potential to integrate holistic, func-
tional context in interpretations of omic measurements [7,8]. As
biological systems thrive on cooperative interactions between
diverse types of entities, computational models tend to simplify
these systems within distinct dimensions, such as networks of
gene-gene, protein-protein, and protein-metabolite interactions
[1]. At the systemic scale, comparatively little is known about
this last dimension of protein-metabolite interactions [62], al-
though decades of reductionist experiments demonstrate the
functional relevance of catalysis, transport, and allosteric regu-
lation. Whereas our work here emphasizes only the representa-
tion of catalysis and transport in metabolic reactions, we await
further exploration of allosteric interactions between proteins
and metabolites, whether within an enzymatic active site or oth-
erwise. This exploration requires technological innovation to ac-
commodate low-affinity interactions and the chemical diversity
of the metabolome. Pioneering work uses either informatic data
mining [44,63] or measurements by mass spectrometry to de-
tect physical protein-metabolite interactions [64–66]. We antic-
ipate that forthcoming, systemic models of allosteric protein-
metabolite interactions will be valuable to integrate with those
in metabolic models. These developments will advance the goal
of integrating multidimensional representations of molecular
biology [1].

Methods
Procedures for curation, definition, and analysis of
human metabolic networks

We developed the MetaboNet package [14] as a transparent and
reproducible record of our curation of the Recon 2M.2 metabolic
model [12] and our definition, and analysis of human metabolic
networks. This package includes editable tables of parameters
to customize curation and definition of these networks. Col-
lections of scripts in the Python programming language auto-
mate these procedures. MetaboNet employs functionality from
the SciPy [67], NumPy [68], NetworkX [69], MatPlotLib [70,71], and
WordCloud [72] packages.

MetaboNet requires sources of information from the Re-
con 2M.2 model of human metabolism [12], version 4.0 of
HMDB [18], and metabolomic measurements from studies in the
Metabolomics Workbench [40]. MetaboNet produces exports for
integration and further analysis in MetaNetX [37], DyMetaboNet
[13], NetworkX [69], MetaboAnalyst [46], and Cytoscape [42].
MetaboNet’s README [14] gives more information about in-

stallation, customization, and execution of these procedures.
MetaboNet is available on GitHub under version 3 of the GNU
General Public License [14].

Curation and adaptation of human metabolic model

We accessed the latest model of human metabolism (Table 1).
We accessed information for the Recon 2M.2 model of human
metabolism [12] from file “Recon2M.2 MNX Entrez Gene.xml”
(14.2 MB) in the Zenodo repository [41]. The format of this file is
consistent with level 2 and version 4 of SBML [39], a specification
of XML. This version of the Recon 2M.2 model uses derivatives
of identifiers and names for metabolites from the MetaNetX [37]
name space and references records in Entrez Gene [24] for spe-
cific genes relevant to reactions.

We used the tools and repository of MetaNetX [37] and ver-
sion 3.2 of the MNXref namespace to check for consistency and
quality and to standardize the identifiers and names of metabo-
lites and reactions. To facilitate integration with MetaNetX, we
edited content of the original file for Recon 2M.2 in SBML for-
mat. We changed identifiers of metabolites to remove unneces-
sary prefixes and change the designation of the boundary com-
partment. We also changed identifiers or names of 104 metabo-
lites and 3 compartments to correct errors and improve map-
ping to the MetaNetX name space. We imported this new version
of Recon 2M.2 to MetaNetX, which matched information about
reactions, metabolites, and compartments to its own records.
Whereas Recon 2M.2 includes distinct entries for compartmen-
tal instances of metabolites, MetaNetX [37] consolidates infor-
mation for chemically identical metabolites. After reconcilia-
tion and integration to MetaNetX, we exported consensus, stan-
dard information about reactions, enzymes, metabolites, and
compartments in text tables with tab delimiters. We derived
our own version of the metabolic model from this information
(Table 1).

We curated and enhanced information about metabolites in
our model of human metabolism. We made 197 custom cura-
tions to information about metabolites, especially to correct and
enhance references to external databases. We accessed infor-
mation for all 114,100 records about metabolites in version 4.0
of HMDB [18], file “hmdb metabolites.xml” (4.2 GB). We matched
the majority of metabolites in the model to records in HMDB and
derived names from these records. Also from records in HMDB
we derived references to PubChem [19]. Table 1 describes the ex-
tent of curation and coverage of references for metabolites in the
model of human metabolism.

We also curated and filtered information about reactions in
our model of human metabolism. We made 102 custom cura-
tions to information about reactions, especially to clarify names
on the basis of their references to genes [24]. We interpreted the
behavior of reactions in either chemical conversion or compart-
mental transport of metabolites. We then included transport re-
actions in processes (metabolic pathways) that span multiple
compartments and include matching metabolites and compart-
ments with the reaction. We also filtered reactions to enhance
the model’s relevance to our analyses. The original Recon 2M.2
model [12] included many reactions involving the exchange of
metabolites with the model’s boundary and the extracellular
compartment, the accumulation of biomass, and the assembly
and degradation of proteins. While these reactions are relevant
to simulations of metabolic flux, they do not provide relevant
context for interpretation of intracellular metabolomic mea-
surements. We removed them from the model. Table 1 describes
the extent of curation and filtration of reactions in the model of
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human metabolism. We used the final human metabolic model
for further definition and analysis of metabolic networks in both
MetaboNet [14] and DyMetaboNet [13].

Web application for definition and visual exploration of
metabolic networks

We designed and developed the DyMetaboNet web application
[13] for basic definition and exploration of human metabolic
networks. We implemented the application’s interface in the
web document and its behavior in the JavaScript programming
language. We used the Data-Driven Documents (D3) [73] library
for JavaScript to represent dynamic information visually. The ap-
plication runs in the user’s internet browser independently of
any server. When the user navigates in the internet browser to
the URL of DyMetaboNet’s host (https://tcameronwaller.github.
io/dymetabonet/), all necessary source files and code download
to the user’s computer, and the entire application runs locally
on the user’s computer. The internet browser has a firewall to
contain this information from web applications and thereby pro-
tect the client’s computer. DyMetaboNet imports information
about metabolites, reactions, compartments, and processes that
MetaboNet [14] exports in a file in JSON format. From controls in
its interface, DyMetaboNet defines custom networks by a similar
method to MetaboNet [13]. Dynamic queries select subnetworks
of interest from these custom networks using our own custom
implementations of common algorithms for proximity (breadth-
first search) and paths between 2 or more nodes (simple short-
est paths) [74]. DyMetaboNet also exports tables of information
about metabolites and reactions in these networks and subnet-
works.

Definition of custom metabolic networks

We defined networks to represent human metabolism. We se-
lected a representation as a directional, bipartite network with
distinct types of nodes for reactions and metabolites (Fig. 1). In
this representation, nodes for metabolites only relate to each
other through nodes for reactions, such that reactant metabo-
lites have links to their reactions and product metabolites have
links from their reactions. Reversible reactions define these links
in both directions.

We defined metabolic networks to represent metabolism
both with and without compartmentalization (Fig. 1A and 1B).
Our compartmental networks include distinct nodes to dis-
tinguish between chemically identical metabolites and reac-
tions that occur in separate cellular compartments. Many of
these reactions do not mediate any chemical change between
metabolites but instead facilitate transport of metabolites be-
tween separate compartments. Our non-compartmental rep-
resentation is much more concise. We only include nodes for
chemically unique metabolites and reactions. Without compart-
ments, many reactions are chemically redundant, and we rep-
resent these redundant replicates by a single, consensus reac-
tion. Also, reactions that mediate compartmental transport of
metabolites are irrelevant without compartments, and we ex-
clude these from the network.

We exert customizable criteria for reactions and metabolites
to qualify for representation in the network. In our model of
metabolism, reactions specify the compartments in which they
occur, and they also specify metabolic processes to which they
belong. Hence, these compartments and processes define sets
of reactions and metabolites, and the relevance of these sets de-
pends on the context of experiments. Our procedure accommo-

dates customizable lists of compartments and processes to ap-
ply as filters. Similarly, the relevance of individual reactions and
metabolites depends on the context of experiments. Our pro-
cedure also accommodates customizable lists of reactions and
metabolites to include or exclude from the network. By default,
we exclude metabolite hubs from the network (Fig. 1C and 1D,
Table S1). To qualify for representation in the network, reactions
must themselves not have designations for exclusion, and they
must also belong to sets of compartments and processes that
pass filters. Similarly, metabolites must participate in relevant
reactions in order to be part of the network. After definition of
nodes and links, we selected only the largest connected compo-
nent from the network. We then converted the format of infor-
mation about human metabolic networks for further analyses in
NetworkX [69] and Cytoscape [42].

Analysis of custom metabolic networks

We applied algorithms and metrics from graph theory to de-
scribe our metabolic networks. Bipartite networks [43] such as
ours require specific constraints. Where available, we selected
implementations of appropriate algorithms in version 2.3 of Net-
workX [69]. Where these were unavailable, we implemented our
own tools in the MetaboNet package [14]. Several algorithms cal-
culate metrics relative only to a single bipartite set of nodes,
either metabolites or reactions. We specify this type of metric
by the phrase “single-mode.” For most single-mode metrics, we
only report the values relative to metabolites (Table 2); however,
complete metrics for all networks are available in an archive
of MetaboNet’s complete export data [15]. Furthermore, several
algorithms normalize metrics by comparison to their maximal
possibility for a bipartite network with directional links and
with identical counts of nodes in each of its bipartite sets. We
specify this normalization by the phrase “comparison to max-
imum” or “comparison to maxima.” Other algorithms normal-
ize metrics by comparison to their mean across multiple sim-
ulations of random bipartite networks with directional links
and identical counts of nodes in each of their bipartite sets.
We specify this normalization by the phrase “comparison to
random.”

� To measure density, we used an algorithm from NetworkX
[69] that normalizes the network’s actual size by comparison
to maximum.

� To measure the centralities of individual nodes, we used
algorithms from NetworkX [69] that calculate single-mode
degree and betweenness centralities and normalize these
by comparison to maximum [75]. MetaboNet [14] calculates
these centralities relative to the bipartite sets of nodes for
both metabolites and reactions, respectively. We used these
centralities further to rank metabolites by a combination of
their close (degree) and long-range (betweenness) influences
in the metabolic networks [45].

� To measure centralization of the entire network, we im-
plemented our own versions of algorithms that calculate
single-mode degree and betweenness centralities and nor-
malize these by comparison to maximum [75,76]. MetaboNet
[14] calculates these centralizations relative to the bipar-
tite sets of nodes for both metabolites and reactions,
respectively.

� To measure cluster coefficients of individual nodes, we used
an algorithm from NetworkX [69] that calculates single-mode
coefficients [77].

https://tcameronwaller.github.io/dymetabonet/
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� To measure mean cluster coefficient of the entire network,
we used an algorithm from NetworkX [69] that calculates the
mean of single-mode coefficients [77]. MetaboNet [14] calcu-
lates these mean cluster coefficients relative to the bipartite
sets of nodes for both metabolites and reactions, respectively.

� To measure the mean path length of the entire network, we
implemented our own custom version of an algorithm that
calculates the mean of lengths of shortest paths between all
single-mode pairs of nodes [69].

� To measure the small-world coefficient of the entire network,
we adapted the σ (sigma) coefficient [78] for a bipartite net-
work. Our custom implementation of the σ coefficient algo-
rithm normalizes mean cluster coefficient and mean path
length by comparison to random [69].

� To measure the degree assortativity coefficient of the entire
network, we used algorithms from NetworkX [69]. We first
projected the bipartite network to a directional, unipartite
network relative to either metabolites or reactions, respec-
tively. We then calculated the degree assortativity coefficient
of each single-mode projection.

Processing of metabolomic measurements

We curated and processed public metabolomic measurements
for general analyses. We accessed metabolomic measurements
from records for projects and studies within the Metabolomics
Workbench [40] (Table S3). From these records, we extracted in-
formation about pairs and experimental groups of samples, to-
tal identifiable and unidentifiable signals for each sample, and
measurements of identifiable analytes for each sample. We se-
lected conceptual case and control experimental groups of sam-
ples to use for dividend (numerator) and divisor (denominator),
respectively (Table S3), in calculations of fold changes. We re-
moved analytes with inadequate coverage of measurements. If
multiple analytes represented the same chemical entity redun-
dantly, we prioritized the analyte with the least relative vari-
ance (index of dispersion or variance-to-mean ratio) in its mea-
surements for the control experimental group. We normalized
measurements for each sample to the total sum of signals in
that sample. After normalization, we calculated fold changes,
base-2 logarithms of fold changes, and probabilities (P-values)
between measurements for each analyte in samples from each
experimental group. These calculations depended on whether
a study’s samples were in dependent pairs from the same pa-
tient. For pairs of dependent samples, we calculated the mean
of base-2 logarithms of fold changes for measurements from
each pair, and we calculated the P-value using a 2-sided t-test
for dependent populations. For independent samples, we cal-
culated the base-2 logarithm of the fold change between the
means of measurements from each group, and we calculated
the P-value using a 2-sided t-test for independent populations.
Our subsequent analyses used the mean base-2 logarithm of fold
change and the P-value to compare each analyte between exper-
imental groups. We visualized these values in custom volcano
plots that we implemented using version 3.1.1 of MatPlotLib
[70,71].

We integrated metabolomic measurements in metabolic net-
works for further analysis. Most analytes in Metabolomics
Workbench [40] include references to PubChem [19], and we
used these references to match analytes to metabolites in our
metabolic model. We manually critiqued all matches between
analytes and metabolites for accuracy.

Analysis of metabolomic measurements in metabolic
sets

We performed metabolite set enrichment analysis using version
4.0 of MetaboAnalyst [46]. We organized metabolomic measure-
ments in a format appropriate for export to MetaboAnalyst. For
compatibility, it was necessary to prepare measurements from
all studies as though samples were independent, without pairs.
We specified not to use any of the normalization options in
MetaboAnalyst. We tested for enrichment in MetaboAnalyst’s
default library of 99 metabolic sets [46], considering those with 2
or more members. For each study, we summarized the sets with
the top 5 ranks by P-value (Table S4).

Integration and analysis of metabolomic
measurements in metabolic network

We integrated metabolomic measurements from each study
(Table S3) with our metabolic network and searched for inter-
esting clusters. We used our non-compartmental metabolic
network without hubs for analyses of metabolomic mea-
surements. We matched analytes and measurements to
metabolites by common references to PubChem [19]. We im-
ported information about the network and measurements into
version 3.7.1 of Cytoscape [42] and used version 3.2.1 of the
jActiveModules application [54,55] in Cytoscape to detect raw
clusters of proximal metabolites with enrichment in P-values.
We detected these raw clusters in sets of 25 at search depths of
2 links with overlap thresholds of 0.25, 0.50, and 0.75. On nodes
for metabolites in these raw clusters we represented the base-2
logarithm fold change in bidirectional color saturation. We then
searched these raw clusters, prioritizing those with ≤ 3 reac-
tions in which the majority of metabolites had measurements,
and in which proximal metabolites demonstrated both accu-
mulation and depletion. From these raw clusters we curated
final clusters of interest (Fig. 5 and S1–S4, Tables S5 and S6),
excluding metabolites without measurements and including
proximal metabolites with measurements that are biologically
relevant. We curated names and confirmed accuracy of genes
for all reactions in these final clusters. We also collected
references to Entrez Gene [24] and UniProt [28] for these reac-
tions. We summarized measurements and information about
metabolites (Table S5) and reactions (Table S6) within these
clusters.

Availability of Source Code and Requirements

Curation of the human metabolic model; definition, anal-
ysis, and export of custom metabolic networks; processing
metabolomic measurements and integration with metabolic
networks.
Project name: MetaboNet
Project home page: https://github.com/tcameronwaller/metabo
net
Operating system(s): platform independent
Programming language: Python 3
Other requirements: SciPy, NumPy, NetworkX, MatPlotLib, Word-
Cloud
License: GNU General Public License version 3
Dynamic definition and visual exploration of metabolic net-
works.
Project name: DyMetaboNet

https://github.com/tcameronwaller/metabonet
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Project home page: https://github.com/tcameronwaller/dymeta
bonet
Operating system(s): platform independent
Programming language: JavaScript
Other requirements: Data-Driven Documents (D3)
License: GNU General Public License version 3

Availability of Supporting Data and Materials

This article’s analyses used v1.0.0 of MetaboNet [14] and v1.0.0
of DyMetaboNet [13]. The data for these analyses are available
in the Zenodo repository [15]. Snapshots of our code and other
supporting data are available in the GigaScience repository, Gi-
gaDB [79].

Additional Files

Supplementary information: Supplementary Methods and Re-
sults are available via the additional file associated with this ar-
ticle.
Analysis of metabolomic measurements in sets
Analysis of metabolomic measurements in network clusters
Table S1: Definition of metabolite hubs
Table S2: Definition of network metrics
Table S3: Curation of metabolomic measurements
Table S4: Metabolite set enrichment analysis
Table S5: Cluster metabolites
Table S6: Cluster reactions
Figure S1: Integration and analysis of metabolomic measure-
ments on metabolic networks, Study 2
Figure S2: Integration and analysis of metabolomic measure-
ments on metabolic networks, Study 3
Figure S3: Integration and analysis of metabolomic measure-
ments on metabolic networks, Study 4
Figure S4: Integration and analysis of metabolomic measure-
ments on metabolic networks, Study 5
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