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Abstract: Herein, hybrid k-carrageenan bio-nanocomposite films were fabricated by using two types
of nanofillers, organically modified montmorillonite (OMMT), and cellulose nanocrystals (CNCs).
Hybrid bio-nanocomposite films were made by casting techniques employing 4 wt% of CNCs, OMMT,
and hybridized CNCs/OMMT in a 1:1 ratio. The rheological and morphological properties and thermal
stability of all composites were investigated using rotational rheometry, thermogravimetry analysis,
differential scanning calorimetry, field emission scanning electron microscopy, and transmission
electron microscopy (TEM). The results showed that the hybrid CNC/OMMT bio-nanocomposite
exhibited significantly improved properties as compared to those for the bio-nanocomposites with
single fillers due to the nanosize and homogenous nanofiller dispersion in the matrix. Rheological
analysis of the hybrid bio-nanocomposite showed higher dynamic shear storage modulus and complex
viscosity values when compared to those for the bio-nanocomposite with individual fillers. The TEM
analysis of the hybridized CNC/OMMT bio-nanocomposite revealed that more particles were packed
together in the CNC network, which restricted the matrix mobility. The heat resistance and thermal
stability bio-nanocomposite k-carrageenan film enhanced rapidly with the addition of hybridized
CNCs/OMMT to 275 ◦C. The hybridized CNCs/OMMT exhibited synergistic effects due to the good
affinity through interfacial interactions, resulting in the improvement of the material properties.

Keywords: kappa-carrageenan; synergistic nanoparticles; hybrid composite; rheological properties;
thermal stability; nanocellulose; nanoclay

1. Introduction

Biopolymers formulated with reinforcement materials such as natural fibers, nanoparticles, and
synthetic fibers are currently being developed because of their unique properties to reduce the usage of
synthetic plastics, particularly for short-term packaging and disposable materials [1,2]. K-carrageenan
belongs to a class of renewable materials with abundant resources obtained by the extraction of
red seaweeds (Eucheuma cottonii) and consisting of repeating 4-linked 3,6-anhydro-D galactose and
4-linked β-D-galactose-4-sulphate units with anionic sulfate groups (OSO3

−) disaccharide units [3,4].
The excellent film-forming ability of k-carrageenan has significant potential for the preparation of
composite films because of the linear chain of partially sulfated galactan molecules with one negative
charge per disaccharide unit. This polymer is non-toxic, biodegradable, and is widely used in the
healthcare and cosmetic industries and food processing due to the hydrophilic and ionic properties,
which can be exploited in various applications [5,6]. The ideal packaging materials must have excellent
mechanical properties, good thermal stability, and should be biodegradable [7–9]. Bio-nanocomposite
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films with inorganic molecules of different structures and morphologies with at least one phase shows
that dimensions of less than 100 nm had been used for improving film properties and the application
of biodegradable materials.

Nanocellulose that can be extracted from abundant natural fiber exhibits properties such as relatively
large surface areas, low density, high specific stiffness, high strength, and easy processability [10–12].
Cellulose nanocrystals (CNCs) are versatile and can be used in various applications such as reinforcing
fillers, rheological modifiers, pharmaceutical carriers, biomedical implants, and substrates for electronic
components [13]. El-Miri et al. [14] reported that the increase of tensile strength and elastic modulus
with the addition of CNCs in the carboxymethyl cellulose/starch nanocomposite. CNCs have also been
reported to improve the tensile strength of alginate biopolymer [15,16].

Nanocomposites based on polysaccharide and nanoclay reinforcements are widely used across
various research fields as clay minerals are cheaper, and biodegradable nano additives used to
enhance the properties of polymers materials are known as polymer–clay nanocomposites [1,3,17–19].
Organomontmorillonite reinforced biopolymers promise to be an attractive replacement for the
invention of environmentally friendly products for the elimination of pollutants [20]. The addition
of organically modified montmorillonite (OMMT) has already reported to enhance the mechanical
properties of polyurethane adhesive. The shearing strength, fracture tensile strength, and peel strength
of the polyurethane with the addition of 4 wt% OMMT were superior [21]. Luo et al. [22] reported
the enhancement of the thermal stability of the polylactic acid/OMMT nanocomposite due to better
compatibility with the matrix phase.

In prior studies, k-carrageenan bio-nanocomposite materials were studied with a focus on the
effects of the CNC and OMMT on the mechanical properties to determine the optimum nanoparticle
loadings. Morphological studies show the well distribution of CNC and OMMT nanoparticles in the
matrix. Hybridized CNC/OMMT nanofillers exhibit synergistic effects resulting in excellent mechanical
properties, good water resistance, with decreasing absorption of water of the bio-nanocomposite in
contrast to the bio-nanocomposites with single fillers [23]. Previous study using CNCs as reinforcing
materials in starch biopolymers has shown that the storage modulus increased with the addition
of CNC due to good CNC–matrix interaction and stiffness properties of CNC [24]. The matrix
polymer and reinforcement nanoparticles are the two major constituents of a composite material which
synergistically increase the stability, thermal expansion, and viscosity of the composite [25]. However,
the hybridization of CNC/OMMT to a biopolymer matrix and the resulting research rheological behavior
and thermal stability of this novel hybrid bio-nanocomposite have not been reported previously.

The ultimate aims of this current work are to show how the hybridization of different organic and
inorganic nanofillers affect the rheological behavior and thermal stability properties, and to extensively
investigate the entanglement of the nanoparticles inside the matrix for applications depending on the
location distribution of the nanofillers. Rheological properties of the materials are important during
polymerization as well as downstream processing of the product (e.g., extraction, injection molding,
and fiber spinning). The measurement of the viscosity of the bio-nanocomposite can provide direct
evidence for changes in the product quality due to the destabilization in a polymer [26].

2. Materials and Methods

2.1. Reagents and Materials

Kenaf fiber was purchased from Kenaf Fiber Malaysia Sdn. Bhd. (Kelantan, Malaysia) and
k-carrageenan was provided by TACARA Sdn. Bhd. (Sabah, Malaysia). Methyl dihydroxyethyl
hydrogenated tallow ammonium (OMMT 25–30 wt%) was purchased from AMCOL International Corp.
(Nanocor®; Hoffman Estates, IL, USA). Sulfuric acid (98%), Glycerol (99.5%), glacial acetic acid (99.5%),
sodium chlorite (80%), and sodium hydroxide (99%), were obtained from SYSTERM-chemAR (Selangor,
Malaysia) and Sigma-Aldrich (St. Louis, MO, USA). Membrane tubes (1 inch × 10 feet; Carolina Dialysis
Tubing, Carolina Biological Supply Company, Burlington, NC, USA) were used for dialysis.
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2.2. Preparation of Cellulose Nanocrystals

CNCs were extracted from kenaf fiber via the sulfuric acid hydrolysis process as described by
Kargarzadeh et al. [23]. Cellulose was produced from kenaf fiber by alkaline treatment for 3 h at
80 ◦C. The bleaching process was performed for 4 h at 80 ◦C, followed by hydrolysis with sulfuric
acid (65%). CNCs were then washed with distilled water to remove excess sulfuric acid by using the
centrifugation process.

2.3. Preparation of Bio-Nanocomposite Films

The fabrication of k-carrageenan–cellulose nanocrystal (k-carr–CNC), k-carrageenan–organically
modified montmorillonite (k-carr–OMMT), and hybrid k-carrageenan–cellulose nanocrystal/organically
modified montmorillonite (k-carr–CNCs/OMMT) bio-composite films was accomplished by the solution
casting technique. K-carrageenan was first mixed with the 4% (w/w) nanofillers in distilled water.
The suspension was heated in the range of 70–90 ◦C. The suspension was continuously stirred for
another 30 min after the heating was removed. The thickness of the bio-nanocomposite film was
controlled using a casting knife before being dried at room temperature to obtain the final film thickness
in the range of 30–50 µm.

2.4. Morphological Analysis

The morphological observation of the fibers after each treatment was examined via field-emission
scanning electron microscopy (FESEM) at a magnification of 1.00 K× and 15.00 K× (Philips XL-3,
Amsterdam, The Netherlands). The morphology of the CNCs particles and bio-nanocomposite film in
the water medium was analyzed by using transmission electron microscope (Philips CM30, Amsterdam,
The Netherlands), as described by Zakuwan and Ahmad [23].

2.5. Rheological Analysis

The rheological behavior of the polymers was carried out using a dynamic rotational rheometer
(Physica MRC 301, Anton Paar GmbH, Graz, Austria) as described by Noranizan et al. [27]. The storage
and loss moduli and complex viscosities were measured.

2.6. Thermogravimetric Analysis (TGA)

The thermal stability and degradation studies of the bio-nanocomposite films were performed
using a thermogravimetric analyzer (Mettler Toledo, TGA/SDTA 851-E, Columbus, Ohio, USA) under
a nitrogen atmosphere. Each sample was heated from 25 ◦C to 600 ◦C at 10 ◦C·min−1.

2.7. Differential Scanning Calorimetry (DSC)

Thermal stability characteristics of the k-carrageenan bio-nanocomposite were determined using
a differential scanning calorimeter (Mettler Toledo-DSC 822e, Columbus, Ohio, USA). The heating
processed up to 200 ◦C at a rate of 10 ◦C·min−1.

3. Results and Discussion

3.1. Morphological Analysis

3.1.1. Fiber Morphology

The scanning electron microscopy (SEM) micrograph of the kenaf raw fiber after different chemical
treatments are shown in Figure 1. The chemical treatment involved the use of a combination of alkaline
treatment, bleaching, and acid hydrolysis to remove hemicellulose and lignin, affording microsize
yields of pure cellulose from which nanocellulose particles were successfully extracted. Kenaf raw fiber
(Figure 1a) is composed of individual large fiber bundles with a compact surface structure coated with
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impurities. The presence of lignin and hemicelluloses around the fibrils can be clearly observed on
the surface. However, after treatment with the alkaline solution, the kenaf fibers (Figure 1b) showed
a surface with rough topography because of the elimination of some of the lignin and hemicellulose,
impurities, and oily substances from the fiber. The alkalization process with sodium hydroxide, which
is well-known for removing the undesirable material and amorphous part from the surface, results
in the partial defibrillation of the fibers [28]. During the alkalization at high temperature, lignin is
partially depolymerization and most of the hemicellulose is hydrolyzed with an increase in the internal
surface area [29]. After bleaching (Figure 1c), the kenaf fiber showed a smooth and clean surface with
microsize dimensions due to the defibrillation of fibers. Alkaline treatment and bleaching are common
pre-processing techniques used on natural fibers to remove lignin/hemicellulose and modify the fiber
surface to reduce the surface tension and improve interfacial adhesion between the natural fiber and
polymer matrix [30]. As shown in Figure 1d, the CNC production was clearly observed after acid
hydrolysis. This chemical treatment led to a significant decrease in the fibril length because during
hydrolysis, the acid dissociates the amorphous part of the microfibrils, leaving the highly crystalline
region intact. Accordingly, the hydronium ions can penetrate into the amorphous domains and stimulate
the hydrolytic cleavage of the glycosidic bonds, releasing individual nanosized cellulose structures
that contain highly crystalline domains [31]. Figure 2 shows the optical micrograph of the kenaf fiber
after the alkali and bleaching treatments. The color of the raw kenaf fiber became lighter after alkali
treatment and completely white after bleaching treatment.
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The morphologies and sizes of the obtained CNCs were determined using TEM. TEM images
of the CNCs produced after the acid hydrolysis in water are shown in Figure 3. It can be seen that
the amorphous domain was dissolved by acid hydrolysis, leaving the highly crystalline domain
intact. The TEM micrograph of CNCs shows that the nanoparticles exhibit needle-like shapes, which
is consistent with the previously reported results [32–34]. CNCs have a dimension of 12–15 nm in
diameter and 101–260 nm in length. The CNCs have a high aspect ratio, which plays a crucial role
in their reinforcement capability [35,36]. Some lateral agglomeration can be clearly observed due to
hydrogen bonding of the CNC particles [37]. Table 1 presents the kenaf fiber dimension after different
stages of chemical treatments.Nanomaterials 2019, 9, x FOR PEER REVIEW 6 of 14 
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Table 1. Fiber dimensions after different stages of chemical treatments.

Sample Fiber Diameter

Raw kenaf >100 µm
Alkali-treated kenaf 20–90 µm
Bleach-treated kenaf 10–14 µm

Hydrolyzed kenaf (CNC) 12–15 nm

3.1.2. Bio-Nanocomposite Morphology

The morphology of the hybrid CNCs/OMMT bio-nanocomposite films were analyzed using
TEM. Figure 4a shows the TEM image of the k-carrageenan matrix film at a magnification of 22,000×.
A relatively homogeneous and smooth film surface was observed. Figure 4b shows the TEM image of
the hybrid bio-nanocomposite at a magnification of 45,000×. It can be seen that both CNCs and OMMT
were homogeneously dispersed within the polymer matrix. The CNCs particles formed a network
in the matrix together with the OMMT particles. The distributions of the OMMT and CNC particles
in the matrix showed intercalated OMMT with some layered clay particles with different sizes and
platelet orientations. Some particles were ordered in a multilayer nanostructure, while others were the
dispersed OMMT particles distributed in the matrix. Different dimensions of the CNC particles in the
network were observed and the OMMT particles were incorporated in the matrix space. This shows
the strong interfacial interaction due to the entanglement of the CNCs and OMMT nanofillers in the
hybrid k-carr-CNCs/OMMT system because of a high specific area, which increases surface interaction
and leads to synergistic effects.
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3.2. Rheological Analysis

A rheological study of the bio-nanocomposites showed high complex viscosities and dynamic
shear storage moduli for the CNCs, OMMT, and hybridized CNCs/OMMT. This study is useful for
understanding the relationship between the nanofillers. Figure 5 shows that the addition of nanofillers
as reinforcement materials in the polymer matrix affects the values of the storage modulus (G’; Figure 5a),
loss modulus (G”; Figure 5b), and complex viscosity (η*; Figure 5c). The results for the bio-composites
with 4% filler loadings of CNCs, OMMT, and hybrid CNCs/OMMT are shown in these figures. Different
values for G’ and G” correspond to the different types of fillers used in the polymer matrix. Increases
in G’ and G” values with increasing frequencies were observed for all bio-nanocomposite samples.
The addition of CNCs, OMMT, and hybridized CNCs/OMMT (Figure 5a,b) results in a Newtonian
behavior at low shear rates. As shown in Figure 5a, the bio-nanocomposite with the addition of CNC
had a higher storage modulus, G’, at a higher frequency than that for the bio-nanocomposite with
OMMT. Elastic modulus is related to the surface interaction [38]. CNCs with the same chemical structure
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and polarity as the polymer matrix showed better compatibility, leading to an enhanced matrix–filler
interaction in the composite film. The CNCs in the polymer matrix formed a network (Figure 4),
which enhanced the elastic properties of the composite, particularly at high frequency. At the early
stage, the k-carrageenan/OMMT bio-nanocomposite showed a high G’ value under shear flow due
to the high energy needed to overcome the strong interaction between the k-carrageenan matrix and
OMMT. This shows that strong ionic interactions develop between the matrix and OMMT. High anionic
charges (–OSO3

−) on k-carrageenan enable its interaction with the inorganic cations, with polymer
chain intercalation [23]. A decrease in the G’ value of k-carrageenan/OMMT at high frequency was
due to the intercalation of the OMMT particle without full exfoliation so that less energy is used to
rearrange the OMMT particles. The TEM image clearly shows the intercalated OMMT in the polymer
matrix. The bio-nanocomposite sample with hybridized CNCs/OMMT showed the highest G’ value
due to the network formation and homogeneously dispersed CNCs/OMMT in the matrix as well as
strong filler–matrix interaction. The stiffness of the bio-nanocomposite improves with the addition of
CNCs/OMMT due to the higher stiffness of both nanomaterials. Thus, the hybrid bio-nanocomposite
possesses high strength with better flexibility, which is related to the restricted polymer chain movement
and high energy requirement [39]. Figure 5b shows no significant differences in the G” values for
the composites with CNCs and OMMT. However, the bio-composite with hybridized CNCs/OMMT
showed a slightly higher G” value with an increase in frequency when compared to other samples.
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The variation in the complex viscosity values for the neat matrix and bio-nanocomposite films is
shown in Figure 5c. The complex viscosity (η*) of bio-nanocomposite 4% fillers was higher than the
matrix without nanofillers and the value decreased with an increase in frequency. The bio-composite
with hybridized CNCs/OMMT had a higher η* value than the bio-nanocomposites with the single
fillers. All bio-nanocomposite samples had higher viscosities when compared to that for a neat
polymer. The incorporation of both filler CNCs and OMMT in the matrix k-carrageenan caused the
viscosity of the matrix to increase due to the enhancement of the interaction between k-carr/CNCs
and k-carr/OMMT. As shown in Figure 5c, the viscosity of mixing increased, particularly at a low
shear rate. This behavior is associated with the formation of a network filler structure, leading to the
enhancement of the matrix–filler interaction, such that a high resistance is observed under a shear flow.
Increasing the shear rate, the intermolecular junction decays at a faster rate than their renewal rate,
resulting in a decrease in viscosity [14]. A 4% filler loading causes a higher entanglement of the chains
and particles, and results in a gradual increase in the η* values when compared with the k-carrageenan
matrix without nanofillers [40]. Nanoparticles form a network based on the interactions between the
particles and their dimensions (aspect ratio). A similar trend was previously reported in the literature
where the bio-nanocomposites showed shear thinning behavior in the complete range of shear rate
values, which attributed to the formation of CNC network structures in the neat matrix [41]. The hybrid
bio-nanocomposite rigidity improved and a slight increase in the shear viscosity was observed with
the incorporation of hybrid CNCs/OMMT with better particle distribution. These results confirm that
a better interaction between both CNCs and OMMT in the polymer matrix were observed in a hybrid
composite due to the addition of different types of fillers. The phenomena were predominant due to
better dispersion of nanoparticles with different dimensions. An increase in viscosity occurred, and
the composite system interfered with the normal flow of the polymer and inhibited the movement of
the mobility of the chain segments.

3.3. Thermogravimetric Analysis

The thermal stability of the k-carrageenan matrix and bio-nanocomposite with the addition of
CNCs, OMMT, and hybridization was investigated by using TGA. Figure 6 shows the TGA results
where the samples with different types of filler loadings (4 wt%) were analyzed and the data were
compared with that of the pure matrix. Table 2 summarizes the degradation results for all samples.
Thermal degradation of the bio-nanocomposites and matrix films exhibited early-stage degradation
from 50 ◦C to 150 ◦C. The initial degradation occurred due to the removal of moisture content in the
material and the water evaporation process. The first-stage degradation due to the absorption of water
by the materials was high because water could penetrate via the interactions of the hydroxyl groups in
the glucosyl units along with the chain and hydroxyl groups of the plasticizer [35,42]. The decline in
the mass losses of the neat k-carrageenan matrix and bio-nanocomposites at 125–230 ◦C refers to the
thermal degradation of glycerol and polysaccharides [43].

Table 2. TGA maxima, thermogravimetric analysis data, corresponding peak, and residue values for
the bio-nanocomposite films.

Sample Onset (◦C) Peak (◦C) Endset (◦C) Residue (%)

k-carrageenan matrix 228 230 236 18.32%
k-carrageenan (4% CNCs) 264 270 278 25.49%

k-carrageenan (4% OMMT) 227 233 236 38.11%
k-Carrageenan (hybrid) 268 275 284 42.65%
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Further degradation of the k-carrageenan matrix film occurred at approximately 228–236 ◦C. The
addition of CNCs to the k-carrageenan matrix increased the decomposition temperature to approximately
264–278 ◦C at 4-wt% filler loading. The maximum degradation occurred at 270 ◦C. Furthermore, the
addition of CNCs to k-carrageenan significantly increased the mass loss because the CNCs were less
thermally stable compared to OMMT. Higher thermal decomposition with the incorporation of CNC
due to high crystallinity, and had a higher aspect ratio of the CNC that was well dispersed within the
matrix. This result shows that CNCs interacted with the matrix k-carrageenan and enhanced the thermal
degradation of the corresponding bio-nanocomposites to a greater extent. Meanwhile, a drastically
degradation rate due to the presence of negative sulfate groups (SO4

2−) [44]. The addition of OMMT to
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k-carrageenan did not show significant changes in the thermal degradation of the bio-nanocomposite
from 227–236 ◦C, with a maximum degradation at 233 ◦C. Roy and Rhim [45] showed similar results,
where the addition of melanin nanofillers did not show any significant differences in comparison
with the neat matrix. In contrast, the k-carr/OMMT bio-nanocomposite residue increased (38.11%) in
comparison to that of the k-carrageenan matrix, mainly attributed to the well dispersion of thermally
stable OMMT in the bio-nanocomposite. Therefore, the decomposition that occurred at 233 ◦C was due to
the degradation of the k-carrageenan matrix and increased slightly, which was caused by the addition of
OMMT. Thus, the final residue showed a higher OMMT increase in the crystallinity of the k-carr/OMMT
bio-nanocomposite, while there was an increase in the thermal stability and resistance degradation of
the biopolymer. The degradation of the hybrid k-carr/CNC/OMMT bio-nanocomposite was observed at
268–284 ◦C, where the main degradation peak was at approximately 275 ◦C, with a residue of 42.65%.
The addition of hybrid CNCs/OMMT showed significant changes in the thermal stability. For the
bio-nanocomposite prepared with hybridized CNCs/OMMT, a trend similar to that for the k-carr/CNC
bio-nanocomposite was observed. All bio-nanocomposite samples showed better thermal degradation
than the k-carrageenan matrix. Moreover, the higher thermal stability of the hybrid k-carrageenan with
the CNCs/OMMT than those of the individual nano-reinforcement bio-nanocomposites because of the
physical interaction from hydrogen bonding and the ionic interaction of OMMT and k-carrageenan
through cationic exchanges as well as better interfacial interaction because of the high aspect ratio of
OMMT. Figure 6b shows the thermal analysis decomposition pattern of the matrix k-carrageenan and
bio-nanocomposite with 4% filler loading during heating.

3.4. Differential Thermal Analysis

Differential scanning calorimetry (DSC) data (Figure 7) for the bio-nanocomposite films showed
endothermic peaks that corresponded to the transition over a broad temperature range. Similar to
the results reported in prior studies, the k-carrageenan pure matrix gel and k-carrageenan with other
polymers also exhibited one endothermic peak throughout the melting process in the DSC spectrum [46].
The DSC spectrum shows the transition temperature, where the difference between the onset temperature,
To, and the peak temperature, Tp, is important to determine whether a material is close enough to lose
its structure during the heating process [47]. All films presented in Figure 7 exhibited endothermic
peaks in the range of 54–129 ◦C. A neat k-carrageenan matrix film exhibited a broad endothermic peak
at 59–123 ◦C with a Tp of 94 ◦C. A factor that influences the sealing strength is the hydroxyl groups in
the plasticizers. Endothermic peaks for k-carr/CNCs were observed at 54–120 ◦C with a Tp of 94 ◦C. This
proves that k-carr/CNCs show a higher transition temperature when compared to the neat matrix, with
the lowest onset temperature and afforded better seal strength. The K-carr/OMMT bio-nanocomposite
exhibited a transition temperature in the range of 54–115 ◦C with a Tp of 93 ◦C, which was lower than
that of the neat matrix. Based on the TGA results, k-carr/OMMT only affords an increase in thermal
stability (Figure 6). The DSC spectrum of the hybrid k-carr/CNC/OMMT bio-nanocomposite showed
a shift in the endothermic peak to a higher temperature. K-carr/CNCs/OMMT showed endothermic
peaks at Tp of 103 ◦C in the region between 64–129 ◦C. The changes that occurred at the transition
temperature can be attributed to high rigidity and low mobility of the intermolecular chains during
heating. The addition of CNCs and OMMT showed synergistic effects on the thermal properties because
of better interfacial interaction between the nanoparticles with a high aspect ratio and matrix, which
afforded a superior material with high seal strength and high degradation temperature when compared
to the bio-nanocomposite films with single fillers. Table 3 represents the values of endothermic peaks
for the bio-nanocomposite films k-carrageenan with the 4-wt% filler loading.
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Figure 7. DSC thermograms of neat matrix k-carrageenan and bio-nanocomposite k-carrageenan with
a 4-wt% filler loading.

Table 3. Values of the endothermic peaks for the bio-nanocomposite films with k-carrageenan with
4-wt% filler loading.

Sample Onset (◦C) Peak (◦C) Endset (◦C) Integral (mJ)

k-Carrageenan matrix 59.34 94.67 123.38 −1440.93
k-Carrageenan (4% CNCs) 54.98 94.50 120.86 −1445.04

k-Carrageenan (4% OMMT) 54.00 93.67 115.48 −1337.71
k-Carrageenan (hybrid) 64.80 103.00 129.29 −2177.67

4. Conclusions

Cellulose from kenaf and CNCs with average diameters and lengths of 12–15 nm and 101–260 nm,
respectively, were obtained using alkaline treatment, bleaching, and acid hydrolysis. K-carrageenan
bio-nanocomposite films reinforced with 4-wt% CNCs and OMMT were prepared via a casting
technique. The hybrid bio-nanocomposite was prepared with the addition of 4-wt% CNCs/OMMT
(1:1). Different types of nanofillers enhanced the thermal stabilities and rheological properties of the
bio-nanocomposites. Hybrid bio-nanocomposite films showed a significant enhancement of various
properties when compared with those for the k-carrageenan with CNC and k-carrageenan with
OMMT bio-nanocomposite. Bio-nanocomposite films with CNCs/OMMT showed better rheological
characteristics among the three formulations due to the entanglement of CNCs/OMMT inside the
matrix phases, and the development of a network filler structure leading to the enhanced filler–matrix
interactions. TEM data revealed that the OMMT particles were packed together in the CNC network,
which restricted the matrix mobility. The hybrid bio-nanocomposite films exhibited synergistic effects
with higher thermal degradation temperature when compared to the bio-nanocomposite films with
single fillers. This improvement was associated with the homogeneous and well dispersed CNCs
and OMMT, high aspect ratio for different dimensions, and the interfacial and ionic interactions
between CNCs and k-carrageenan functional groups. It can be concluded from this study that a
uniform mixing of the hybridization of CNC/OMMT with different polarities like CNCs and OMMT
can increase the rheological behavior and that the thermal stability properties have the ability to make
a fully biodegradable nanocomposite, and hence present a wide range of potential in packaging and
coating applications.
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