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Rehabilitation training is essential for motor dysfunction patients, and the training through their subjective motion intention,
comparing to passive training, is more conducive to rehabilitation. This study proposes a method to identify motion intention of
different walking states under the normal environment, by using the functional near-infrared spectroscopy (fNIRS) technology.
Twenty-two healthy subjects were recruited to walk with three different gaits (including small-step with low-speed, small-step with
midspeed, midstep with low-speed). The wavelet packet decomposition was used to find out the main characteristic channels in
different motion states, and these channels with links in frequency and space were combined to define as feature vectors.
According to different permutations and combinations of all feature vectors, a library for support vector machines (libSVM) was
used to achieve the best recognition model. Finally, the accuracy rate of these three walking states was 78.79%. This study
implemented the classification of different states’ motion intention by using the fNIRS technology. It laid a foundation to apply the
classified motion intention of different states timely, to help severe motor dysfunction patients control a walking-assistive device
for rehabilitation training, so as to help them restore independent walking abilities and reduce the economic burdens on society.

1. Introduction

Population aging is a prominent problem in today’s society.
In 2016, approximately 12% of the world’s population was
over the age of 60, and this percentage would rise to ap-
proximately 21% of the world’s population by 2050 [1].
Aging leads to a significant decline in elderly body move-
ment [2] and increase of body vulnerability. These would
result in the probability of fractures or other accidents in-
creased, causing severe motor dysfunction [3-5]. Similarly,
spinal cord injury (SCI) is a common disease frequently
resulting in severe motor dysfunction, forcing patients to
depend on a wheelchair for mobility [6]. Moreover, the
number of severe motor dysfunction victims of traffic ac-
cidents and accidental injuries has also increased rapidly as
society develops. As a result, above patients often remain
bedridden for extended periods of time, causing some
complications and increasing the probability of de-
generation of bodily functions. These problems would cause
serious impact on rehabilitation and impose serious

economic burdens on society [7]. And the recovery of
walking function is a primary desire of these patients [8].
Therefore, it is greatly meaningful to provide these patients
with appropriate training to help them restore their walking
ability.

However, most training instruments are passive-
controlled. This leads to insufficient participation of pa-
tients and unobvious rehabilitation effect. Husemann et al.
[9] conducted a controlled experiment on robotic training so
as to motivate the initiative of subjects and conventional
physiotherapy and found that walking ability was signifi-
cantly improved by the robotic training. Veneman et al. [10]
and Riener et al. [11] developed different strategies of or-
thotic devices to elicit greater voluntary participation of the
subjects in the rehabilitation process, and it performed more
effectively than a fixed repetitive pattern. Moreover, other
studies had also demonstrated that training based on
patient-active awareness can be more effective than passive
for rehabilitation [12-14]. Therefore, the multitraining
modes and patients’ active participation play an important
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role for advancing rehabilitation. And the biomechanical
information and brain information can be used to judge
subjects’ motion intention so as to control a walking-
assistive equipment to do rehabilitation training.

Progress has been made in recent years in using iden-
tified motion intention to control walking-assistive equip-
ment, based on biomechanical information [15-18]. Lee and
Sankai [15] and Hayashi et al. [16] used the lower limbs’
electromyography (EMG) signal to identify the subjects’
motion intention, to control walking-assistive equipment to
drive movement. Limb-movement information and foot-
pressure data that were tested by foot-pressure and angle-
acceleration sensors were used to identify the motion in-
tention of subjects, to control walking-assistive equipment
[16-18]. These related studies can help patients control the
exoskeleton to help them carry out rehabilitation training
through their motion intention and have a better recognition
accuracy. However, for these severe motor dysfunction
patients, biomechanical signals were very weak or abnormal,
and it was also very difficult to collect. Therefore, brain
information can be used to identify the patients’ motion
intention to help them control the walking-assistance
equipment to complete independent rehabilitation training.

In recent years, several studies have investigated brain
activity based on electroencephalography (EEG) signals
during walking [19-26]. According to an EEG signals’ mu
and f rhythms, three different walking speed levels were
identified, with an average classification accuracy of 72.7%
[22], this study also provides insight on the cortical in-
volvement in human gait control and represents a step
towards a brain-machine interface for poststroke gait re-
habilitation [22]. Zhang et al. [23] used the multiple kernel
learning algorithm to simultaneously learn the relative
importance of different brain areas, so as to identify the
region of importance, and it demonstrated that the frontal
and frontocentral regions are the most important regions in
controlling the exoskeleton. In addition, some studies noted
that the intensity of neural activity in the motor cortex is
positively correlated with walking speed, and it also proved
that different motor states have different neural activities
[21-25]. However, most experiments were based on
treadmill, which differ from a normal gait. Moreover, the
subjects often required external stimulus before experi-
mentation, which was also not conducive to do re-
habilitation training in normal environments [19-22,24-26].

On the contrary, fNIRS technology can support con-
tinuous testing under the normal environment and without
external stimuli. Kim et al. [27] and Mihara et al. [28] found
that the main activation areas during the change of walking
speed are sensorimotor cortex (SMC), premotor cortex
(PMC), and supplementary motor area (SMA). Caliandro
et al. [29] demonstrated that the concentration of blood
oxygen activity in the prefrontal cortex has a positive cor-
relation with the step length, which establishes an important
basis for the identification of step length. Holtzer et al. [30]
also found that the activation of the PFC area is largely
associated with increasing step length. A study of the pre-
movement consciousness of the normal start and prepara-
tion determined that the proportion of oxyHb of the PFC
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area and premotor cortex significantly increase [31]. These
studies focus on which brain region was activated when the
walking speed or step length changed, instead of status
recognition, which lay a theoretical basis for this study in
testing areas. In addition, fNIRS technology for the iden-
tification of similar patterns also has great application
prospects. Sui et al. [32] identified three levels of bicycling
speed, based on the difference of oxyHb and deoxyHb, with
a corresponding classification accuracy of 74%. Hong et al.
[33] identified mental arithmetic (MA), right-hand motor
imagery (RI), and left-hand motor imagery (LI) with an
average classification accuracy of 75.6% across ten subjects.
The joint mutual information (JMI) criterion was used to
extract the optimal features of hemodynamic responses, to
identify three images of hand clenching associated with force
and speed with a final accuracy of 76.7% [34]. Yin et al. [35]
applied empirical mode decomposition to reduce the
physiological noise during the task, and the intrinsic mode
functions were used to extract the feature vectors, to identify
the motor imagery tasks of right-hand clench force and
speed, with a corresponding classification accuracy of
78.33%. Most of the fNIRS studies mainly focus on classi-
tying the different states about upper limbs. For lower limbs,
the study of different motion states of spontaneous walking
is sparse, and the simultaneous classification of two-
dimensional variables of walking speed and step length is
still in the bank.

In this study, a method based on fNIRS signals is pro-
posed, to identify the motion intention of two-dimensional
variables of walking speed and step length simultaneously
under the normal environment. During the whole experi-
ment, in order to elicit greater voluntary participation of the
subjects, all movements (the start and end of every task) were
spontaneously controlled by themselves, and without ex-
ternal stimuli. It hopes to classify the two-dimensional states
of walking speed and step length timely, based on the motion
intention of movement. This study expects to apply
a method to classify the motion intention of different states,
so as to help patients control a walking-assistive device for
rehabilitation training and let them restore independent
walking abilities in the future.

2. Experiment Design

2.1. Subjects. Twenty-two healthy subjects (22 mean+4
years old, seventeen males and five females) of Soochow
University participated in this experiment. All participants
were right-handed, without neurological abnormalities and
other related conditions.

2.2. Instrument. A FOIRE-3000 optical topography system
(Shimadzu Corporation, Kyoto, Japan) [32] with eight
emitters and eight detectors was used to measure the light
sources of wavelengths of 830 nm, 805 nm, and 780 nm, that
represent the oxygenated hemoglobin (oxyHb), total he-
moglobin (totalHb), and deoxygenated hemoglobin (deox-
yHb), respectively. The sampling period of hemoglobin
signals was 130 ms.
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2.3. Cortical Regions. Prior fNIRS research determined that
the PMC, SMA, and PFC areas are largely associated with
walking speed or step length [27,29-31]. In addition, the
PEC area plays an important role in identifying premove-
ment consciousness [28]. According to the international
10-20 system [36, 37] and the Brodmann partition map [38],
a 3 x 5 parietal flash holder was built, which was applied to
fix emitters and detectors. Figure 1(a) shows the arrange-
ment of the optodes, where the Cz point is the intersection of
the left to right earlobe and nation to occipital tuberosity,
with a distance to detector 7 of 3 cm. In the layout of the
channel, the emitters 3 and 6, and detectors 1, 4, and 7 are on
the connection of Nz-Cz-Lz, and the probe layout on the left
and right is parallel to the connection of Nz-Cz-Lz, the
distance between each detector and emitter is fixed at 3 cm.
Based on the location of important region defined by above
study and probe layout, it is defined that the channels 1 to 7
are in the PFC area, channels 8 to 12 are in the frontal eye
cortex (FEC) area, channels 13 and 18 are in the PMC left
(PMCL) area, channels 15 and 20 are in the PMC right
(PMCR) area, and channels 14, 16, 17, 19, 21, 22 are in the
SMA area.

2.4. Paradigm. The patient with very weak or no athletic
ability finds it hard to undertake rehabilitation training, not
to active training. According to the feedback from a re-
habilitation doctor, these three walking states (contained the
gait of small-step with low-speed (SL), small-step with
midspeed (SM), and midstep with low-speed (ML)) were
very helpful and necessary for these patients to improve their
body function to restore their walking ability. Therefore, in
this experiment, 22 health subjects’ fNIRS signals under
these three gait parameters were collected for initial re-
search. During this experiment, because of the limited
transmission lines, the walking distance was fixed at 4.4 m,
and all the subjects could not exceed this range. So, the
small-step was defined as approximately nine steps in fixed
distance, and midstep was approximately about six or seven
steps. But the walking speed depended on subjects’ normal
speed, and low-speed was defined that it must be slower than
the normal gait obviously, about 30% to 50% of normal
speed.

Before the experiment, all the subjects were asked to
wash their hair, to make sure the scalp was clean. The ex-
perimental procedure and fNIRS’ operating principle were
also informed. And they were also told that they should
maintain their heads in a steady position and their arms in
a natural state when walking, without counting during the
entire experiment.

Moreover, a researcher would walk with subjects car-
rying the fNIRS cables to reduce the effect of the cables’
weight. Figure 1(b) shows the experiment setup. All the
subjects were required to train these three gait parameters,
and the researcher will calculate the walking speed and step
number during the walking, to ensure the gait parameter
subject walked was right. However, the subject would be
arranged to train these three gait parameters randomly,
based on the arrangement and combination of these three

states, in order to let the subject take a consideration of
which gait parameter should be done during the experiment.
When the subject can walk accurately, they would be told the
specific process of the whole experiment. Each gait was
consisted of four stages: rest, walk, rest, and retreat. During
the whole experiment, each gait needed walking twice. In
detail, at the beginning of the experiment, the starting point
and ending point were marked previously, and all subjects
stood at the starting point while resting for more than 30s.
Then, they began movement towards the ending point with
the right foot. Next, the subjects did not retreat to the
starting point until they stood at the ending point in a resting
state for more than 30 s. The entire process of the experiment
is shown in Figure 2. Moreover, the rest and start time were
spontaneously controlled by the subjects. It is also stipulated
that the subjects can not make a mistake in the order and gait
parameters of the experiment, a researcher specializes in
checking these; otherwise, the experiment will be cancelled
and be redone next time. Finally, based on the feedback
information after completing the experiment, the subject
will take a consideration of which gait parameter they should
do before walking.

3. Data Analysis

The totalHb and difference between the oxyHb and deoxyHb
were used to extract feature vectors in the frequency domain.
Eleven subjects were selected to calculate the highest rec-
ognition accuracy and its corresponding combination of
feature vectors (ten for training and one for testing). When
the best feature vectors combination was selected, these
eleven subjects of training set were defined as training data,
to calculate the final recognition accuracy of another eleven
subjects. Due to various factors and maladjustments, only
the second testing was used for analysis. All calculations and
analysis were completed using Matlab R2016a.

3.1. Power Spectrum Analysis. For the eleven primary
subjects in this study, power spectrum density analysis
based on a rectangular window was used to analyze the rest
time before and during the task segment. This method
calculates the continuous frequency map of each channel in
all states to determine the final analysis band and the band
interval.

3.2. Data Preprocessing. Because the related researches on
fNIRS are mainly focused on low-frequency components,
over time, it will cause a zero drift in cerebral hemoglobin,
significantly impacting the low-frequency component. In
this study, the mathematical morphology method was
proposed to remove this phenomenon [39], in order to
reduce the influence of zero drift during the subsequent
analysis. To identify the motion intention of all movements,
180 points before the task were analyzed. Corrosion and
expansion are the main operations of this method, and their
expressions are as follows, respectively:
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FIGURE 1: (a) The arrangement of the optodes. (b) The experimental setup. The person in the right was the subject; he was doing a rest for
walking. The person in the left was a researcher who walked with the subject carrying the weight of the fNIRS cables.
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F1GURE 2: The process of the experiment. R represents the rest time. Re represents the backward process. SL represents the gait of small-step
with low-speed. SM represents the gait of small-step with midspeed. ML represents the gait of midstep with low-speed. The first testing was
a familiar process for the subjects, and the second testing was the analysis data.
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where f (n) represents the original data, (N — 1) is the length
of the data. k (m) is a flat structure, and the length of (M - 1)
is the number of points in ten sampling periods. Then, the
opening and closing operations were calculated based on the
corrosion and expansion, and their expressions are as fol-
lows, respectively:

(f'k)(n) = (fOkk)(n),
(f ok)(n) = (f @ kOK) (n).

Then, the values of performing opening operation first
and then the closing operation and performing closing
operation first and then the opening operation were cal-
culated, respectively. The final result was obtained by av-
eraging the above two values because there is a big difference
between individuals, such as hair, skull thickness, etc. These
lead to a difference in the signal-to-noise ratio of the col-
lected data; therefore, the data must be normalized before
the extraction as

(3)

xN:Z*[ * ~ fhih (4)
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where x represents an original data point in one channel
and min and max represent the minimum and maximum
values of all channels of the analyzed data. The xN represents
the normalized data.

3.3. Feature Extraction. The results of the power spectrum
analysis can confirm the decomposition layers. Then, the
preprocessing data are calculated in the frequency domain
by wavelet packet decomposition [40, 41]. In this study, the
wavelet basis is sym4. To obtain the more obvious features,
the concentration changes of all channels of the totalHb and
the difference between oxyHb and deoxyHb were calculated
following wavelet packet decomposition. In the time do-
main, the motion intention occurred at the beginning of
movement. Therefore, eight points (approximately 1s) were
used for analysis. For each state, the analyzed data were
stored in a matrix (M1), where the columns represented the
22 channels and the rows represented the frequency bands.

For each state, each subject would admit a matrix (M1)
after wavelet packet decomposition, but there is a huge
difference between the values of different channels; in order
to determine the significant channels and corresponding
frequency bands of one state, each matrix was divided into
three proportional parts based on the value of each element.
In this research, the probability of 20%, 25%, 30%, 35%, and
40% were used, and based on the final accuracy of training
and testing data, the probability of 30% was the best, so it was
defined as the final percent. It means that the top 30%
proportional parts were defined as digital “17; the mid 40%
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were digital “0”; and the bottom 30% were digital “~1” (M2).
For the training set, eleven subjects were selected to find out
the feature vectors. In detail, based on the frequency statistic,
under each state, if the frequency of same digital number on
one position of these eleven matrices was seven or more
(>63.64%), this position was defined as the digital; otherwise,
it was defined as digital “0” (M3). After that, the eleven
matrices were combined into a new matrix under this state,
which represents the features of this state. Next, the significant
channels with links in frequency and space were combined to
be defined as feature vectors, if the digital value was the same
in this matrix. For the other states, the method of extracting of
feature vectors was the same. The flow is shown in Figure 3.

3.4. State Classification. The 1ibSVM algorithm [42] was
used to classify these three states. To obtain the highest
accuracy, the feature vectors of the totalHb and the differ-
ence between the oxyHb and deoxyHb were combined. For
the primarily eleven participants, ten were selected for
training data and one for testing data, a total of 11 com-
binations according to the different permutations. However,
some feature vectors could improve the accuracy, and some
could not, so all feature vectors needed requiring permu-
tation and combination to find the best combination of
feature vectors. For each of the feature vector permutations
and combinations, the recognition accuracy of the 11
combinations was calculated. The final accuracy of this
feature vectors combination was the average of these results.
All feature vectors combinations were compared to select the
highest recognition and its corresponding feature vectors.
Then the eleven subjects were identified as the training data,
and another eleven subjects were identified using the above
feature vectors combination.

4. Results

4.1. Power Spectrum Analysis. The power spectrum density
analysis method could get a continuous frequency map of
each channel (Figure 4). By observing 11 subjects’ contin-
uous power spectrum of each channel of the totalHb and the
difference between the oxyHb and deoxyHb. It was found
that the main frequency band was approximately 0 to
0.18 Hz, so it was defined as the main frequency band in this
study. Moreover, it was found that the distance between two
peaks was about 0.03 Hz. Therefore, 0.03Hz is the most
reasonable frequency interval, which is also associated with
the number of layers of wavelet packet decomposition.

4.2. Data Preprocessing. The zero drift of the original data
was removed using a series of operations based on math-
ematical morphology (Figure 5). And to highlight the key
channels, the 22 channels were normalized by Formula (1).
The range of all values is —1 to 1 after normalization.

4.3. Feature Extraction. According to the power spectrum
density analysis, the main frequency band was 0 to 0.18 Hz
and the frequency interval was 0.03Hz. Because the

Wavelet packet decomposition
matrix (M1)

Top 30% and bottom 30%

l

Probability matrix (M2)

Frequency statistic of 11 subjects on one position

63.64% (7/11)

Statistic matrix (M3)

A 4

Extract feature vectors
based on the location
of elements in M3

v
End

FicURE 3: The flow of feature extraction.

sampling period of hemoglobin signals was 0.13 s, the sig-
nal’s sampling frequency was approximately 7.7 Hz. Based
on wavelet packet decomposition, the frequency band was
divided into 128 groups, with each interval approximately
0.03 Hz. The first six groups (approximately 0 to 0.18 Hz)
were used to extract feature vectors. The eight points at the
end of the data were combined after calculating the con-
centration changes of all channels in the totalHb and the
difference between the oxyHb and deoxyHb. For totalHb
and the difference between oxyHb and deoxyHb of each
subject, three 6 x 22 matrices representing the motion in-
tention of the three gaits were created, respectively.

Based on the matrices of the last step and the above-
mentioned method, the results of each state of the totalHb
and the difference between oxyHb and deoxyHb are shown
in Figure 6(a) and Figure 6(b). According to the spatial
layout of the various channels in Figure 1(a), the channels
with links in frequency or space were selected as feature
vectors, if the digital value was the same. The isolated
channel was not considered.

4.4. State Classification. For the different permutation and
combination, the best average classification accuracy rate of
training set was 78.79%. And under this features vector
combination, the eleven training subjects were defined as the
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FiGuRre 5: The sequence diagrams of subject one’s channel 11 under the SM gait of totalHb. The blue line represents the original signal, and

the green line represents the data after mathematical morphology.

training data to classify another eleven subjects (11 subjects’
second tasks x 3 states), with classification accuracy rates of
78.9% (26/33) (11 subjects’ second tasksx 3 states). The
recognition rates of SL, SM, and ML states are 72.72% (8/11),
72.72% (8/11), and 90.9% (10/11), respectively.

5. Discussion

To date, most research on lower limbs focused on which
brain region is activated when the walking speed or step
length changed [21-25,27,29-31]. There is little research on
the identifying motion intention of lower limbs, let alone
several gaits with little difference. The test environment was
one of the important reasons. The fNIRS technology over-
comes this restriction and can be used in the natural en-
vironment. In this study, a method based on the fNIRS signal

was proposed to identify the motion intention of three
similar motion states.

This study focuses on classifying the motion intention
before movement of healthy subjects, and the final accuracy
was 72.72% (8/11), 72.72% (8/11), and 90.9% (10/11), re-
spectively. These results improved that the subjects’ motion
intention can be used to characterize the gait parameters.
Moreover, through Figure 6, it can be found that there are
obvious differences in the channel and frequency band
under different motion intention of gait parameters. The
motion intention prior to the movement initiation for pa-
tients is stronger than that for healthy subjects [43], and due
to the defect of moving ability, the patient needs high at-
tention for a certain action, whereas healthy subject does
not. If one movement has been repeated for many times, it
would be hard to extract the motion intention, and it will be
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FIGURE 6: (a) The significant channels of three walking states under the total data. The red square represents digital 1: it means that the value
of original seven matrices under this position has five or more under the top 30% proportion. The blue square represents digital —1: it means
that the value of original seven matrices under this position has five or more under the bottom 30% proportion. The green square represents
digital 0; it represents the all cases expert for above two. (b) The significant channels of three walking states under the difference between

oxyHb and deoxyHb.

the main influence on the classification accuracy. Therefore,
the paradigm of this experiment was designed specially
(Figure 2); it was that the subject can not repeat one action
continuously and each movement be done only twice, and
the purpose of this design is to let the subject not take
a movement unthoughtfully and have a consideration before
the movement. This study was still in its infancy, and
through the results of healthy subjects, it lays a foundation
for later research on patients’ motion intention.

For patients with weak or no athletic ability, the practice
of small compensation and slow pace has great practical
application value [6]. In rehabilitation, the patient’s active
participation and coordination are important, as good re-
habilitation training methods ensure that patients receive
the maximum rehabilitation in the shortest possible time.
This provides them with the best chance of improving their
quality of life, by reducing the burden on family and society
[10]. This study uses spontaneous motion intention to
classify minor gait, although it is in the initial stage of study

and the subjects are healthy men, but the results proved the
feasibility of classifying the gait parameters through the
motion intention before movement, which lays a good
foundation for the patients to carry out the rehabilitation
training through their motion intention and improve their
walking ability in the future.

This study focused on the classification of walking in-
tention before movement. So, all the movements were purely
spontaneous, and the feature vectors used for classification
were extracted before the actual movement. This method
could compensate for the delay in the algorithm to com-
municate with external devices and lays a foundation for
real-time BCI system. Although the classification accuracy
was not very high, it confirmed the feasibility of controlling
an exoskeleton to perform rehabilitation training for the
further research.

However, there are many shortcomings in this study that
need to be addressed in the future. First, the number of
experiments was small, and all subjects were normal,



healthy, young people. For patients with weak or no athletic
ability but intact brain function, their brain function is also
different from normal function, and the same is true for the
elderly [23,31,44-46]. Further research is required on a large
number of patients and the elderly. Second, this study fo-
cused on identifying the motion intention of different gaits.
However, the method of classifying the rest time and starting
awareness and the rest and ending times is a difficult task.
Only these three conditions were completed. The dynamic
identification was performed for real-time data to realize the
real BCI system. Third, the ending point was fixed due to the
limitations of the institution. The stop-awareness part was
controlled by external factors. Some companies have in-
frared wireless devices, which may be used to realize the true
spontaneous gait in the future.

6. Conclusions

This study presented a method of classifying the motion
intention of different spontaneous gaits based on fNIRS
technology. And, three different walking states were pre-
sented with final recognition rates of 78.79%. In this study,
only the subjects’ motion intention was used to extract the
feature vectors. And this study can classify the two-
dimensional gait at the same time, instead of single
changes of walking speed or step length. Moreover,
a combination method of permutation and combination
method and libSVM algorithm is considered, all combi-
nations of feature vectors, to reduce the influence of ex-
traneous feature vectors on the recognition result. These
results confirmed it is feasible to classify the motion in-
tention of advanced walking by using fNIRS technology,
which adds the possibility of realizing the autonomous
control of walking-assistive equipment based on the BCI
system.
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