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Abstract: Cybersecurity in Industrial Internet of Things (IIoT) has become critical as smart cities
are becoming increasingly linked to industrial control systems (ICSs) used in critical infrastructure.
Consequently, data-driven security systems for analyzing massive amounts of data generated by
smart cities have become essential. A representative method for analyzing large-scale data is the
game bot detection approach used in massively multiplayer online role-playing games. We reviewed
the literature on bot detection methods to extend the anomaly detection approaches used in bot
detection schemes to IIoT fields. Finally, we proposed a process wherein the data envelopment
analysis (DEA) model was applied to identify features for efficiently detecting anomalous behavior
in smart cities. Experimental results using random forest show that our extracted features based on
a game bot can achieve an average F1-score of 0.99903 using 10-fold validation. We confirmed the
applicability of the analyzed game-industry methodology to other fields and trained a random forest
on the high-efficiency features identified by applying a DEA, obtaining an F1-score of 0.997 using the
validation set approach. In this study, an anomaly detection method for analyzing massive smart city
data based on a game industry methodology was presented and applied to the ICS dataset.

Keywords: anomaly detection; data envelopment analysis; smart city; industrial control
systems; cybersecurity

1. Introduction

A smart city is an urban model envisioned to solve urban problems and improve the
quality of life of residents by integrating technologies such as information and communica-
tions technology (ICT) and big data. However, there is no clear and common definition of
a smart city because each country and institution defines the term from its own perspec-
tive [1,2]. Hence, there are various definitions of smart cities. However, they commonly
aim to solve urban problems and improve the quality of life for residents through tech-
nology. The concept of a smart city emerges against highly diverse backdrops; therefore,
the unified conceptualization of what it entails was achieved relatively recently. The origin
of smart cities can be divided into urban planning and global crisis response aspects. Smart
cities were initially understood as goals to be attained in terms of advanced automation
and networking. However, they are often defined as integrated heterogeneous platforms.
A smart city is primarily envisioned to improve the quality of life of residents and regional
competitiveness using ICT networks.

A smart city is defined as the infrastructure itself. It provides services such as trans-
portation, hydropower, smart health, and a smart grid through its connections to existing
conventional infrastructure [3,4]. IIoT is an integral part of the smart city that helps consti-
tute the critical infrastructures [5]. Yet, the ever increasing cyber attacks have emphasized
the significance of the safety and security of IIoT in smart cities [6]. The campaign behind
UNC2452 has been accounted for trojanizing the victims through SolarWind’s Orion IT
monitoring and management software [7]. The incident is estimated to have taken place in
early 2020, and the victims have included the government agencies, multi-conglomerate
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organizations from North America, Europe, Asia, and the Middle East [8]. Cyber-attack
weapons and cyber talents are the core of cyber-attacks that pose a serious threat to a
country’s cyber security. As such, technologies regarding the cyber threat detection are
being developed. In order to better protect the sensitive information produced from the
smart health domain, a data-driven approach towards security is required to detect the
various anomalies [9,10].

Smart cities create massive amounts of data because they connect various hetero-
geneous devices [11]. To analyze such large-scale data, intelligent anomaly detection
techniques using machine learning (ML) have been studied [12]. Similar to the smart
city field, the game design field generates large-scale data and is based on data analysis
techniques. Furthermore, both smart cities and online game worlds aim to provide a level
of user satisfaction. Online games are a representative commercially developed field; a
massive number of users access and play these games in real time. Companies developing
such games have grown in proportion to the number of users accessing them; thus, user
turnover results in a loss of revenue. It is therefore essential to detect anomalies that cause
such turnover [13]. To detect abnormal behavior in big data in the game field, data analysis
research using ML and deep learning is being conducted. The game security methodology
used in existing research has revealed abnormal behavior with a high level of accuracy.
Smart cities need to analyze large amounts of data generated by large numbers of users
with high accuracy. Therefore, we can adapt similar approaches to game methodologies.

This study is an attempt to detect anomalies using the methodology used in the field
of game security. In addition, considering the diversity of smart cities, we propose a process
that can identify an efficient feature set for anomaly detection through a data envelopment
analysis (DEA). Furthermore, we evaluated the efficiency of an existing feature selection
method. In this study, we used the DEA methodology applied in economics to measure
the data efficiency.

The contributions of this study are as follows.

• We analyzed the applicability of a methodology used in the game security industry to
detect abnormal data in large smart city datasets.

• We applied the proposed approach to the cyber-attack dataset of the industrial control
system (ICS).

• We presented a process for finding efficient feature sets that can be applied to the
processing of large-scale data using a DEA.

The remainder of this paper is structured as follows. First, some conventional back-
ground information on game security, DEA, and anomaly detection in smart cites is
presented in Section 2. In Section 3.1, a game-based bot detection methodology is described,
and the features are analyzed. The experimental method and the process of applying the
DEA are described in Sections 3.2 and 3.3, respectively. An analysis of the experimental
results using the selected dataset is presented in Section 4. In Section 5, we discuss the
proposed methodology. We conclude the present study in Section 6.

2. Related Studies
2.1. Online Game Security

As of 2021, the online game market is worth $23 billion USD [14]. In this study, we
focus on massively multiplayer online role-playing games (MMORPGs), which entail many
different users accessing a game world simultaneously while playing various roles. Repre-
sentative MMORPGs include Aion, Maple Story, Lineage, and Black Desert. According
to the world’s largest electronic game software distribution network, Steam, their peak
concurrent users reached 20 million on 2 January 2021 [15]. We found that even if only the
game user’s log data are saved, a vast amount of data must be saved on the servers for
these types of games. Various information is included in the log stored in the game server.
For example, in MMORPGs, there are logs of the user’s access time, game level, and items
collected. These logs are continuously written to the servers.
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Furthermore, there are various game items in an MMORPG. Items that are difficult to
obtain are occasionally exchanged for real money, rather than game money. Consequently,
the money used in these games may have a real-world cash value. Because the value of
such game items increases over time, game users have begun to collect them professionally,
systematically, and sub-optimally. An automated program that helps collect such items is
called a bot, and a group that systematically collects and sells items is called a gold farmer
group (GFG).

User retention and churn rate are key factors in the game market. If malicious game
users quickly collect items using a bot, this may pose a relative deprivation or disadvantage
to normal users, eventually causing game users to leave and later return to the game
market. Using the Aion game data as a case study, Kim et al. [16] deployed Pearson and
Spearman correlation coefficients to analyze the correlation between user type and activity
type. Their experiment revealed a direct correlation between the number of bots and the
user churn rate. As the impact of bots on the game industry increases, research is being
conducted on bot detection.

Research on abnormal behavior detection in games can be at the client, network,
or server level [17,18]. The conventional approach to detecting game bots at the client level
is to detect human interaction at the user PC level. These methods are generally based on the
CAPTCHA or XIGNCODE technology. A network-level analysis is a method for detecting
network information, such as network traffic, based on the IP flow [19]. The server-
side analysis method analyzes the game logs stored on the server. These methods are
mainly implemented using artificial intelligence. In analyzing a user’s behavior, agents
behaving abnormally are defined as bots. Bots and GFGs exhibit different patterns from
normal users. These patterns are learned by ML systems to create bot detection models.
Unlike other methods, the server-level analysis method is not client-dependent and can be
flexibly processed based on internal rules [17]. Game companies have developed various
methods to distinguish the patterns of bot activity to enforce the game rules. However, if a
malicious actor finds such patterns, this security method can be easily bypassed. Recently,
ML and deep learning have been applied to bot detection to prevent pattern-detection
bypass attacks.

The online game market collects and processes user logs; therefore, it is naturally
involved in the analysis and processing of large-scale data.

2.2. DEA Method

The DEA is a method used to measure the efficiency in the field of economics. Ef-
ficiency refers to the ratio of the output to the effort or resources invested in a certain
objective. Efficiency is measured based on the output and input. The DEA is a relative
measure of efficiency, that is, a value expressed relative to the highest level of efficiency.

Charens et al. [20] presented a DEA model characterized by a non-parametric esti-
mation of the relationship between data input and output. The DEA has the advantage
of being able to handle a variety of input and output factors. Furthermore, it does not
require an assumption regarding the functional relationship. It can also handle the input
and output elements at different scales. By using available data, the DEA eliminates the
need to create separate data for a performance measurement, and reveals the best practices.

The DEA measures and evaluates the relative performance in the decision-making
units (DMUs). It is essential to ensure the DMUs are homogeneous because the DEA
compares them. Fitzsimmons et al. [21] stated that the number of DMUs has more influence
than double the sum of the input and output variables in discriminating the efficiency
measurement results.

Some methods for analyzing the DEA include the Charnes, Cooper, and Rhodes
(CCR) [20] and Banker, Charnes, and Cooper (BCC) [22] approaches. The CCR is a model
of constant-scale returns with inputs and outputs. By contrast, the BCC is a variable-scale
return model with input and output. In the CCR method, the input and output are directly
proportional, unlike in the BCC approach. The CCR doubles the output when the input is
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doubled. For the BCC, doubling the input does not double the output. The DEA model is
composed of input- and output-oriented models. This depends on the variable focused
upon and whether this variable is an input or output variable. The input-oriented model
minimizes the inputs to produce a given output, and the output-based model maximizes
the output using a given input. The input and output variables used in this study are
variable-scale returns; we used an output-oriented model because it was necessary to
maximize the output. Therefore, we used the calculation-oriented variable-scale return-
envelopment-calculation-based model. Curi et al. [23] used the variable return of scale
(VRS) for the envelopment-output orientation model to estimate the technical efficiency of
Italian airports. As a result of their efficiency analysis, they found that the reallocation of
traffic at airports close to each other is vital.

The VRS for an envelopment-output orientation model [24] is expressed as a mathe-
matical model, where the set of inputs is I = {1, . . . , m}, the set of outputs is O = {1, . . . , m},
and the set of DMUs is S = {1, . . . , m}. An s×m matrix X represents the input, where xi is
the column vector of the input connected to DMUi and xij is the amount the ith DMU uses
for input j. An s× n matrix Y represents the output. Furthermore, yi is the column vector of
the output associated with DMUi, and yij represents the amount the ith DMU produces in
the output j. Vector λ is a column vector of composite weights related to the envelopment
of the DEA. Let ε be a non-Archimedean element, i.e., a number less than a positive real
number. Let s+i and s− be vectors of slack variables for the output and input, each.

max φ + ε(∑
i∈I

S−i + ∑
i∈O

S+
j )

st : ∑
r∈S

xriλr + s−i = xOi, f or i ∈ I

φyOj −∑
r∈S

yrjλr + s−j = 0, f or j ∈ O

∑
r∈S

λr = 1

λr, s+j , s−i = 0, i ∈ S, i ∈ I, j ∈ O

(1)

In this study, we calculated these weights by considering the characteristics of our
competitors. The DEA assesses the effectiveness of a particular system by measuring the
ratio of the weighted sum of the outputs to that of the inputs [20]. The weight used is not
a fixed value. In solving the optimization problem, not only are the characteristics of the
system considered, the weights of the competitors are also calculated. We measured the
efficiency using pyDEA. Along with the DEA method, the experiment conducted in this
study is described in Section 3.4.

2.3. Anomaly Detection in Smart Cites

Prior research on anomaly detection in large datasets from smart cities was analyzed.
Alrashdi et al. [9] conducted research to detect abnormal behavior in data collected

from various Internet of Things (IoT) devices in smart cities. We mainly confined ourselves
to the framework of anomaly detection in the IoT (AD-IoT system), using an intelligent
anomaly detection technique based on a random forest, which is an ML algorithm for
detecting abnormal behavior in IoT networks. The network intrusion detection system
(NIDS)-based approach was introduced, and while prior NIDS implementations have the
disadvantage of not detecting new attacks, our proposed methodology can reveal new
attacks with an accuracy of 99.34%. However, the authors did not verify the performance.
In our study, we verified the NIDS-based approach using n-fold cross-validation.

Garcia-Font et al. [25] used ML to detect anomalies in the data from sensor networks
and other sources depended on by smart cities. The data were created by reproducing
the complex environment of a smart city and evaluated using SVM and an isolation
forest algorithm. It was shown that additional considerations are needed to effectively
detect attacks on smart cities. It was observed that this study implies a requirement for a
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multidisciplinary team composed of highly specialized operators in data analysis, network
management, and security roles. Therefore, it was assumed that the proposed process was
analyzed by experienced experts. In addition, Garcia-Font et al. [26] compared the results
with those of an anomaly detection technique that is often used on an actual dataset from
the Barcelona Smart City project. Among them, we concluded that one-class SVMs are the
most effective technology. In this study, we used an SVM to detect abnormal behavior.

Bawaneh et al. [27] proposed an occupancy-based anomaly detection algorithm to
detect abnormal behaviors in road traffic in smart cities. To analyze the time series data,
an extended expression sequence was transformed. The modified z-score was used to
detect anomalous behavior in the global heat data. We transformed the modified z-score
into a sequence and applied the method to our experiment using statistics.

Korzhuk et al. [28] used a random forest classifier to detect attacks in WSNs. In addi-
tion, it has been shown that the WSN algorithm developed based on probabilistic classi-
fication can reduce the network load of low-power sensor network devices. We applied
the random forest algorithm to our method and referenced the probabilistic basis for
feature extraction.

As discussed above, research is being conducted to analyze heterogeneous data for
detecting abnormal behavior in smart cities. However, in a study using the dataset of
an actual smart city, the dataset was not disclosed. In many of the studies that involved
simulating a virtual environment, sensor network data were mainly used. Therefore, we
applied the ICS sensor dataset in our experiment.

3. Proposed Method
3.1. Insight from Analysis of Game Bot Detection Methods

In this study, we analyzed a server-side bot detection methodology for detecting
abnormal behavior. The features used for bot detection were analyzed based on the charac-
teristics of our experimental data. In this study, the server-side bot detection methodology
features used to detect abnormal behavior were analyzed and applied during the experi-
ments. We examined prior studies on the features used in the server-level bot detection
methodology. The features determined included a trading network, gameplay style, social
network, sequence analysis, self-similarity, character movement, and character behavior.
Table 1 describes the criteria used for classifying the features applied in our data-driven
security technology research.

Table 1. Classification of features used in game bot detection.

Feature Category Description Related Works

Trading network Examining a game character’s possession event log
and transaction event log to derive it as a feature [29,30]

Gameplay style Investigating gameplay styles such as player information,
player action, and combat ability [31,32]

Social network Analysis of social network characteristics between players
such as part play logs and chat logs [33–35]

Sequence analysis Characterized by assuming that the player’s actions, such as
action sequences and battle sequences, are one sequence [36–38]

Self-similarity Analyzed based on the assumption that the bots have self-similarity,
and the action frequency and action type are used as features [13,39]

Character movement Identifying a character’s movement pattern and use
movement speed, distance, and location [40,41]

Character behavior Observering the character’s behavior and using it as a feature
by applying various statistics [17,42–45]

We analyzed the logs generated in a smart city’s sensor layer using the hardware-in-
the-loop (HIL)-based augmented ICS (HAI 1.0) dataset, which is an infrastructure dataset,
as a case study. Furthermore, we investigated the applicability of the proposed approach to
such sensor logs and determined how to best apply it. Because the log of the actual sensor
layer is a time series log, we explored how to apply the features of the user behavior log
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detection method. The features used in the referenced game study were analyzed, as shown
in Table 2, prior to being applied during this experiment. In this analysis, the server-level
analysis method used in the game industry was applied to the time series datasets of
the ICS.

A study in which a trade network, such as increases and decreases of a character’s
stock, was analyzed was not applicable because our data are time series and not network
data [29,30]. In terms of the gameplay style, the combat ability and game player infor-
mation were analyzed [31,32]. In Chung et al. [31], the standard deviation and similarity
were used to differentiate players from bots. Kang et al. [32] statistically analyzed the
players’ styles. We matched the similarities and statistics to this approach and applied
them to the experimental data. A social network analysis was conducted mainly to an-
alyze the conversations between players and party play logs within the game [33–35].
Although Oh et al. [34] used ML for natural language processing, natural language does
not exist in our experimental data. In Kang et al. [35], the party player logs related to social
interaction were used; however, the interaction data between sensors cannot be known.
In the case of a sequence analysis, the action and battle sequences were analyzed to detect
any bots [36–38].

Table 2. Summary and analysis of applicable features.

Author
Feature

Standard Deviation Min Max Similarity Skewness Kurtosis

Chung et al. [31] •
Kang et al. [32] • • • •
Lee et al. [13] • • •
Thawonmas et al. [39] • •
Mishima et al. [40] •
Chen et al. [41] • •
Yu et al. [42] • •
Han et al. [44] • •
Chen et al. [45] • • •
Park et al. [17] • • • • •

Xu et al. [38] calculated the similarity between the game bots and normal users using
the Levenshtein distance. However, this method is inapplicable to our data because a
distance calculation is impossible. In the case of self-similarity, the behavior patterns
of humans and bots are similar, and features such as the max or mean were extracted
using statistical features by comparing the difference between the actor and expected
human action frequencies [13,39]. Bots were detected by calculating the standard deviation
and similarity of the character movement distance [40,41]. In Han et al. [44], through a
character behavior analysis, features such as the behavior-related win rate and EXP variance
exhibited by the game characters, were extracted. Park et al. [17] normalized these data by
counting the actions leading up to a level-up event. We derived the features that have been
frequently used in preceding gaming studies, such as the standard deviation, min, max,
similarity, skewness, and kurtosis, based on the features of our dataset. The details of the
actual application of our experiment are given in Section 3.2.

3.2. Feature Extraction

Before applying our methodology, we can consider a statistically based anomaly
detection method based on the z-score. For this, we conducted normality tests for each
sensor value in the dataset. As a result of testing using a SciPy normaltest, the p-value
indicating normality was less than 0.001, indicating that the null hypothesis was rejected,
and thus the data did not have normality. We therefore conducted an anomaly detection
using a machine learning methodology based on the feature extraction.

We applied our approach to the ICS dataset based on the features analyzed in
Section 3.1. The dataset is described in Section 4.1. The HAI 1.0 dataset was developed as a
time series for anomaly detection research in the ICS.
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A standard deviation is the number representing the spread of the data. This is the
positive square root of the variance, defined by Equation (2), where σ is the standard
deviation, x indicates each value in the dataset, x̄ is the mean of all values in the dataset,
n is the number of values in the dataset, and x̃ is the median.

σ =

√
∑(x− x)

n
(2)

Min is the minimum value in the time window, and max is the maximum value.
Skewness, which is defined by Equation (3), is a measure of the asymmetry, as the data
distribution shape tends to be skewed from the center of the mean. Equation (4) provides
the kurtosis, which is a measure of whether the distribution of the data is sharper or flatter
than the normal distribution.

Skewness =

√
3(x̄− x̃)

σ
(3)

Kurtosis =
1
n

n

∑
i=1

(xi − x̄)4

σ4 (4)

The similarity is the degree of correlation and indicates whether the same number is
repeated in the time series data. Thus, this indicates the extent to which the same state is
maintained. We calculated the similarity using the longest consecutive streak. We used the
statistical library, SciPy, and the math library, NumPy, to extract six features.

3.3. Modeling and Evaluation

Among the algorithms used to detect bots in the game field, we selected the support
vector machine (SVM), random forest, decision tree, k-nearest neighbor (k-NN), and light
gradient boosting machine (LightGBM) algorithms in our experiments. The SVM is a
supervised learning model for pattern recognition and data analysis. As a binary classifier
used for classification and regression analysis that classifies two categories, it has high
accuracy because it is not significantly affected by noisy data. A random forest is a
supervised learning algorithm and an ensemble model of a decision tree. It creates multiple
decision trees and combines them to enable more accurate and stable predictions. k-NN
is an algorithm used to find the k-nearest neighbors, which are the k elements closest to
the input in a specific space and classifies them as more consistent. Although the learning
speed is high, depending on the data size, it takes considerable time because all data
must be calculated. Decision tree algorithms learn the rules in the target data and create
a tree-based classification rule. Although they have a low accuracy compared to other
algorithms, their strength is high analysis speed. The LightGBM is a boosting algorithm
that uses a leaf-wise method. This algorithm is faster to learn and automatically transforms
and optimally segments categorical features.

We used a validation set approach and K-fold cross-validation for verification and
evaluation, and we evaluated the experimental results using the F1-scores. The F1-score is
the harmonic mean of the precision and recall. We decided to consider abnormal behavior
as true and normal behavior as false. The F1-score is shown in Equation (5) and is used as
a criterion for a model evaluation. It has a characteristic in that the model can be evaluated
without being biased against a specific index by considering both the precision and recall.
Precision refers to the ratio of abnormal behavior to the behavior detected as abnormal,
and recall is the ratio of accurate detection of abnormal behavior.

F1 = 2× Precision× Recall
Precision + Recall

(5)
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3.4. Proposed Process Applying DEA Method

We implemented the process shown in Figure 1 to determine the most efficient features
for detecting abnormal symptoms in smart cities. This process uses the DEA methodology
to analyze the efficiency of the proposed approach. The DEA method is described in detail
in Section 2.2. We assumed that an experienced expert analyzed the features.

When a smart city dataset is compiled, it is necessary to analyze the layer to which it
belongs as well as its service characteristics. The heating control system, which provides
heat to homes in a smart city, can be used as a case study. Because it is a heating control
system, it belongs to the sensor layer. Therefore, because sensor data are time series data,
if administrators wish to analyze the system data, a feature extraction must be applied
according to the time series characteristics. In addition, because it is a service for providing
heat, if the temperature rises above a specific degree, it can be designated as abnormal
behavior and analyzed.

To determine whether the trained model has learned efficient features, we proposed
a method for measuring the efficiency of our approach using the DEA method for each
feature set. Although it is beneficial to use all of the various features in the experiment,
it is more efficient to apply this method after determining the useful feature set. This is
because, although more features correspond to greater accuracy, the analysis can consume
considerable resources. There may be insufficient system resources to analyze a sizable
smart city dataset. Therefore, it is essential to use efficient features.

Figure 1. Process measuring efficiency of features by applying DEA.

An experienced expert analyzed and extracted the suitable features. We selected all
combinations of the feature sets. Using these feature sets, a model was trained using an
algorithm that fits the dataset characteristics. The selected dataset was then evaluated
using the previously verified and labeled dataset. We measured the F1-score by applying it
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to the model trained on the test data. The F1-score from this calculation was used as the
performance and output values of the DEA.

We describe the relevant concept in Section 2.2. In our methodology, the DMU is
a combination of feature sets to be compared. For example, we set the combination of
six features used in our experiment as the DMUs. The number of DMUs was set to
63(= 26− 1). The input is the feature set size, which is the number of feature types, and the
complexity, which is the time required to select a feature per sample.

After checking the efficiency measured using the DEA, the model was retrained using
features with high efficiency. Finally, we applied the model to the new data.

The HAI 1.0 data, which were tested for application to a game world approach, were
applied in our analysis. The performance was measured using 80% of the data, and the
efficient features were selected. The remaining 20% of the data were used to verify the
relevance of the methodology. We found it noteworthy that the proposed process also
considers the efficiency in the feature selection method, which itself only considers the
performance. In addition, an efficiency measurement method applied in economics was
applied. The detailed operation method uses the following pseudo-code in Algorithm 1.

Algorithm 1: DEA based on the feature selection for anomaly detection in
smart city

Input:
SCD = Smart city Dataset;
ND = new data;
FS = Feature set size;
CP = Complexity;
Output:
PF = Performance;
HEF = High-efficiency feature;
/* Definition of Anomaly*/
select_layer, select_service = select_datasetType(SCD) ;
labeled_dataset = define_anomaly(select_layer, select_service) ;
SCD_trainSet, SCD_testSet = spilt(shuffle(labeled_dataset)) ;
/*Steps Before DEA Assessment*/
extraction_feature, CP = feature_generator(SCD) ;
selection_feature, FS = select_featureSets(extraction_feature) ;
learning_algorithm(selection_feature, selection_algorithm){

SF = selection_feature ;
SA = selection_algorihm ;
TM = training_model(SF, SA, SCD_trainSet) ;
PF = testing_model(TM, SCD_testSet) ;
return PF, high performance algorithm HPA ;

};
/*DEA Assessment*/
dea_result = masurement_DEA(FS, CP, PF) ;
HEF = select_highFeature(dea_result) ;
TM = training_model(HEF, HPA, SCD) ;
Final_result = testing_model(TM, ND) ;

4. Experiments
4.1. Dataset

We used an ICS dataset, i.e., the HAI 1.0 dataset, for our experiments. Developed by the
Affiliated Institute of ETRI in Daejeon, Korea, the HAI 1.0 dataset is made up of time series
data and consists of 998,942 time windows. It was created to study a cyber-physical system
(CPS) using ML and can be downloaded through GitHub [46]. The data were created in
February 2020 and were developed for research on the detection of abnormal behavior in
ICSs. Shin et al. [46] designed a simulated control system testbed using industrial control



Sensors 2021, 21, 1976 10 of 17

devices, sensors, and actuators, such as those by GE, Emerson, and Siemens, based upon
which they developed the ICS security dataset, HAI 1.0. The testbed contains a boiler,
turbine, water treatment, and HIL simulation.

We only used data labeled as normal and abnormal. Therefore, we used 990,000 time
windows and 980,697 normal and 18,303 abnormal data.

4.2. Experimental Setup

As shown in Figure 2, we assumed that 80% of the data were original data and 20% of
the data were new. To apply the features analyzed in Section 3.1, the training dataset of the
original data was used to train the model in Figure 2a. We used a K-fold cross-validation
for verification and evaluation. We selected the model with the best-performing algorithm
and time window size based on the evaluation results. This model was used to measure the
efficiency of the DEA, as described in Section 3.4. We measured the F1-score of the original
data, as shown in Figure 2b, using a validation set approach. The F1-score was used as an
input value and for determining the performance of the DEA. Furthermore, to evaluate the
proposed process, we measured the F1-score, as shown in Figure 2c using new data.

Figure 2. Dataset divided for experimental validation.

For the experiment, a Xeon CPU (128 GB of RAM) provided by NIPA was used.
To train the five ML algorithms selected above, basic parameters provided by scikit-learn
in the Python library were applied as parameters. In the process proposed in Section 3.4,
pyDEA was used to measure the efficiency. The package was downloaded from GitHub [47],
and the DEA was developed at the University of Auckland, Department of Engineering
Science by Kane Harton.

4.3. Evaluation Results

Through 10-fold validation, we conducted an experiment to determine the model to
use for the experiment. Because they can be considered in advance for use in an efficiency
evaluation, random forest, decision tree, k-nearest neighbor, and LightGBM algorithms
were applied. In addition, because the HAI dataset is made up of time series data in which
each ICS sensor information source is recorded in chronological order, it is essential to
define an appropriate time window length. To determine an appropriate time window
length, we set 30, 60, and 90 s as targets for comparison.

The experimental results obtained through an evaluation of the model by extracting
the game features are shown in Figure 3. Using all game features presented above, we
confirmed that the accuracy, precision, and F1-score of all models, except for the SVM
and k-NN models, were above 90% for all time window sizes during the experiment. We
analyzed the results yielded by the model and determined that abnormal behavior in the
ICS can be detected using the features designed for game bot detection. Our experimental
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results showed that three time window sizes of 30, 60, and 90 s have sufficient data to reveal
anomalies in the ICS dataset. As a result of experimenting under the three time window
conditions, the accuracy, recall, and F1-score all showed a better performance than the
other models in a random forest. We confirmed that the optimal rule for anomaly detection
was extracted owing to the random forest tree ensemble. Furthermore, between the
random forest within a separate time window, we found that the longest (90 s) time
window performed the best. Because the 90 s time window has the most significant
amount of information in comparison to the 30 and 60 s time windows, it easily captures
anomaly signals. For DEA-based feature selection, we used the random forest model,
which performed the best, based on the model evaluation results and a time window
of 90 s.

We also used a precision-recall curve for determining model performance. the
precision-recall-curve is known for giving useful information to compare model perfor-
mance [48]. Many studies already used it for model selection. In Dionysios et al. [49], they
used a precision-recall curve for determining the threshold for classifying potential voice
disorders in the Greek population, which showed imbalanced labels. We compared preci-
sion recall-curve for 90 s of time window, the random forest showed the best performance
as the same as the above experiment results.

Figure 3. Result of model training. The time window size is (a) 30 s, (b) 60 s, and (c) 90 s.

4.4. Efficiency Analysis Results

We present a methodology for analyzing the efficiency of the features in Section 3.4.
The experiments were conducted using HAI 1.0. We used a validation set approach, and the
LightGBM algorithm was applied for this efficiency evaluation. The 63 feature sets were
permutations of four features. A total of 63 feature combinations were then set as the DMUs.
The performance measured for each DMU was used as the output value. The feature set
sizes and complexities were used as the input values. The feature size is the number of
feature types, and the complexity is the execution time required for selecting the features
for each sample.

Table 3 shows the features with the highest efficiency based on the results of the DEA
measurement. The efficient feature sets achieved a good performance, with an F1-score of
0.997. To verify this, we retrained the model using the original data and known efficient
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features. The F1-score of the new data was then evaluated. The F1-score of 0.997 indicated
a good performance, as shown in Table 3.

Table 3. Results of feature efficiency using DEA method.

DMU
(Feature List)

Original Data (80%) New Data (20%)

Feature
Set Size Complexity Performance Efficiency Feature

Set Size Complexity Performance Efficiency

(’max’) 1 0.002334118 0.997300786 1 1 0.002334118 0.997579382 1
(’min’) 1 0.001845837 0.996949073 1 1 0.001845837 0.997436628 1
(’similar’) 1 0.141670704 0.997534922 1 1 0.141670704 0.997435897 0.999856121
(’max’, ’similar’) 2 0.144004822 0.997653684 1 2 0.144004822 0.998006266 1

The graph in Figure 4 showed that the efficiency was low for a specific feature. As a
result of the experiment, there was no significant difference in the overall performance,
although among the features, min and max showed an excellent efficiency of 1, which was
achieved because of the low complexity and high performance. As the graph in Figure 4
indicates, our proposed process is valid with an efficiency similar to that achieved using
either the original or the new data as measured using the DEA method. This implies that
the feature set of the original data adjudged as efficient can be applied as new data. The full
experimental results are presented in the Appendix A.

Figure 4. Feature efficiency of the original data (80%) and new data (20%) of each DMU.

5. Discussion

In this study, methodologies for game bot detection were derived from online game
research and applied to the HAI ICS dataset representing normal and abnormal smart
city data.

• The performance of the k-NN, random forest, decision tree, and LightGBM models
were evaluated, and the random forest model showed the best performance.

• We tested three different conditions about the time window for extracting features.
Moreover, we found that the 90 s for a time window is the best condition with random
forest showed an F1-score of 0.99903.

• In addition, a feature selection method based on the DEA, which was previously used
to measure the efficiency of the data, was proposed.

• The min, max, and similarity features showed the best efficiency through the exper-
imental result. We tried to find out why these three features are better than others.
We found that when criminals attack ICS, the ICS sensors showed abnormal values
like over the maximum limit of sensors; under the minimum limitation of sensors,
the values do not fluctuate. The feature sets we generated are well reflected this
attacked situation and showed relevant results for proposed methods.
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• This approach considers the performance of the existing feature selection algorithms,
as well as the complexity and size of the feature set.

• In addition to preventing overfitting, which is commonly discussed in data-based
abnormal behavior detection, this methodology makes it easy to apply practical
feature datasets; furthermore, it guarantees a high performance.

We analyzed the game bot detection approach and utilized it in the cybersecurity
field for smart cities. We experimented on an ICS dataset that can be used in smart cities.
However, this dataset was not actually the data from a smart city, but was rather the linked
infrastructure dataset. Considerable resources are required to analyze the large-scale data
of smart cities and achieve an effective model. Therefore, our process makes it possible
to analyze the efficiency through a model trained using some smart city data and select
the feature sets with the highest efficiency. An anomaly detection model can be created by
retraining the dataset labeled using the selected feature sets.

6. Conclusions

We presented a method for analyzing the massive data generated by smart cities.
Through this approach, a process model was created based on the DEA technique. In addi-
tion, to analyze smart city data, an approach used in game security was analyzed. Online
game security features were analyzed and related to actual infrastructure data. The results
of the experiment showed that the F1-score value was 0.99865, indicating a high perfor-
mance. Furthermore, our study confirmed that the features used in the actual game security
model are similar to the sensor layer data.

The HAI 1.0 dataset used in our experiment is sensor data from the ICS. However, it
cannot be interpreted in terms of user behavior. Unfortunately, a smart city user dataset is
not publicly available. In future studies, similar to game bot detection, a dataset that can
be used in studies on screening out abnormal actors in a smart city may be applied.

Furthermore, feature extraction is not an automated process in the deep learning
method. Hence, when incorporated into the DEA method, it is ineffective at selecting the
key features. However, deep learning is commonly known to outperform the previously
proposed ML-based methodology; therefore, it cannot be overlooked. In future studies,
we can consider measuring the efficiency by analyzing the training time of the deep
learning model.

This approach is also expected to be implementable for various smart city datasets
through the proposed process. In this study, we performed anomaly detection for sensor
data from the infrastructure of a smart city. In a future study, we can study anomaly
detection methods for healthcare data, including sensitive information of smart city users.
By detecting the presence of abnormal behaviors, we will contribute to the safe construction
and operation of smart cities.
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Abbreviations
The following abbreviations are used in this manuscript:

BCC Banker, Charnes and Cooper
CCR Charnes, Cooper, and Rhodes
CPS Cyber-Physical System
DEA Data Envelopment Analysis
DMU Decision Making Unit
EXP Experience point
GBM Gradient Boosting Machine
GFG Gold Farming Guide
HIL Hardware-in-the-Loop
ICS Industrial Control System
IoT Internet of Things
IIoT Industrial Internet of Things
KNN k-Nearest Neighbors
MMORPG Massively Multiplayer Online Role-Playing Game
NIDS Network Intrusion Detection System
STD Standard Deviation
SVM Support Vector Machine
VRS Variable Return to Scale
WSN Wireless Sensor Networks

Appendix A

Table A1. This appendix shows the results of measuring the DEA method using pyDEA, for which we applied the
output-oriented VRS model. The detailed values are shown in Figure 3.

Index DMU
(Feature List)

Original Data (80%) New Data (20%)

Feature
Sets Size Complexity Performance Efficiency Feature

Sets Size Complexity Performance Efficiency

1 (’std’) 1 0.021793127 0.992683502 0.99533754 1 0.021793127 0.991109837 0.993514733
2 (’kurt’) 1 0.014263153 0.933899788 0.936408587 1 0.014263153 0.913419913 0.915636294
3 (’skew’) 1 0.00265193 0.960925137 0.963525362 1 0.00265193 0.940165787 0.942447111
4 (’max’) 1 0.002334118 0.997300786 1 1 0.002334118 0.997579382 1
5 (’min’) 1 0.001845837 0.996949073 1 1 0.001845837 0.997436628 1
6 (’similar’) 1 0.141670704 0.997534922 1 1 0.141670704 0.997435897 0.999856121
7 (’std’, ’kurt’) 2 0.03605628 0.991016548 0.99361503 2 0.03605628 0.98908046 0.991330026
8 (’std’, ’skew’) 2 0.024445057 0.992445703 0.995076857 2 0.024445057 0.990675656 0.992958337
9 (’std’, ’max’) 2 0.024127245 0.997063315 0.999707486 2 0.024127245 0.997150997 0.999449403
10 (’std’, ’min’) 2 0.023638964 0.996002822 0.998645338 2 0.023638964 0.996725046 0.999023754
11 (’std’, ’similar’) 2 0.163463831 0.995765702 0.998107588 2 0.163463831 0.99557459 0.997563451
12 (’kurt’, ’skew’) 2 0.016915083 0.967819985 0.970404035 2 0.016915083 0.952309985 0.954522628
13 (’kurt’, ’max’) 2 0.016597271 0.996356799 0.999017866 2 0.016597271 0.996578272 0.998894623
14 (’kurt’, ’min’) 2 0.01610899 0.996121753 0.998783382 2 0.01610899 0.996151105 0.998467751
15 (’kurt’, ’similar’) 2 0.155933857 0.991967871 0.994300767 2 0.155933857 0.988340291 0.990314722
16 (’skew’, ’max’) 2 0.004986048 0.99670898 0.99939996 2 0.004986048 0.997007268 0.999354317
17 (’skew’, ’min’) 2 0.004497766 0.996591043 0.999282915 2 0.004497766 0.997293062 0.999644526
18 (’skew’, ’similar’) 2 0.144322634 0.993986558 0.996324261 2 0.144322634 0.990954774 0.992934378
19 (’max’, ’min’) 2 0.004179955 0.997065383 0.999759358 2 0.004179955 0.997295374 0.999656918
20 (’max’, ’similar’) 2 0.144004822 0.997653684 1 2 0.144004822 0.998006266 1
21 (’min’, ’similar’) 2 0.143516541 0.99741784 0.999764855 2 0.143516541 0.997864769 0.99985942
22 (’std’, ’kurt’, ’skew’) 3 0.03870821 0.991969769 0.994564209 3 0.03870821 0.987487416 0.989676976
23 (’std’, ’kurt’, ’max’) 3 0.038390398 0.996591844 0.999199142 3 0.038390398 0.996437224 0.998647232
24 (’std’, ’kurt’, ’min’) 3 0.037902117 0.995765702 0.998372055 3 0.037902117 0.996580222 0.998791562
25 (’std’, ’kurt’, ’similar’) 3 0.177726984 0.994701519 0.997040882 3 0.177726984 0.994280812 0.996267087
26 (’std’, ’skew’, ’max’) 3 0.026779175 0.99670898 0.999345529 3 0.026779175 0.996435192 0.998669373
27 (’std’, ’skew’, ’min’) 3 0.026290894 0.996000941 0.998636861 3 0.026290894 0.996722246 0.998958087
28 (’std’, ’skew’, ’similar’) 3 0.166115761 0.995055333 0.997395501 3 0.166115761 0.995289079 0.997277433
29 (’std’, ’max’, ’min’) 3 0.025973082 0.996358511 0.998996209 3 0.025973082 0.997438087 0.999676205
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Table A1. Cont.

Index DMU
(Feature List)

Original Data (80%) New Data (20%)

Feature
Sets Size Complexity Performance Efficiency Feature

Sets Size Complexity Performance Efficiency

30 (’std’, ’max’, ’similar’) 3 0.165797949 0.99682987 0.999174282 3 0.165797949 0.997579382 0.999572283
31 (’std’, ’min’, ’similar’) 3 0.165309668 0.996592645 0.998936432 3 0.165309668 0.996724113 0.998715253
32 (’kurt’, ’skew’, ’max’) 3 0.019249201 0.996590241 0.99924527 3 0.019249201 0.996004566 0.998253356
33 (’kurt’, ’skew’, ’min’) 3 0.01876092 0.996472248 0.999128261 3 0.01876092 0.996004566 0.998254452
34 (’kurt’, ’skew’, ’similar’) 3 0.158585787 0.991608557 0.99394064 3 0.158585787 0.984833165 0.986800556
35 (’kurt’, ’max’, ’min’) 3 0.018443108 0.996475564 0.999132353 3 0.018443108 0.997580071 0.999834128
36 (’kurt’, ’max’, ’similar’) 3 0.158267975 0.996826889 0.999171287 3 0.158267975 0.997150997 0.999143035
37 (’kurt’, ’min’, ’similar’) 3 0.157779694 0.996593445 0.998937231 3 0.157779694 0.996724113 0.998715253
38 (’skew’, ’max’, ’min’) 3 0.006831884 0.997062625 0.999749963 3 0.006831884 0.997721447 1
39 (’skew’, ’max’, ’similar’) 3 0.146656752 0.996593445 0.998937231 3 0.146656752 0.997862334 0.999855821
40 (’skew’, ’min’, ’similar’) 3 0.14616847 0.996826889 0.999171287 3 0.14616847 0.997008121 0.998999901
41 (’max’, ’min’, ’similar’) 3 0.145850658 0.997419052 0.999764855 3 0.145850658 0.997723392 0.99971658
42 (’std’, ’kurt’, ’skew’, ’max’) 4 0.041042328 0.996355085 0.998955193 4 0.041042328 0.996721311 0.998926454
43 (’std’, ’kurt’, ’skew’, ’min’) 4 0.040554047 0.996119017 0.998719741 4 0.040554047 0.995435093 0.99763839
44 (’std’, ’kurt’, ’skew’, ’similar’) 4 0.180378914 0.993992225 0.996329919 4 0.180378914 0.992986976 0.994970721
45 (’std’, ’kurt’, ’max’, ’min’) 4 0.040236235 0.996121753 0.998723232 4 0.040236235 0.996724113 0.998930944
46 (’std’, ’kurt’, ’max’, ’similar’) 4 0.180061102 0.996592645 0.998936432 4 0.180061102 0.996866097 0.998857507
47 (’std’, ’kurt’, ’min’, ’similar’) 4 0.179572821 0.996474736 0.998818298 4 0.179572821 0.997008121 0.998999901
48 (’std’, ’skew’, ’max’, ’min’) 4 0.028625011 0.996119017 0.998749466 4 0.028625011 0.997150997 0.999382881
49 (’std’, ’skew’, ’max’, ’similar’) 4 0.168449879 0.996475564 0.998819096 4 0.168449879 0.997007268 0.998999003
50 (’std’, ’skew’, ’min’, ’similar’) 4 0.167961597 0.996239718 0.998582712 4 0.167961597 0.996865204 0.998856609
51 (’std’, ’max’, ’min’, ’similar’) 4 0.167643785 0.996829125 0.999173484 4 0.167643785 0.99715343 0.999145431
52 (’kurt’, ’skew’, ’max’, ’min’) 4 0.021095037 0.99670898 0.99935981 4 0.021095037 0.997150997 0.999398562
53 (’kurt’, ’skew’, ’max’, ’similar’) 4 0.160919905 0.996708206 0.999052299 4 0.160919905 0.996578272 0.99856915
54 (’kurt’, ’skew’, ’min’, ’similar’) 4 0.160431623 0.996355942 0.998699194 4 0.160431623 0.997435167 0.999427728
55 (’kurt’, ’max’, ’min’, ’similar’) 4 0.160113811 0.996710526 0.999054595 4 0.160113811 0.997580071 0.999572982
56 (’skew’, ’max’, ’min’, ’similar’) 4 0.148502588 0.996946206 0.999290903 4 0.148502588 0.997864769 0.99985822
57 (’std’, ’kurt’, ’skew’, ’max’, ’min’) 5 0.042888165 0.996002822 0.99859737 5 0.042888165 0.996722246 0.99892356
58 (’std’, ’kurt’, ’skew’, ’max’, ’similar’) 5 0.182713032 0.996473078 0.998816602 5 0.182713032 0.996436208 0.998426779
59 (’std’, ’kurt’, ’skew’, ’min’, ’similar’) 5 0.182224751 0.996237065 0.998580019 5 0.182224751 0.996580222 0.998571145
60 (’std’, ’kurt’, ’max’, ’min’, ’similar’) 5 0.181906939 0.99682838 0.999172785 5 0.181906939 0.996724113 0.998715253
61 (’std’, ’skew’, ’max’, ’min’, ’similar’) 5 0.170295715 0.996592645 0.998936432 5 0.170295715 0.997151809 0.999143834
62 (’kurt’, ’skew’, ’max’, ’min’, ’similar’) 5 0.162765741 0.996827635 0.999171986 5 0.162765741 0.997864161 0.99985762
63 (’std’, ’kurt’, ’skew’, ’max’, ’min’, ’similar’) 6 0.184558868 0.996473907 0.9988174 6 0.184558868 0.997294603 0.999286909
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