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Abstract: Candida albicans (C. albicans) and Candida glabrata (C. glabrata) are part of the human
microbiome. However, they possess numerous virulence factors, which confer them the ability
to cause both local and systemic infections. Candidiasis can involve multiple organs, including
the eye. In the present study, we investigated the anti-candidal activity and the re-epithelizing
effect of Orobanche crenata leaf extract (OCLE). By the microdilution method, we demonstrated an
inhibitory effect of OCLE on both C. albicans and C. glabrata growth. By crystal violet and 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, we showed the ability of OCLE
to inhibit the biofilm formation and the viability of yeast cells, respectively. By germ tube and
adhesion assays, we proved the capacity of OCLE to affect the morphological transition of C. albicans
and the adhesion of both pathogens to human retinal pigment epithelial cells (ARPE-19), respectively.
Besides, by MTT and wound healing assay, we evaluated the cytotoxic and re-epithelizing effects of
OCLE on ARPE-19. Finally, the Folin–Ciocalteu and the ultra-performance liquid chromatography-
tandem mass spectrometry revealed a high content of phenols and the presence of several bioactive
molecules in the extract. Our results highlighted new properties of O. crenata, useful in the control of
Candida infections.

Keywords: Orobanche crenata; parasitic plant; Candida spp.; phenotypic switching; biofilm; adhesion;
ARPE-19 cells; wound healing; phenols
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1. Introduction

Candida is a heterogeneous yeast genus, belonging to the kingdom Fungi. According
to the Integrated Taxonomic Information System (ITIS), the genus comprises approximately
59 species (Taxonomic Serial No.: 194591) [1]. Candida spp. are generally harmless for the
host, being members of the common microbial flora inhabiting the human gut, vagina,
and oral cavity of healthy individuals [2]. However, this mutualistic relationship is based
on a delicate equilibrium between host and commensals. Accordingly, alterations in the
microbiota balance, ecological environment, or host immune defenses promote the switch
of Candida from non-virulent commensal into an opportunistic pathogen, able to cause
infections of varying severity [3].

Among Candida species, Candida albicans (C. albicans) is recognized as the etiolog-
ical agent involved in the majority of fungal infections in humans [4]. The prominent
role of this microorganism in both the community and hospital field is due to its high
pathogenic potential. Indeed, C. albicans possesses a large variety of virulence factors,
including the ability to adhere to host cells and medical devices [5], change its morphology
(the so-called yeast-to-hypha transition) [6], produce hydrolytic enzymes [7], and form
biofilm [8]. All these features make C. albicans a relevant threat to human health, especially
for immunocompromised individuals [9]. In the latter, C. albicans-related infections can
easily degenerate, causing complications sometimes severe enough to be fatal. This is
because the immune system of such patients fails to control the proliferation and invasion
of opportunistic organisms, leading to an increased risk for invasive candidiasis [10]. In
this case, the microorganism leaves the niches in which it is normally located to invade
the bloodstream, thus provoking disseminated candidemia [11]. Bloodstream infections
constitute a rather severe condition since the blood is an efficient vehicle through which
the pathogen can easily reach and infect multiple organs, including the kidney, liver and
spleen, myocardium, brain, and eye [12].

In this regard, hematogenous Candida dissemination can frequently extend to the ocu-
lar district, affecting structures essential for the vision, like the retina and uvea. Therefore,
it is not surprising that, in the case of candidemia, C. albicans can be responsible for severe
ocular infections, including chorioretinitis and endophthalmitis, which, in the absence
of prompt and effective treatment, can result in a visual loss in the affected patients [13].
Indeed, in these cases, the intravitreal injection of amphotericin B is the only effective treat-
ment [14]. Interestingly, although immunocompromised individuals are more susceptible
to opportunistic infections, rarely, these complications can also arise in immunocompetent
patients [15–17], exacerbating the risk for ocular candidiasis.

Besides C. albicans, non-albicans Candida (NAC) species are having an increasing impact
on human health [18]. Specifically, Candida glabrata (C. glabrata) represents one of the most
common NAC species isolated in both mucocutaneous and invasive infections [19]. It is
worth noting that C. glabrata is characterized by an innate resistance to the azoles, which
comprise the imidazoles (e.g., clotrimazole, econazole, and miconazole) and triazoles
(e.g., fluconazole, voriconazole, and posaconazole) [19,20]. Besides, this microorganism
is not able to form hyphae, which instead constitute an important morphologic strategy
for C. albicans invasion [21]. However, C. glablata is also able to invade the bloodstream,
especially in case of impairment of anatomical barriers, a condition frequently associated
with nosocomial practices [22]. Similar to C. albicans, diffuse C. glabrata infections can
also involve the eye, provoking severe ocular diseases. A case report study highlighted
the isolation of C. glabrata in a patient that underwent surgical corneal intervention. The
patient showed all the predisposing factors to the onset of endogenous endophthalmitis,
including old age, immune disorders, and diabetes [23].

This scenario is further complicated by the increasing pharmacological resistance of
Candida spp. to the most used antifungal agents, such as azoles and echinocandins [24].
Moreover, these antifungal drugs often fail to eradicate the biofilm formed by Candida
spp., allowing recurrent infections [25]. For these reasons, in the last decade, notable
scientific efforts have been dedicated to the discovery and development of new antimi-
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crobial agents, which allow the current therapeutic limits to be overcome. Concerning
this, the natural extracts have attracted great attention, since they contain a pool of biologi-
cally active molecules [26]. Literature data reported that phytoextracts are endowed with
different pharmacological actions, including anti-inflammatory [27], antitumoral [28,29],
antioxidant [30,31], and antimicrobial activities [32–34]. In this regard, in our previous
paper, we highlighted an interesting antibacterial activity of Orobanche crenata leaf extract
(OCLE) against several clinically relevant bacterial strains. Besides, we also demonstrated
a fungicidal effect of the extract on most of the Candida spp. tested [35].

O. crenata is an edible parasitic plant, known in folk medicine for its numerous bene-
ficial effects on human health [36]. Therefore, based on the promising results previously
obtained [35], we proposed to deepen the antifungal activity of this extract, investigating
its ability to counteract the growth and biofilm formation of two Candida species: C. albicans
and C. glabrata. Furthermore, we also analyzed the capacity of the extract to inhibit the
phenotypic switching of C. albicans from yeast to hypha and the potential anti-adhesive
activity of the two pathogens on the human retinal pigment epithelial cell line (ARPE-19).
In addition, given the deleterious effects of Candida infection at the ocular level, by wound
healing assay, we also tested the possible re-epithelizing action of OCLE on ARPE-19
cells. Finally, we also determined the total phenols content and the phytochemical pro-
file by the Folin–Ciocolteau and ultra-performance liquid chromatography-tandem mass
spectrometry (UPLC-Ms/Ms) techniques, respectively.

2. Results
2.1. Antifungal Activity

Table 1 shows the results of the antifungal effect of OCLE, compared to the reference
drug fluconazole. In the assay, 10 different concentrations of the extract, ranging from
0.57 to 293.55 µg/mL, were tested. The minimum inhibitory concentration 50 (MIC50) was
defined as the lowest extract or drug concentration at which a 50% decrease in turbidity was
observed compared with the positive growth control (drug-free medium). The minimum
fungicidal concentration 50 (MFC50) was defined as the lowest extract or drug concentration
at which 50% of the inoculums were killed.

Table 1. MICs and MFCs values (µg/mL) of O. crenata against Candida strains.

Fungal Strains
OCLE 1 Fluconazole

MFC50
2 MIC50

3 MIC50 I.C. 4

Candida albicans ATCC 10231 >293.55 146.77 16.00 S-DD
Candida glabrata ATCC 2001 >293.55 73.38 16.00 S-DD

1 OCLE: Orobanche crenata leaves extract; 2 MFC50: Minimal Fungicidal Concentration 50; 3 MIC50: Minimal
Inhibitory Concentration 50; 4 I.C.: Interpretive criteria for fluconazole (CLSI M27-A3): ≤8.00 µg/mL Susceptible
(S); 16.00–32.00 µg/mL Susceptible-dose-dependent (S-DD); ≥64.00 µg/mL Resistant (R); Fluconazole was used
as a positive reference standard. Results are expressed as the mean of four experiments.

The MIC50 values for C. albicans and C. glabrata were found to be 146.77 and 73.38 µg/mL,
respectively. The Candida strains were dose-dependent susceptible to the antifungal drug
fluconazole, with an MIC50 value of 16 µg/mL.

2.2. Biofilm Inhibition and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide (MTT)
Reduction Assays

The ability of OCLE to interfere with the biofilm formation by C. albicans and the cell
viability of the yeast cells inside the biofilm was evaluated through crystal violet (CV)
and MTT assay, respectively (Figure 1A). Results showed a significant increase of both
the biofilm formation and cell viability of C. albicans following treatment with increasing
concentrations of OCLE, ranging from 0.57 to 73.38 µg/mL. These stimulatory effects
were counteracted by the two highest concentrations of OCLE (146.77 and 293.55 µg/mL),
which instead induced a drastic reduction in both the biofilm formation and yeast cell
viability. The anti-biofilm activity of OCLE was compared to the standard antifungal drug
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fluconazole (Figure 1B). This antimicrobial agent significantly inhibited both the biofilm
formation and cell viability of C. albicans in a dose-dependent manner.

Figure 1. Determination of the effect of O. crenata leaf extract and fluconazole (standard drug) on
C. albicans ATCC 10231 biofilm formation and viability through crystal violet (CV) staining and
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, respectively. C. albicans
was exposed to increasing concentrations of O. crenata extract (A), ranging from 0.57 to 293.55 µg/mL,
and fluconazole (B), ranging from 0.12 to 64.00 µg/mL. In the x-axis, the inhibitory effect of the
extract (expressed as percent of positive control) on biofilm formation (CV) and the metabolic activity
of viable cells (MTT) of untreated (positive control) and O. crenata /fluconazole-treated C. albicans
are reported. The bars represent the means ± SD of four independent experiments (S.D. = standard
deviation). Statistically significant differences were determined using one-way analysis of variance
ANOVA and Tukey’s post hoc test. * p < 0.05, § p < 0.0001 versus positive control.

2.3. Germ Tube Assay

To determine the ability of OCLE to inhibit C. albicans germ-tube formation, four
concentrations of the extract, ranging from 36.69 to 293.55 µg/mL, were tested. The
effect was compared to the positive control (inoculum in fetal bovine serum, FBS). The
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concentration range was selected based on the results of the biofilm assay. Accordingly, the
doses of OCLE under 36.69 µg/mL have been considered unable to prevent phenotypic
switching of C. albicans. The results confirmed this hypothesis, since only the higher
concentrations of the extract (146.77 and 293.55 µg/mL) were able to determine a complete
inhibition of the germ-tube formation with respect to the positive control. However, it is
worth noting that, at the concentration of 73.38 µg/mL, partial inhibition of the yeast-to-
hypha transition was observed (Figure 2A,B, Table 2).

Figure 2. Effect of O. crenata leaf extract on the C. albicans germ-tube formation and hyphal elongation. Candida suspension
was incubated at 37 ◦C for 4 h in the absence (positive control; C+) and presence of four different concentrations of the
extract: 36.69, 73.38, 146.77, and 293.55 µg/mL. The microscopic analysis was carried out using the 40× (scale = 50 µm) (A)
and 100× (scale = 20 µm) (B) oil immersion objective plus 10× ocular. Four independent experiments were performed.

Table 2. Germ-tube inhibitory activity of O. crenata leaf extract.

Fungal Strain
OCLE 1 (µg/mL)

C+ 2 36.69 73.38 146.77 293.55

Candida albicans ATCC 10231 - - + ++ ++
1 OCLE: Orobanche crenata leaf extract; 2 C+: positive control (inoculum with FBS); -: no inhibition; +: partial
inhibition; ++: complete inhibition.

2.4. Cytotoxicity Assay

The potential cytotoxic effect of OCLE on the non-cancerous human retinal pigment
epithelial cell line (ARPE-19) was determined through the MTT assay. The ARPE-19 cell
line was cultured in the absence (control) and presence of different concentrations of
the natural extract, ranging from 9.17 to 293.55 µg/mL, for 24, 48, and 72 h (Figure 3).
The solvent used for the solubilization of the extract (acetone), at a final concentration
of 0.05% (v/v) in the culture medium, did not cause any change in cell viability (data
not shown). The treatment with OCLE at 24 h did not affect ARPE-19 cell viability, at all
tested concentrations. However, after 48 h, the exposition of ARPE-19 cells to the highest
concentration (293.55 µg/mL) of OCLE induced a reduction of about 30% in cell viability
with respect to untreated cells (control). This effect became more evident at 72 h, at which
a significant reduction of ARPE-19 cell viability was observed already at 146.77 µg/mL.
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Figure 3. Cell viability of ARPE-19 cells untreated (CTRL) or treated with increasing concentrations of O. crenata leaf extract
(OCLE), ranging from 9.17 to 293.55 µg/mL, for 24, 48, and 72 h. Values are expressed as mean ± SD of four experiments in
triplicate. Significant differences were determined using the two-way Anova test. Significance for pairwise comparison was
determined with the Dunnett post hoc test. * p < 0.05, # p < 0.001, § p < 0.0001 versus control at the same incubation time.

2.5. Wound Healing Assay

To evaluate the potential stimulatory effect of OCLE on ARPE-19 cell migration, we
performed the wound healing assay. Cell migration was monitored for 6, 24, 30, and
48 h following the scratch and the representative images of each time point are shown
in Figure 4A. ARPE-19 cells were treated with three different concentrations of OCLE
ranging from 18.34 to 73.38 µg/mL, which were subtoxic by the MTT assay. ARPE-19
cells stimulated with 18.34 and 36.69 µg/mL of OCLE showed faster reparative migration
compared to the untreated cells (control), particularly at the lowest tested concentration.
Indeed, cells treated with 18.34 µg/mL completely closed off the wound after 30 h of
incubation (Figure 4A). Otherwise, OCLE at the concentration of 73.38 µg/mL did not
determine any effect on ARPE-19 migration compared to the untreated cells (data not
shown). Quantitative analysis of ARPE-19 migration reflects the results observed in
Figure 4A. After 24 h, the treatment with both 18.34 and 36.69 µg/mL of OCLE was able
to induce a significant increment of ARPE-19 cell migration compared to the untreated
cells. However, at 30 h, the lower concentration of OCLE (18.34 µg/mL) was more efficient
in promoting the re-epithelization of the wound with respect to 36.69 µg/mL, allowing
ARPE-19 cells to reach 100% of wound closure (Figure 4B).
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Figure 4. Re-epithelizing effect of O. crenata leaf extract on ARPE-19 cells. ARPE-19 cells were
cultured in the absence (untreated) or in the presence of 18.34 and 36.69 µg/mL of the extract.
(A) Representative images of ARPE-19 reparative migration at different time points (6, 24, 30, and
48 h) after the creation of the wound (time 0; T0). (B) Quantitative analysis of reparative migration of
ARPE-19 cells grown in the absence (untreated) or the presence of 18.34 and 36.69 µg/mL of OCLE.
Results are expressed as the percent of wound closure vs. incubation time. Data are reported as the
mean ± SD of three independent experiments performed in triplicate. Significant differences were
determined using the two-way Anova test. Significance for pairwise comparison was determined
with the Dunnett post hoc test. * p < 0.05, § p < 0.0001 versus control at the same incubation time.
OCLE: O. crenata leaf extract. CTRL: control.
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2.6. Effect on the Adhesion of Candida on the Human Retinal Pigment Epithelial Cell Line
(ARPE-19)

After the treatment with two different concentrations of OCLE (146.77 and 293.55 µg/mL),
the glass coverslips were fixed and Gram-stained to count adherent Candida cells. These
concentrations were chosen based on the phenotype switching experiment, in which the
most effective concentrations able to inhibit morphological change of C. albicans were
146.77 and 293.55 µg/mL. The number of yeasts adhering to 100 ARPE-19 cells was de-
termined by light microscopy at a magnification of 100× plus 10× ocular. The adhesion
capacity of C. glabrata ATCC 2001 (50 cells/100 ARPE-19 cells) was highest with respect
to C. albicans ATCC 10231 (31 cells/100 ARPE-19 cells). OCLE, at the concentration of
146.77 µg/mL, reduced the adhesion of C. albicans by 49% compared to the untreated
cells and, at 293.55 µg/mL, totally prevented the interactions. Notably, the two tested
concentrations of OCLE were able to inhibit the adhesion of C. glabrata to ARPE-19 cells
(Figure 5A,B, Table 3).

Figure 5. Effect of O. crenata leaf extract (OCLE) on Candida adhesion to ARPE-19 cells. (A) Adherent
cells were observed by light microscopy at a magnification of 100× plus 10× ocular (scale = 50 µm).
Yeast adhesion, in the different experimental conditions, was compared to the negative con-
trol. (a): uninfected ARPE-19 cells; (b): ARPE-19 cells infected with C. albicans (positive control);
(b’): ARPE-19 cells infected with C. albicans and simultaneously treated with 146.77 µg/mL of OCLE;
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(b”): ARPE-19 cells infected with C. albicans and simultaneously treated 293.55 µg/mL of OCLE;
(c): ARPE-19 cells infected with C. glabrata (positive control); (c’): ARPE-19 cells infected with
C. glabrata and simultaneously treated with 146.77 µg/mL of OCLE; (c”): ARPE-19 cells infected
with C. glabrata in and simultaneously treated with 293.55 µg/mL of OCLE. Black arrow: adherent
Candida cells; red arrow: non-adherent Candida cells. (B) Quantitative analysis of C. albicans and
C. glabrata adhesion on ARPE-19 cells following treatment with OCLE. ARPE-19 cells infected with
C. albicans or C. glabrata were cultured in the absence (untreated cells; C+) and the presence of 146.77
or 293.55 µg/mL of the extract. Cell adhesion assay was performed for 1 h of incubation at 37 ◦C.
Values are expressed as mean± SD of three experiments considering 10 microscopic fields. Significant
differences were determined using the two-way Anova test. Significance for pairwise comparison
was determined with the Dunnett post hoc test. § p < 0.0001 versus positive control.

Table 3. Counts of yeasts that adhered to ARPE-19 cells in the presence of O. crenata leaf extract.

Fungal Strains Treatment Number of Adhered Yeasts/100 Cells
(% Adherence) p-Value

Candida albicans ATCC 10231

CTRL+ 1 31/100 (100%) -

OCLE 2 146.77 µg/mL 16/100 (51%) p < 0.0001

OCLE 293.55 µg/mL 0/100 (0%) p < 0.0001

Candida glabrata ATCC 2001

CTRL+ 50/100 (100%) -

OCLE 146.77 µg/mL 0/100 (0%) p < 0.0001

OCLE 293.55 µg/mL 0/100 (0%) p < 0.0001
1 CTRL+: positive control (ARPE-19 cells plus fungal strains); 2 OCLE: Orobanche crenata leaf extract. The adhesion assay was repeated
three times under the same conditions (n = 3).

2.7. Determination of Total Phenols Content of O. crenata Leaf Extract

The total phenols content was determined through the Folin–Ciocalteau assay, by
comparing the absorbance of different concentrations of OCLE to the gallic acid standard
solutions. Quantitative analysis indicated that with increasing concentration of the extract,
the total phenols content had a higher value. The obtained values ranged from 186 ± 1.23
to 209 ± 3.79 µM gallic acid equivalents/L (Table 4).

Table 4. Total phenols content of O. crenata leaf extract.

OCLE 1 (µg/mL)

9.17 18.34 36.69 73.38 146.77 293.55

Total phenols content 2 186 ± 1.23 188 ± 1.89 194 ± 1.72 199 ± 0.44 203 ± 1.59 209 ± 3.79
1 OCLE: Orobanche crenata leaf extract; 2 Total phenols content is expressed in µM gallic acid equivalents/L. Data are expressed as
mean ± SD (n = 3).

2.8. Chemical Analysis

To correlate the antifungal effect of OCLE with one or more bioactive molecules
present in the extract, we performed UPLC-Ms/Ms. The compounds and the related
chemical structures are reported in Table 5. Interestingly, some molecules detected in
the extract, such as acteoside, apigenin, and luteolin, were found to have anti-candidal,
anti-biofilm, and anti-hyphal forming activities. Interestingly, besides the above-mentioned
compounds, salidroside showed a protective activity on retinal cells. All this evidence
supports our findings, revealing that the antifungal activity and the re-epithelizing effect
on ARPE-19 cells of OCLE could be mediated by these bioactive molecules. The tandem
mass spectra and chromatograms of OCLE are available in the Supplementary Materials
(Figures S1–S12).
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Table 5. Chemical compounds identified from O. crenata leaf extract through UPLC-Ms/Ms and related biological activities (anti-candidal, anti-biofilm, anti-hyphal, and cytoprotective
effect on retinal cells).

Chemical Name Chemical Structure m/z (g/mol) Peak (Polarity) RT * (min) Biological Activities

3-O-acetylepisamarcandin 442.236 443.24 (+)
441.22 (−) 38.62 n.a.

Acteoside 624.205 625.21 (+)
623.19 (−) 23.23

Anti-candidal [37–39]
Anti-biofilm [39]

Cytoprotective (retinal cells) [40–42]

Apigenin 270.053 271.06 (+)
269.04 (−) 35.97

Anti-candidal [43–46]
Anti-hyphal forming activity [46]

Anti-biofilm [46]
Cytoprotective (retinal cells) [47–49]

Asacoumarin A 398.209 399.20 (+)
397.20 (−) 37.98 n.a.
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Table 5. Cont.

Chemical Name Chemical Structure m/z (g/mol) Peak (Polarity) RT * (min) Biological Activities

Campneoside 654.216 n.r. 43.27 n.a.

Acutissimin A 1206.822 1207.14 (+)
1205.10 (−) n.r. n.a.

Castacrenin F 1218.145 1219.07 (+)
1217.10 (−) n.r. n.a.
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Table 5. Cont.

Chemical Name Chemical Structure m/z (g/mol) Peak (Polarity) RT * (min) Biological Activities

Castacrenin C 614.054 615.06 (+)
613.05 (−) 36.96 n.a.

Castacrenin E 1056.072 1057.07 (+)
1055.06 (−) 32.20 n.a.

Chesnatin 638.112 639.11 (+)
637.11 (−) 28.46 n.a.
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Table 5. Cont.

Chemical Name Chemical Structure m/z (g/mol) Peak (Polarity) RT * (min) Biological Activities

Chestanin 938.196 939.20 (+)
937.18 (−) 43.62 n.a.

Crenatoside 622.190 n.r. 54.02 n.a.

Dibutyl disulfide 178.085 179.09 (+)
177.07 (−) 39.53 n.a.
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Table 5. Cont.

Chemical Name Chemical Structure m/z (g/mol) Peak (Polarity) RT * (min) Biological Activities

Kurigalin 636.096 637.10 (+)
635.10 (−) 44.66 n.a.

Leucosceptoside A 638.221 n.r. 38.38 n.a.

Luteolin 286.048 287.05 (+)
285.03 (−) 21.85

Anti-candidal [46]
Anti-hyphal forming activity [46]

Anti-biofilm [46]
Cytoprotective (retinal cells) [50–54]
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Table 5. Cont.

Chemical Name Chemical Structure m/z (g/mol) Peak (Polarity) RT * (min) Biological Activities

Nevskin 400.225 401.23 (+)
399.20 (−) 14.06 n.a.

Salidroside 300.121 301.12 (+)
299.10 (−) 35.10 Cytoprotective (retinal cells) [55–58]

Notes: * RT: retention time; +: positive polarity, −: negative polarity; n.r.: not reported (the retention time of some compounds was not reported, due to their low concentrations in the extract); n.a.: no
anti-candidal, anti-biofilm, anti-hyphal, and cytoprotective activities.



Antibiotics 2021, 10, 1373 16 of 27

3. Discussion

The genus Candida includes numerous species, most of which are part of the hu-
man microbiome. However, among these commensals, C. albicans and C. glabrata are
known for their ability to cause infections in humans, particularly in immunocompro-
mised patients [59,60]. In this regard, it is worth highlighting that the ongoing pandemic
by SARS-CoV-2 dramatically increased the number of hospitalizations. This condition
further contributed to the development of Candida opportunistic infections, exacerbating
the consequences of fungal infections in a context characterized by highly susceptible
patients [61–63].

Candida-related endophthalmitis and chorioretinitis are serious complications often
arising from disseminated candidemia. In these cases, a timely and effective therapy is es-
sential to avoid the complete visual loss of the affected patients. The antifungal drugs used
for the treatment of Candida-related infections can be distinguished into four classes, in-
cluding the azoles, polyenes, echinocandins, and pyrimidine analogue flucytosine. Among
these agents, azoles and echinocandins are considered elective therapy for the treatment of
systemic candidiasis [64]. However, in the last decades, the efficacy of antifungal drugs has
been highly challenged by the spread of antimicrobial-resistant fungal pathogens [24,65].
Specifically, azole resistance has been proved in HIV-infected patients [66,67] and in those
who undergo antifungal prophylaxis [68]. Moreover, it has been reported that chronic expo-
sition to echinocandin exerts selective pressure on C. glabrata, promoting the acquisition of
mutations that weaken the efficacy of the antifungal drug [69]. The emergence of resistant
strains to the most used antifungal drugs constitutes a considerable public health threat.

In this scenario, the exigence of new and efficient antifungal agents that allow the
prevention of antimicrobial resistance-related therapeutic failure is becoming increasingly
urgent. The research and development of novel drugs can be undoubtedly favored by the
study of phytoextracts [70], since they contain a pool of bioactive compounds exerting
a wide range of biological activities, including antimicrobial ones [71–73]. Specifically,
it has been shown that phenolic compounds, isolated from natural sources, exhibited
anticandidal activity [73]. However, although the scientific interest for plant-derived
extracts has increased in the last few years, the knowledge on the biological properties of
numerous officinal plants remains limited.

Concerning this, O. crenata, a parasitic plant particularly widespread in the Mediter-
ranean area including Sicily, is one of the still poorly studied and characterized plants,
especially regarding the biological role of its extracts [36]. However, in our previous paper,
we partially filled this knowledge gap, proving the ability of the acetonic leaf extract to
counteract the growth of several clinically relevant bacterial and Candida spp. strains [35].
The obtained results led us to deepen the antifungal and anti-invasive activity of OCLE on
both C. albicans and C. glabrata.

Accordingly, in the present study, we demonstrated that OCLE efficiently inhibited
the growth of both C. albicans and C. glabrata, with MIC values of 146.77 and 73.38 µg/mL,
respectively. However, this extract showed a fungistatic action, since yeast cells, exposed
to OCLE, undergo cell growth arrest but not cell death. On the other hand, it is important
to note that a limited range of concentrations (between 0.57 and 273.55 µg/mL) was tested
and, therefore, it is possible to hypothesize that a fungicidal action could be induced by
higher doses of the extract. Nevertheless, according to literature data, a natural extract
possesses a significant antimicrobial activity if MIC values are below 100 µg/mL and
moderate when the MIC values range between 100 and 625µg/mL [74–76]. Based on these
criteria, our extract is endowed with a noteworthy antifungal activity.

Besides the effect of the extract on fungal growth, we proposed evaluation of the
anti-invasive activity of OCLE against two fungal pathogens. It is well established that
biofilm is a survival strategy used by microorganisms to resist antimicrobials and immune
attacks. The production of this polymeric matrix is one of the virulence mechanisms
adopted by C. albicans and C. glabrata to persist in the host. Indeed, both organisms are
able to form biofilm on different types of indwelling medical devices, such as urinary
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catheters, prosthetic heart valves, and dentures [77–79]. The permanence of yeast cells
inside the biofilm (sessile cells) exposes patients to recurrent infections. Indeed, favorable
conditions promote the release of planktonic cells from the biofilm, which, in the absence
of an efficient immune system, can reach the bloodstream, thus provoking systemic can-
didiasis [80]. Although C. glabrata normally forms the biofilm, we found that this strain,
in our experimental conditions, lacks this capacity. However, this evidence is consistent
with the study by Alnuaimi et al., which revealed that the standard strain C. glabrata ATCC
2001 is one of the most scarce biofilm-producing strains [81]. Therefore, we tested the
potential inhibitory effect of OCLE on biofilm formation only on C. albicans. It is worth
noting that the treatment of C. albicans with increasing concentrations of OCLE, ranging
from 0.57 to 293.55 µg/mL, produced a double effect on biofilm formation. Specifically, C.
albicans exposed to lower OCLE concentrations, between 0.57 and 73.38 µg/mL, showed a
significant increment in biofilm production and consequently also on yeast cell viability.
Conversely, the two higher concentrations of 146.77 and 293.55 µg/mL caused a drastic
reduction of both biofilm formation and cell viability. This response could be the result of
the hormetic mechanism, which is characterized by a biphasic dose–response deriving from
a low dose stimulation and a high dose inhibition [82–84]. The hormesis can be viewed
as an adaptative response to stress conditions, induced by chemical and physical agents
interfering with cell physiology [85]. This phenomenon was firstly described in 1943 by
Southam and Ehrlich, who observed a stimulatory effect of red cedar tree extract on the
growth and metabolism of different fungal strains [86]. Based on this concept, we can
hypothesize that lower doses of the extract trigger a compensatory response as a result of an
adaptative mechanism against an alteration in cellular homeostasis. However, this positive
reaction is dose dependent. Accordingly, higher doses of OCLE showed an inhibitory effect
on biofilm formation and cell viability. Several in vitro and in vivo studies reported that
the extract of many herbs induces a hormetic response [85,87–90]. For this reason, hormesis
should be taken into consideration to establish the dose of herbal medicine that allows a
health benefit effect to be obtained [85].

Another important feature associated with Candida invasiveness is hypha formation.
C. albicans, in response to environmental changes, is able to switch from a yeast (spheri-
cal) to hyphal (filamentous) form. This reversible phenomenon is commonly defined as
“plasticity”. The yeast-to-hypha transition allows the microorganism to change from a
commensal to opportunistic pathogen, also responsible for severe infections [91]. In our
study, the microscopic observation of C. albicans after the treatment with OCLE revealed
a block in hyphal elongation. This effect was notable at the concentrations of 146.77 and
293.55 µg/mL, respectively. Raut et al. demonstrated that the benzenoid vanillin, at the
concentration of 500 µg/mL, was able to inhibit the switch of C. albicans from yeast to
hypha [92,93]. In particular, vanillin is a metabolite derived from phenylpropanoids fol-
lowing the loss of two carbons of the side chain [94]. It is worth noting that this compound
was isolated from Orobanche speciosa by gas chromatography-mass spectrometry [95] and
it seems to be an inductor of haustoria formation [96]. Haustoria are organs produced by
parasitic plants that allow the invasion of host root tissues [96].

Candida ocular infection is a serious complication of candidemia, a systemic infection
that frequently occurs in immunocompromised patients [13,97]. Considering the devastat-
ing effects of ocular candidiasis, we proposed an investigation of the possible stimulatory
action of OCLE on ARPE-19 cell migration. For this purpose, we first evaluated the possible
cytotoxic effect of OCLE on this cell line. The results showed that the treatment for 24 h
with OCLE did not produce any change in ARPE-19 cell viability. However, the prolonged
exposition to 146.77 and 293.55 µg/mL of the extract significantly affected ARPE-19 cell
viability, mainly at 72 h. Although OCLE, at the concentrations mentioned before, effi-
ciently counteracted the growth, biofilm formation and cell viability of Candida strains,
these effects were obtained after 48 h of incubation. Therefore, at this time point, only the
highest dose of OCLE (293.55 µg/mL) induced a slight, even if significant, decrease in
cell viability. The cytotoxic effect induced by OCLE on ARPE-19 cells is due to a higher
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susceptibility of animal cells compared to yeast cells to the action of xenobiotic agents [98].
Therefore, this aspect should be noted for future possible pharmacological applications of
this natural extract.

Regarding the potential re-epithelizing effect of the extract, the treatment of ARPE-19
cells with 18.34 and 36.69 µg/mL of OCLE induced a significant enhancement of ARPE-19
cell migration compared to untreated cells. The effect was more evident on ARPE-19
cells treated with 18.34 µg/mL, which were able to repair the wound already at 30 h
following the scratch. The stimulatory effect of OCLE on cell migration decreases in a
dose-dependent manner. Indeed, at the highest tested concentration (73.38 µg/mL) of the
extract, ARPE-19 cell migration was similar to that of unstimulated cells (data not shown).
It is well established that hormesis modulates different biological processes, including cell
migration [99]. In this regard, an interesting paper by Demirovic and Rattan reported that
curcumin, a phenolic compound present in Curcuma longa, induces a biphasic response on
normal adult skin fibroblast cell migration, showing a stimulatory activity at low doses and
inhibitory activity at higher doses [100]. Considering that our extract is rich in polyphenols,
we can speculate that one or more phenolic compounds contained in OCLE could mediate
the hormetic response underlying ARPE-19 cell migration.

To further elucidate the anti-invasive effects of our extract, we thought of studying the
adhesion of Candida species on ARPE-19 cells. Indeed, adhesiveness to cells represents an
essential stage in the pathogenesis of infection and the formation of microbial biofilm [5].
A significant reduction (p < 0.0001) of C. albicans and C. glabrata adhesion to ARPE-19 cells
was observed in the presence of OCLE. The extract in general and more specifically its
phenolic constituents could have altered the hydrophobicity of the cell membrane, making
it more hydrophilic and causing detachment from the host cell [101,102]. Besides, the
functional group attached to the phenyl ring plays a crucial role in inhibiting the yeast–cell
interaction [103]. Raut et al. reported that phenylpropanoids of plant origin, chemical
compounds isolated also from O. crenata [36], are able to prevent the growth, adhesion,
yeast-to-hypha transition, and biofilm formation of C. albicans [93]. The anti-adhesive
and anti-biofilm effects of the phenylpropanoid eugenol were also demonstrated against
non-Candida albicans species [104].

Concerning the quantitative chemical analysis of OCLE, the total phenols content
ranged from 186 ± 1.23 to 209 ± 3.79 µM gallic acid equivalents/L. Therefore, the solvent
used in the extraction process (acetone) allowed us to obtain a high concentration of these
compounds. Indeed, it is well known that acetone represents one of the most suitable
solvents for recovering phenols from vegetable matrices [105]. Furthermore, our findings
are corroborated by a recent paper by Attia et al. In this study, the authors evaluated
the biological activities and chemical composition of three parasitic plants harvested in
Tunisia, including O. crenata. The natural extracts were obtained by macerating plants’
aerial parts in five different solvents: hexane, methanol, ethyl acetate, acetone, and water.
Interestingly, the acetonic extract of O. crenata aerial parts presented the highest content of
phenolic compounds [106]. Furthermore, this result is consistent with the UPLC-Ms/Ms
analysis, which substantially confirmed the presence of several phenolic compounds
(Table 5). Interestingly, previously published papers demonstrated an anti-candidal, anti-
biofilm, anti-hyphal forming, and cytoprotective effect on retinal cells of some of the UPLC-
detected molecules, including acteoside [37–42], apigenin [43–49], luteolin [46,50–54], and
salidroside [55–58]. Since all these biological activities reflect the obtained results, it is
possible to hypothesize that the antifungal and re-epithelizing effects of OCLE could be
mediated by these chemical agents.

4. Materials and Methods
4.1. Chemicals

All the solvents and chemical compounds were of reagent grade and purchased from
Sigma-Aldrich (Milan, Italy).
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4.2. Plant Material and Preparation of the Extract

O. crenata (Figure 6) was collected on May 2019 in Modica (Ragusa, Italy; Latitude
36◦51′48.93′′ N, Longitude 14◦45′53.69′′ E, Altitude 382 m). A voucher specimen (n◦ 35/04)
was deposited in the herbarium of the Department of Drug and Health Sciences, University
of Catania. The extract was obtained by macerating 10 g of ground leaves in 200 mL of
acetone at room temperature (RT) for 72 h. After filtration through a Whatman® Grade
1 filter paper (Whatman, UK), the extract was evaporated at 40 ◦C by a rotatory evaporator
(Stuart RE300) under reduced pressure, obtaining 0.58710 g (±0.1 mg) of dry extract.

Figure 6. Orobanche crenata Forssk.

4.3. Microorganisms

In the present study, two American Type Culture Collection (ATCC) strains were used:
C. albicans ATCC 10231 and C. glabrata ATCC 2001. The fungal strains were purchased from
LGC Limited (Teddington, Middlesex, UK).

4.4. Antifungal Susceptibility Test

The antifungal activity of the natural extract was evaluated according to the standard
procedures of the Clinical and Laboratory Standards Institute (CLSI) M27-A3 [107]. The
strains were grown on Sabouraud dextrose agar plates (SDA) (Oxoid, Milan, Italy) at 35 ◦C
for 48 h. The cell suspensions were prepared in 5 mL of 0.145 M sterile saline solution
and adjusted to 0.5 McFarland scale (1.5 × 108 Colony Forming Units (CFUs)/mL) by a
spectrophotometer (Bio-Tek Synergy HT Microplate Reader, Bio-Tek Instruments, Winooski,
USA) at λ = 530 nm. For the antifungal susceptibility test, the culture medium bicarbonate-
free Roswell Park Memorial Institute (RPMI) 1640 with L-glutamine, buffered to pH 7.0
with 0.165 M morpholinepropanesulfonic acid (Sigma-Aldrich, Milan, Italy), was used.
OCLE was diluted in the 1:100 ratio in RPMI 1640 medium. Ten concentrations ranging
from 0.57 to 293.55 µg/mL were obtained in sterile 96 U-well microplates (Corning, New
York, NY, USA). The antifungal agent fluconazole, in concentrations ranging from 0.125 to
64.00 µg/mL, was used as the positive control. The final concentration of the inoculum
was from 5 × 102 to 2.5 × 103 cells/mL per well.

To determine MFC50, 100 µL of sample were removed from the wells of the MIC50
and subcultured in SDA plates. After incubation at 35 ◦C for 48 h, the CFUs were counted.
Four independent experiments were performed.
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4.5. In Vitro Biofilm Formation and Inhibition Assay

The biofilm formation and inhibition assay were performed according to the method
of Melo et al. [108] with some modifications. For the determination of biofilm formation,
200 µL of Candida strains suspensions 1.0 × 107 cells/mL in RPMI 1640 were added in
flat-bottomed 96-well microtiter plates (Corning, New York, NY, USA). The microplates
were incubated for 48 h at 37 ◦C to allow the growth of the biofilm.

For the determination of the anti-biofilm activity of OCLE, 100 µL of cell suspensions
(1.0 × 107 cells/mL) in RPMI 1640 were inoculated in the flat-bottomed 96-well microplate.
Afterwards, 100 µL of the serial dilutions of the extract, in concentrations ranging from
1.14 to 587.10 µg/mL, were added to the microplate After incubation for 48 h at 37 ◦C,
the wells were discharged and washed twice with 200 µL of phosphate-buffered saline
(PBS). The biofilm was stained with 200 µL of 0.4% (v/v) aqueous CV solution (Merck,
Damm, Germany) for 45 min. Subsequently, the wells were discharged and washed
twice with 200 µL of PBS. The microplates were air-dried and the biofilm-bound CV was
dissolved with 200 µL of 95% (v/v) ethanol. Absorbance was measured through the
spectrophotometer at λ = 595 nm. Four independent experiments were performed.

4.6. Determination of Fungal Viability

The viability of fungal strains inside biofilm was determined by the MTT assay. The
method of Ansari et al. with some modifications was used [109]. After the MBIC50 assay,
the wells were discharged and washed twice with 200 µL of PBS. Then, 0.5 mg/mL of
MTT solution in PBS was added to the flat-bottomed 96-well microplate and incubated at
37 ◦C for 5 h. The purple formazan inside biofilms was dissolved with 200 µL of dimethyl
sulfoxide (DMSO). Afterwards, the microplates were incubated for 20 min, with agitation,
in the dark, at RT. Metabolically active cells were able to metabolize the yellow tetrazole
into insoluble purple formazan. The O.D. was determined through the spectrophotometer
at λ = 570 nm. The metabolic activity was determined by comparing the O.D. of treated
cells with the drug-free control. Four independent experiments were performed.

4.7. Germ Tube Assay

The effect of OCLE on C. albicans ATCC 10231 tube formation was studied through the
method of Bernardes et al., with slight modifications [110]. C. albicans germ-tube formation
was induced in Sabouraud Dextrose Broth (SDB) (Oxoid, Milan, Italy) with 10% (v/v) of
fetal bovine serum (FBS) (Sigma-Aldrich, Milan, Italy). Then, 100 µL of fungal suspensions
1.0 × 107 cells/mL were incubated in tubes containing 2 mL of SDB, 10% of FBS (v/v), and
four different concentrations of OCLE (36.69, 73.38, 146.77, and 293.55 µg/mL). After 4 h
of incubation at 37 ◦C, aliquots were taken and observed microscopically. Microscopic
analysis was performed using the 40× and 100× oil immersion objective plus 10× ocular
(Leica DMRB Fluorescence Microscope). Digital images were acquired through a computer-
assisted digital camera (Leica DFC 320, 3.3 Megapixel; Software: Leica Application Suite
2.8.1). Four independent experiments were performed and the inoculum with FBS served
as the positive control.

4.8. Cell Culture

The human retinal pigment epithelial cell line (ARPE-19) ATCC® CRL-2302TM was
purchased from LGC Limited (Teddington, Middlesex, United Kingdom). The cells were
maintained in a mixture (1:1 ratio) of Dulbecco’s modified Eagles medium and Ham’s F12
medium with HEPES buffer (DMEM/F-12-HEPES; GibcoTM, catalog number 11330032;
Thermo Fisher Scientific, Inc.) supplemented with 20% v/v of heat-inactivated FBS (Sigma-
Aldrich, Milan, Italy) and 1% (v/v) of penicillin/streptomycin (Sigma-Aldrich, Milan, Italy)
and incubated at 37 ◦C in a humidified incubator with 5% CO2. The cells were passaged
once a week following trypsinization and replaced with a new medium twice weekly.

The ARPE-19 cells, at passage 8, were cultured in the presence or absence (control)
of increasing concentrations of OCLE, ranging from 10 to 120 µg/mL, for 24, 48, and 72 h.
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The treatments were performed using DMEM/F-12-HEPES supplemented with 1% (v/v)
of FBS (starvation conditions), to minimize cell proliferation induced by the medium [111].
The final concentration of acetone (solvent used for extract solubilization) in the culture
medium was less than 0.01% (v/v). This low concentration excludes any possible effect of
the vehicle on treated cells [112].

4.9. Cytotoxicity Assay

To evaluate the possible cytotoxic effect of the extract on ARPE-19 cells, the MTT assay
was used, as previously reported [113]. Briefly, cells were seeded in 96-well microplates, at
a density of 1.5 × 104 cells per well and incubated overnight at 37 ◦C before the treatments.
Following this, the cells were exposed to scalar concentrations of OCLE (10, 20, 40, 60,
120 µg/mL) for 24, 48, and 72 h. Afterwards, 10 µL of MTT reagent (5 mg/mL) were
added to each well and the cells were incubated for 3 h at 37 ◦C. The formazan crystals
were solubilized with 100 µL of DMSO and the microplates were shaken for 10 min. The
absorbance was measured at λ = 570 nm. Results were expressed as mean ± SD of four
experiments in triplicate.

4.10. Wound Healing Assay

To verify the ability of OCLE to promote the repair of retinal damage induced by
Candida infection, we performed a wound healing assay, as previously described [114,115].
Briefly, ARPE-19 cells were seeded into 12-well plates. Upon reaching the confluence, the
cell monolayer was wounded using a 200 µL pipette sterile tip. After the scratch, the wells
were washed three times to remove cell debris and incubated with 1% v/v FBS medium
alone (control; CTRL) or in combination with OCLE at different concentrations (18.34, 36.69,
and 73.38 µg/mL). Migration of ARPE-19 was monitored for 6, 24, 30, and 48 h after the
scratch (Time 0; T0).

The percentage of wound closure was evaluated by applying the following formula:

Percentage migration = (At0 − Amigration)/At0 × 100%

where At0 is the wound area measured at T0 and Amigration is that measured at a precise
time point, as previously reported [116]. An inverted Leica DM IRB microscope equipped
with a CCD camera (Leica Microsystems, Inc., Bucharest, Romania) was used to monitor
ARPE-19 cell migration. Results were expressed as the mean ± SD of three independent
experiments performed in triplicate.

4.11. Adhesion Assay on Human Retinal Pigment Epithelial Cell Line (ARPE-19)

The adhesion assay was performed according to the protocol of Dalle et al. [117], with
some modification. ARPE-19 cells were grown in a 12-well microplate (Corning, New
York, NY, USA) containing 12 mm glass coverslips (Thermo Scientific Menzel) at a density
of 1.5 × 104 cells/well. Cell monolayers were inoculated with a C. albicans suspension
103 cells/mL and incubated at 37 ◦C for 1 h. The wells were rinsed three times with PBS
to remove non-adherent cells and fixed with 2% (v/v) glutaraldehyde for 10 min. The
number of adherent cells was determined through the Gram-staining procedure [118] and
observed with an optical microscope at 100× oil immersion magnification plus 10× ocular.
The adhesion assay was repeated three times under the same conditions.

4.12. Total Phenolic Content

The total phenolic content was determined through the Folin–Ciocalteau method, as
previously described [31]. The standard curve was constructed by using known concentra-
tions of gallic acid. The diluted samples of OCLE (0.1 mL) and gallic acid (0.1 mL) were
transferred in 15 mL test tubes. Afterward, the Folin–Ciocalteau reagent (3.0 mL, 0.2 N)
was added to each tube and vortexed. After 1 min, 2 mL of 9.0% (w/v) Na2CO3 in water
were added and absorbance was measured at λ = 765 nm. The total phenolic content was
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determined by comparing the absorbance of the natural extract with that of the acid gallic.
The experiment was performed in triplicate.

4.13. Chemical Analysis

The chemical composition of OCLE was determined through UPLC-Ms/Ms (Perkin-
Elmer FX 10/AB SCIEX API 2000TM). The separation was performed by using acetonitrile-
water 90:10 (v/v) mixture with 0.1% (v/v) acetic acid as the mobile phase. The elution
rate was 200 µL/min for 120 min. The analysis was accomplished by a C18 column
(Phenomenex Luna, 2.6 µm, 100 × 2.1 mm) and a total volume of 10 µL was injected. The
UV detector was monitored at an absorbance of 220 nm. Electrospray Ionisation-Ms/Ms
was used in positive and negative modes, for detailed spectrum analysis. The settings
of the equipment are shown below: Ion Spray Voltage (IS) 5500/-4500, Curtain gas 30,
Ion Source Gas1 (GS1) 30.0, Ion Source Gas2 (GS2) 60.0, Declustering Potential (DP) 150.0,
Focusing Potential (FP) 400.0 Entrance Potential (EP) 10.0, and Temperature (TEM) 350 ◦C.

4.14. Statistical Analysis

Data are expressed as the mean ± standard deviation (±SD) of three independent
experiments, performed in triplicate. We evaluated the statistical significance of these data
by applying one-way Anova or two-way Anova as described in figure legends.

5. Conclusions

In light of these considerations, we can conclude that O. crenata represents a rich
source of compounds able to modulate different biological functions. The ability of O.
crenata to inhibit the growth and invasiveness of two clinically relevant Candida species,
C. albicans and C. glabrata, allowed us to widen the current knowledge regarding the
antimicrobial properties of this parasitic plant. Besides, the re-epithelizing effect on human
retinal pigment epithelial cells represents an interesting biological aspect that deserves
to be further explored. All these effects could be mediated by the bioactive molecules
highlighted by UPLC-Ms-Ms analysis. Therefore, our findings encourage further studies
aimed to explore the mechanism of action by which these molecules act.
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