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Summary

Background—Biparametric MRI (comprising T2-weighted MRI and apparent diffusion 

coefficient maps) is increasingly being used to characterise prostate cancer. Although previous 

studies have combined Prostate Imaging–Reporting & Data System (PI-RADS)-based MRI 

findings with routinely available clinical variables and with deep learning-based imaging 

predictors, respectively, for prostate cancer risk stratification, none have combined all three. We 

aimed to construct an integrated nomogram (referred to as ClaD) combining deep learning-based 

imaging predictions, PI-RADS scoring, and clinical variables to identify clinically significant 

prostate cancer on biparametric MRI.
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Methods—In this retrospective multicentre study, we included patients with prostate cancer, with 

histopathology or biopsy reports and a screening or diagnostic MRI scan in the axial view, from 

four cohorts in the USA (from University Hospitals Cleveland Medical Center, Icahn School of 

Medicine at Mount Sinai, Cleveland Clinic, and Long Island Jewish Medical Center) and from 

the PROSTATEx Challenge dataset in the Netherlands. We constructed an integrated nomogram 

combining deep learning, PI-RADS score, and clinical variables (prostate-specific antigen, 

prostate volume, and lesion volume) using multivariable logistic regression to identify clinically 

significant prostate cancer on biparametric MRI. We used data from the first three cohorts to train 

the nomogram and data from the remaining two cohorts for independent validation. We compared 

the performance of our ClaD integrated nomogram with that of integrated nomograms combining 

clinical variables with either the deep learning-based imaging predictor (referred to as DIN) or 

PI-RADS score (referred to as PIN) using area under the receiver operating characteristic curves 

(AUCs). We also compared the ability of the nomograms to predict biochemical recurrence on 

a subset of patients who had undergone radical prostatectomy. We report cross-validation AUCs 

as means for the training set and used AUCs with 95% CIs to assess the performance on the 

test set. The difference in AUCs between the models were tested for statistical significance using 

DeLong’s test. We used log-rank tests and Kaplan-Meier curves to analyse survival.

Findings—We investigated 592 patients (823 lesions) with prostate cancer who underwent 3T 

multiparametric MRI at five hospitals in the USA between Jan 8, 2009, and June 3, 2017. The 

training data set consisted of 368 patients from three sites (the PROSTATEx Challenge cohort 

[n=204], University Hospitals Cleveland Medical Center [n=126], and Icahn School of Medicine 

at Mount Sinai [n=38]), and the independent validation data set consisted of 224 patients from 

two sites (Cleveland Clinic [n=151] and Long Island Jewish Medical Center [n=73]). The ClaD 

clinical nomogram yielded an AUC of 0·81 (95% CI 0·76–0·85) for identification of clinically 

significant prostate cancer in the validation data set, significantly improving performance over the 

DIN (0·74 [95% CI 0·69–0·80], p=0·0005) and PIN (0·76 [0·71–0·81], p<0·0001) nomograms. 

In the subset of patients who had undergone radical prostatectomy (n=81), the ClaD clinical 

nomogram resulted in a significant separation in Kaplan-Meier survival curves between patients 

with and without biochemical recurrence (HR 5·92 [2·34–15·00], p=0·044), whereas the DIN (1·22 

[0·54–2·79], p=0·65) and PIN nomograms did not (1·30 [0·62–2·71], p=0·51).

Interpretation—Risk stratification of patients with prostate cancer using the integrated ClaD 

nomogram could help to identify patients with prostate cancer who are at low risk, very low risk, 

and favourable intermediate risk, who might be candidates for active surveillance, and could also 

help to identify patients with lethal prostate cancer who might benefit from adjuvant therapy.

Funding—National Cancer Institute of the US National Institutes of Health, National Institute for 

Biomedical Imaging and Bioengineering, National Center for Research Resources, US Department 

of Veterans Affairs Biomedical Laboratory Research and Development Service, US Department of 

Defense, US National Institute of Diabetes and Digestive and Kidney Diseases, The Ohio Third 

Frontier Technology Validation Fund, Case Western Reserve University, Dana Foundation, and 

Clinical and Translational Science Collaborative.
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Introduction

Biparametric MRI, which comprises T2-weighted MRI and apparent diffusion coefficient 

maps derived from diffusion-weighted imaging, is increasingly being used for the detection 

and characterisation of prostate cancer.1 The Prostate Imaging–Reporting and Data System 

(PI-RADS) has standardised the diagnosis of prostate cancer using MRI and is effective for 

characterisation of prostate cancer.2 However, MRI is still restricted by benign confounding 

appearances and substantial intra-reader and inter-reader variability.3 Therefore, Gleason 

grade grouping (GGG), which assigns a prostate cancer lesion to one of five categories (1–5) 

based on invasive biopsies, remains the standard of care in determining the aggressiveness of 

prostate cancer.

According to the 2017 European Association of Urology prostate cancer guidelines,4 

patients with intermediate-risk and high-risk prostate cancer with clinically significant 

disease (defined as GGG ≥2 on pathology) are recommended a definitive treatment, such 

as radical prostatectomy, whereas those with very low-risk or low-risk disease (clinically 

insignificant prostate cancer, defined as GGG 1) and some with intermediate favourable 

risk (GGG 2) are recommended to follow an active surveillance strategy wherein patients 

are closely monitored without being provided any definitive treatment. Therefore, low-risk 

patients with clinically insignificant prostate cancer lesions should be accurately identified 

to avoid overdiagnosis and overtreatment. Avoiding undertreatment and identifying patients 

with lethal prostate cancer that will recur and metastasise despite definitive therapy is 

equally important. If identified, these patients can benefit further from adjuvant therapy. 

However, invasive biopsies still remain a de-facto standard in assessment and grading of 

prostate cancer via GGG.

Prostate cancer nomograms5,6 are widely used as prognostic tools to understand the nature 

of prostate cancer, assess risk of disease, and predict probable outcomes of treatment. 

Although some studies showed that combining prostate MRI with clinical nomograms did 

not improve performance over prostate MRI alone7 or over clinical nomograms alone,8 

Rayn and colleagues9 found that using MRI in combination with clinical nomograms 

provides significant added benefit in predicting adverse pathologies. Although pre-biopsy 

prostate cancer risk calculators, such as the Prostate Cancer Prevention Trial10 and Prostate 

Biopsy Collaborative Group (PBCG)11 risk calculators, exist, they do not include imaging 

parameters.

Radiomic features derived from prostate biparametric MRI, which evaluate various 

quantitative measures in an image (such as shape, volume, surface, and texture), might 

improve stratification of patients into different risk categories compared with routine 

imaging.12 However, this approach requires considerable effort in carefully engineering the 

features and using feature selection strategies before training a machine learning classifier.

Deep learning approaches with the use of convolutional neural networks are increasingly 

being investigated in research studies for the characterisation of prostate cancer.13,14 Deep 

learning has previously been used to automatically grade prostate cancer or distinguish 

between clinically significant and clinically insignificant prostate cancer; however, most 
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approaches have used data from a single site.13,14 Although deep learning-based approaches 

have been compared with PI-RADS assessment scores,13 to our knowledge, deep learning 

has not yet been integrated with PI-RADS assessment scores and other clinical factors to 

construct a clinical nomogram.

Studies suggest that the peritumoural region (the region immediately surrounding the visible 

tumour) on imaging includes important information related to the type and characteristics of 

the disease.15,16 Although patch-based deep learning approaches using convolutional neural 

networks are increasingly being used for disease detection and characterisation,17,18 these 

studies involve patches extracted around a region of interest delineated within the lesion 

without making use of important information in the peritumoural region. To our knowledge, 

no previous deep learning studies have used peritumoural regions to improve prostate cancer 

characterisation.

We aimed to construct an integrated nomogram (referred to as ClaD) combining 

deep learning-based imaging predictions, PI-RADS scoring, and clinical variables using 

multivariable logistic regression to identify clinically significant prostate cancer on 

biparametric MRI. Since previous research19 has suggested the importance of the 

peritumoural region for characterisation of prostate cancer on biparametric MRI, we 

explored multiple input configurations of the deep learning network, with patches extracted 

at different scales and each subsequent scale incorporating additional information from the 

peritumoural region.

Methods

Study design and participants

We retrospectively included patients with prostate cancer who had histopathology or biopsy 

reports and a screening or diagnostic MRI scan in the axial view from the publicly 

available PROSTATEx Challenge dataset (Radboud University Medical Centre, Nijmegen, 

the Netherlands; Cancer Imaging Archive) and four US cohorts from University Hospitals 

Cleveland Medical Center, Cleveland, OH; Icahn School of Medicine at Mount Sinai, New 

York, NY; Cleveland Clinic, Cleveland, OH; and Long Island Jewish Medical Center, NY). 

Descriptions of the inclusion criteria and cohorts are provided in the appendix (pp 2–3). 

Patients with MRI scans with incomplete sequences or severe motion or other susceptibility 

artifacts were excluded.

We constructed our ClaD clinical nomogram combining deep learning-based imaging 

predictions, PI-RADS score, and clinical variables (prostate-specific antigen [PSA], prostate 

volume, and lesion volume) using multivariable logistic regression to identify clinically 

significant prostate cancer on biparametric MRI. Our clinical nomogram was trained on data 

from three different sites (Dtrain; from the PROSTATEx Challenge cohort [D1], University 

Hospitals Cleveland Medical Center [D2], and Icahn School of Medicine at Mount Sinai 

[D3]) and validated on data from two independent sites (Dtest; from Cleveland Clinic [D4] 

and Long Island Jewish Medical Center [D5]). We also used our ClaD nomogram to predict 

biochemical recurrence in a subset of patients (Ďtest) from D4 who had undergone radical 

prostatectomy.
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This study was compliant with Health Insurance Portability and Accountability Act and 

was approved by the institutional review board at Case Western Reserve University and 

University Hospitals Cleveland, which allowed for computational analysis of retrospectively 

acquired, de-identified imaging data for research purposes. The datasets from all five 

institutions were acquired under specific data use agreements.

Deep learning

We compared a deep learning-based imaging predictor with two different base architectures, 

AlexNet20 and DenseNet,21 to identify clinically significant prostate cancer lesions on 

biparametric MRI (figure 1A). The networks comprised three distinct input channels: T2-

weighted MRI, apparent diffusion coefficient maps, and the corresponding binary lesion 

segmentation masks. The networks were trained at the lesion level. We used the highest 

GGG and the maximum predicted value obtained by the network among lesions to evaluate 

performance at the patient level.

We used multiple input configurations with different scales (S0–S4; defined in the appendix, 

pp 4–5) of patches (figure 1B) extracted from T2-weighted MRI and apparent diffusion 

coefficient maps, with each subsequent scale adding information from the peritumoural 

region. Briefly, the patches with respect to the first scale (S0) were extracted by drawing a 

bounding box around the segmented lesion and the patches with subsequent scales (S1–S4) 

were extracted by extending the bounding box from periphery of the delineated lesion up to 

3 mm, 6 mm, 9 mm, and 12 mm, respectively (appendix pp 4–5). For each of the scales, 3-

fold cross-validation was done on the training data set (Dtrain). The scale resulting in the best 

cross-validation area under the receiver operating characteristic (ROC) curve (AUC) was 

chosen to evaluate performance on the validation data set (Dtest). We used a binary entropy 

loss function when training the deep learning network, and an early stopping criterion was 

used to stop the network training with respect to the leave-one-out cross-validation loss. The 

network training was optimised using an Adam optimiser, with a weight decay of 10−⁵ and 

a learning rate of 10−⁶. Further details on network implementation are given in the appendix 

(p 5).

To evaluate the stability of the deep learning-based imaging predictor, we used 

a Quantitative Imaging Network-PROSTATE-Repeatability dataset22 from The Cancer 

Imaging Archive, consisting of baseline and repeat prostate multiparametric MRI scans 

of 15 individuals taken 2 weeks apart (inclusion criteria and data processing details are 

provided in the appendix, p 5). We calculated repeatability between the output network 

predictions on baseline and repeat scans in terms of the intraclass correlation coefficient.

To interpret the results of the deep learning-based imaging predictor, we used gradient-

weighted class activation mapping23 to identify specific regions in the image patches that 

contributed the most to successful predictions.

Clinical nomograms

Since clinical information and PI-RADS assessment scores were not available for one of the 

cohorts (PROSTATEx Challenge), we used data for the other two cohorts in the training data 

set to construct the nomograms.

Hiremath et al. Page 5

Lancet Digit Health. Author manuscript; available in PMC 2021 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We estimated lesion volume and prostate volume by multiplying the number of voxels from 

their corresponding manual annotations with their corresponding voxel spacing. We did a 

univariate analysis and multivariable analysis on clinical parameters (PSA, prostate volume, 

and lesion volume), PI-RADS score, and output probabilities from the deep learning-based 

imaging predictor. We then trained a logistic regression classifier on the independently 

predictive parameters from the multivariable analysis to obtain the clinical nomogram. 

Descriptions of data pre-processing and the data augmentation steps followed to construct 

the clinical nomogram are available in the appendix (pp 2–4).

We compared our clinical nomogram with a logistic regression classifier trained on 

independently predictive deep learning-based and clinical variables from the multivariable 

analysis (DIN), and with a logistic regression classifier trained on independently predictive 

PI-RADS and clinical variables from the multivariable (PIN). We used R software (rms 

package, with nomogram and lrm functions) to build the nomogram models and used a 

penalty factor of 20 for regularisation and to avoid over-fitting of the model.

We did four post-hoc analyses: (1) biopsy and ClaD undergrading (data from D4); (2) 

distinguishing between GGG 1 and GGG 2 lesions (data from D4 and D5); (3) comparison 

of nomograms with PBCG (data from D5); and (4) biochemical recurrence analysis (data 

from D4).

Owing to the random sampling nature of 12-core systematic biopsies and the confounding 

factors involved in magnetic resonance-guided and ultrasound fusion-guided biopsies, 

prostate cancer lesions can be undergraded. Since the integrated nomogram ClaD was 

trained with ground-truth from 12-core systematic biopsies and magnetic resonance-guided 

and ultrasound fusion-guided biopsies, we analysed the under-grading of ClaD with respect 

to the ground-truth from surgical specimens, and compared the under-grading with 12-core 

systematic biopsies and magnetic resonance-guided and ultrasound fusion-guided biopsies. 

We analysed under-grading in a subset of patients from Cleveland Clinic (D4) because 

they had data on ground-truth from all three sources (12-core systematic biopsies, magnetic 

resonance-guided and ultrasound fusion-guided biopsies, and surgical specimens).

To have clinical benefit, the nomograms must perform well in the diagnostic grey area, 

which means distinguishing between patients with GGG 1 and GGG 2 lesions. Therefore, 

we chose a subset of patients from the Dtest validation data set (both cohorts) to evaluate the 

performance of the deep learning-based imaging predictor, and the DIN, PIN, and integrated 

ClaD models in distinguishing between patients with GGG 1 and GGG 2 lesions.

The PBCG risk calculator,11 which has replaced the earlier Prostate Cancer Prevention Trial 

risk calculator,10 is one of the most widely used prediction tools to estimate the risk of 

high grade prostate cancer (GGG >1). We compared the performance of our integrated 

nomogram, ClaD, with the PBCG risk calculator in the validation set (D5 only). We chose 

the D5 cohort because only D5 had all the information available to evaluate the PBCG risk 

calculator against DIN, PIN, and ClaD.

We did a post-hoc analysis (Ďtest) of a subset of patients (Cleveland Clinic, D4) in the 

Dtest validation data set who had undergone radical prostatectomy (inclusion criteria listed 
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in the appendix, p 6) to investigate biochemical recurrence-free survival. We dichotomised 

(positive or negative for biochemical recurrence) the predicted class probability obtained 

from the models for the deep learning-based imaging predictor, and the DIN, PIN, and ClaD 

nomograms using the chosen cutoff point on the ROC curve. We then used the dichotomised 

labels for survival analysis using Kaplan-Meier curves.

Statistical analysis

For the identification of clinically significant lesions on biparametric MRI, we trained the 

models by labelling clinically significant lesions as 1 and clinically insignificant lesions as 

0. We used AUC and other performance metrics (accuracy, sensitivity, and specificity) to 

compare performance between the models (the deep learning-based imaging predictor, and 

the DIN, PIN, and ClaD nomograms). We tested the differences in AUC between the models 

for statistical significance using DeLong’s test.24 We report the training cross-validation 

AUCs as means with SD; performance in the validation set is reported as AUCs with 95% 

CIs. 95% CIs were calculated by bootstrapping the ROC curve more than 2000 times. We 

chose optimal cutoff points by maximising the accuracy in the training ROC curves.

For test-retest analysis of the deep learning-based imaging predictor, we analysed the 

repeatability of the output predictions using biparametric MRI scans of patients taken 2 

weeks apart. Intraclass correlation coefficient (3,1)25 scores are reported as a measure of 

repeatability.

We used univariate and multivariable analyses to construct the nomograms. We computed 

AUCs, log odds ratios (ORs), and p values of individual variables for univariate analysis; log 

ORs and p values are reported for multivariable analysis. We used decision curve analyses to 

illustrate the overall net-benefit of using one model versus another.

We used Kaplan-Meier survival curves for time-to-event analysis for biochemical 

recurrence. We used the dichotomised values (negative or positive for biochemical 

recurrence) of predictions from the models (the deep learning-based imaging predictor, 

and the DIN, PIN, and ClaD nomograms), obtained from the chosen cutoff point on the 

ROC curve, to construct the Kaplan-Meier curves. We used log-rank tests to determine 

statistically significant differences (p<0.05) in biochemical recurrence-free survival.

Role of the funding source

The funders of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report.

Results

We investigated 592 patients (823 lesions) with prostate cancer who underwent 3T 

multiparametric MRI at one hospital in the Netherlands and four hospitals in the USA 

between Jan 8, 2009, and June 3, 2017. The training data set consisted of 368 patients 

from three sites (from the PROSTATEx Challenge cohort [D1; n=204], University Hospitals 

Cleveland Medical Center [D2; n=126], and Icahn School of Medicine at Mount Sinai [D3; 

n=38]), and the validation data set consisted of 224 patients from two sites (Cleveland 

Hiremath et al. Page 7

Lancet Digit Health. Author manuscript; available in PMC 2021 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Clinic [D4; n=151] and Long Island Jewish Medical Center [D5; n=73]). The study profile 

is shown in the appendix (p 7, with data on patient demographics on p 14). All patients 

had 3-Tesla multiparametric MRI scans, using either endorectal coil (n=108) or pelvic 

phased-array coil (n=484; data on MRI acquisition criteria are provided in the appendix 

p 15). Pathological assessment of GGG using either radical prostatectomy specimens or 

biopsy reports identified 398 clinically significant prostate cancer lesions (GGG ≥2) and 425 

lesions with either clinically insignificant prostate cancer (GGG 1) or no prostate cancer on 

biopsy results (detailed data in appendix p 14).

For the deep learning-based imaging predictor, the performances of AlexNet20 and 

DenseNet21 were similar; however, we chose AlexNet as our base architecture because it 

had slightly better performance than DenseNet on the training data set (appendix p 16). 

Among different input configurations to the network, patches with scale S1 best identified 

clinically significant prostate cancer lesions with a cross validation AUC of 0.75 (SD 0.01) 

using the training data set (Dtrain; appendix p 16). Patient-level analysis using scale S1 

resulted in an AUC of 0.72 (SD 0.03) for identification of patients with clinically significant 

prostate cancer lesions. The optimal deep learning-based imaging predictor resulted in an 

AUC of 0.76 (95% CI 0.71–0.81) for identification of patients with clinically significant 

prostate cancer lesions in the Dtest validation data set.

The gradient-weighted class activation maps showed that, together with the tumoural region, 

the peritumoural region (S1; 3 mm from the tumour periphery) also contributes to the 

predictions (figure 2). Although, other input configurations with peritumoural (S2–4) were 

included in the analysis, S1 resulted in the best performance, indicating the importance of 

peritumoural regions between 0 mm and 3 mm. Moderate repeatability, with an intraclass 

correlation coefficient of 0.71 (n=10; appendix p 5), was seen between deep learning-based 

imaging predictions on baseline and repeat scans from the of Quantitative Imaging Network-

PROSTATE-Repeatability dataset.

Univariate analysis showed that all five variables (deep learning-based imaging prediction, 

PI-RADS score, PSA, prostate volume, and lesion volume) were predictive (p≤001) 

of clinically significant prostate cancer with AUCs in the range 0.62–0.76 (table 1). 

Multivariable analysis using DIN showed that only the deep learning-based imaging 

prediction and prostate volume were independently predictive of clinically significant 

prostate cancer (appendix p 8). Similarly, multivariable analysis using PIN suggested that 

only PI-RADS and prostate volume were independently predictive of clinically significant 

prostate cancer (appendix p 9).

On the Dtest validation data set, the AUCs were 0.74 (95% CI 0.69–0.80) for DIN and 0.76 

(0.71–0.81) for PIN. DeLong’s test showed that predictions of DIN and PIN did not differ 

significantly (p=0.35). Multivariable analysis of the deep learning-based imaging predictor, 

PI-RADS, and clinical variables showed that the deep learning-based imaging predictor 

(p=0.03), PI-RADS (p=0.02), and prostate volume (p=0.004) were independently predictive 

of other clinical variables (lesion volume and PSA; figure 3). ClaD improved performance 

over DIN (p=0.0005) and PIN (p<0.0001), yielding an AUC of 0.81 (95% CI 0.76–0.85) on 

the Dtest validation data set. This shows that including PI-RADS in the nomogram led to a 
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statistically significant increase of 7% in AUC compared with DIN, which does not include 

PI-RADS.

The ClaD clinical nomogram had greater accuracy than the deep learning-based imaging 

predictor, DIN, and PIN (table 2). The ClaD clinical nomogram predicted that a score of 

greater than 0.571 (optimal cutoff point on ROC curve) suggested the presence of clinically 

significant prostate cancer, whereas scores less than or equal to 0.571 indicated clinically 

insignificant prostate cancer and benign lesions. Choosing a cutoff of 0.571 on ClaD could 

help to avoid 59.18% of unnecessary biopsies among low-risk patients with clinically 

insignificant or benign lesions, at the cost of missing the clinically significant disease in 

16.77% of intermediate-risk or high-risk patients with prostate cancer.

In patients with reference ground-truth from radical prostatectomy specimens (the Cleveland 

Clinic cohort, D4), the ClaD clinical nomogram had an AUC of 0.83 (95% CI 0.75–0.91). In 

patients with ground-truth obtained from magnetic resonance-guided or ultrasound fusion-

guided biopsies (the Long Island Jewish Medical Center cohort), the ClaD nomogram had 

an AUC of 0.88 (0.82–0.94). The decision curve analysis on the Dtest validation data set 

showed an added net-benefit of using the integrated ClaD model over the deep learning-

based imaging predictor and PIN (appendix p 10). The standardised net-benefit observed for 

a high-risk score is greater than 0.3 (appendix p 10).

In a subset of 36 patients from the Cleveland Clinic (D4) cohort who underwent radical 

prostatectomy, we compared the under-grading of the 12-core systematic biopsies, magnetic 

resonance-guided biopsies, or ultrasound fusion-guided biopsies, and ClaD predictions with 

respect to radical prostatectomy specimens. Our pro posed nomogram failed to detect 

clinically significant prostate cancer lesions in seven (19%) of 36 patients, compared with 

10 (28%) for the 12-core systematic biopsy and 13 (36%) for magnetic resonance-guided 

or ultrasound fusion-guided biopsy approaches, resulting in a sensitivity of 79.4% for ClaD 

(appendix p 11).

To test whether the nomograms could distinguish between patients with GGG 1 and GGG 2 

lesions, we analysed a subset of 158 patients (n=49 with GGG 1 and n=109 with GGG 2) 

from the Dtest validation data set (both cohorts). The AUC of the models ranged from 0.72 to 

0.75 (appendix p 12), with the ClaD clinical nomogram obtaining the highest AUC of 0.75 

(95% CI 0.70–0.80; p<0.01). The ClaD clinical nomogram distinguished between patients 

with GGG 1 and GGG 2 with 72.2% accuracy, 77.1% sensitivity, and 61.2% specificity. 

Among the validation set, only one cohort (Long Island Jewish Medical Center; n=73) had 

all the information available to evaluate the PBCG nomogram. In this cohort, the DIN, PIN, 

and ClaD nomograms outperformed the PBCG risk calculator (p<0.03; appendix p 13) with 

AUCs in the range of 0.83–0.88; the ClaD nomogram had the highest AUC (0.88; 95% CI 

0.82–0.94).

In our post-hoc analysis of biochemical recurrence in 81 patients from Cleveland Clinic 

(D4) who had undergone radical prostatectomy, the ClaD clinical nomogram resulted in a 

significant separation in Kaplan-Meier survival curves between patients with and without 

biochemical recurrence using the dichotomised predictions (p=0·044). None of the other 
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models distinguished between patients according to biochemical recurrence (p=0.064 for the 

deep learning-based imaging predictor, p=0.65 for DIN, and p=0.51 for PIN; figure 4).

Discussion

In this study, we constructed ClaD, an integrated clinical nomogram combining deep 

learning, PI-RADS score, and clinical variables to identify clinically significant prostate 

cancer lesions on biparametric MRI, and compared our nomogram with other integrated 

nomograms that combined either deep learning or PI-RADS score with clinical variables 

(DIN and PIN). The ClaD nomogram significantly outperformed DIN and PIN in 

identification of clinically significant prostate cancer, as indicated by DeLong’s test. Given 

that the standardised net-benefit of ClaD for a high-risk score was greater than 0.3, clinicians 

and patients should engage in shared decision making regarding use of active treatment if 

the risk of significant cancer is greater than 0.3. We also showed that integrating imaging 

and clinical parameters into a nomogram can outperform risk calculators such as the PBCG 

risk calculator.

Patch-based deep learning approaches using convolutional neural networks have been used 

to detect and characterise prostate cancer;17,18 however, these studies did not make use 

of important information in the peritumoural region, which has been shown to improve 

disease characterisation and classification performance.15,16,26 Algohary and colleagues19 

showed the benefit of extracting radiomic representations from peritumoural regions along 

with intratumoural regions. They highlighted the differences in concentration of epithelial 

cells and lymphocytes between low-risk and high-risk regions by mapping the representative 

peritumoural regions on biparametric MRI to the whole-mount pathology slides. In our 

study, we explored multiple input configurations of the network, with patches extracted at 

different scales and each subsequent scale adding information from the peritumoural region. 

The patch scale (S1) that included the peritumoural region up to 3 mm from the periphery of 

the lesion resulted in optimum performance. The use of binary lesion segmentation masks as 

an auxiliary input to the network aids in setting an attention region,27 while at the same time 

providing context of the peritumoural region.

Although a few studies have shown the association of radiomic features with biochemical 

recurrence-free survival,28,29 to our knowledge, none of these studies have evaluated the 

association of deep learning predictions and representations with biochemical recurrence-

free survival. Shiradkar and colleagues28 showed that a machine learning classifier trained 

on radiomic signatures can predict biochemical recurrence. Similarly, in a study by our 

group, Li and colleagues29 constructed a radiomics-based nomogram, including GGG, 

PSA, and radiomics-based imaging biomarkers, using multivariable analysis to predict 

biochemical recurrence. Here, our findings showed that a clinical nomogram that was 

trained to identify clinically significant prostate cancer lesions on biparametric MRI could, 

as an additional feature, also predict biochemical recurrence-free survival, which might help 

to identify patients who would benefit from adjuvant therapy.

Several studies have explored MRI-based prostate cancer diagnosis and disease 

characterisation;13,30 however, most of these used data from a single site or evaluated their 
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approach on only a cross-validation set. In this study, we cross-validated our approach using 

data from three different sites and independently validated it using data collected from two 

different sites. We found that our model generalised well across the external sites.

Our study had some limitations. First, the ground-truth GGG assessment of some 

patients was obtained from biopsy reports (12-core systematic, magnetic resonance-

guided, or ultrasound fusion-guided biopsies), whereas others were obtained from radical 

prostatectomy specimens. Although the ClaD clinical nomogram was trained with reference 

ground-truth from 12-core and magnetic resonance-guided or ultrasound fusion-guided 

biopsies, the weight decay regularisation in the Adam optimiser31 and early stopping criteria 

while training the deep learning network made sure that the network did not over-fit to the 

biopsy labels. The ClaD nomogram resulted in an AUC of 0.83 (95% CI 0.75–0.91) with 

respect to radical prostatectomy specimens. Second, since experienced pathologists from 

each of the institutions separately graded the biopsy and radical prostatectomy specimens, 

we acknowledge the possibility of inter-reader variability. A central review of Gleason 

grading for all patients will be done in future work. Third, we used only PSA, lesion 

volume, and prostate volume as clinical variables because other clinical information, such 

as free-to-total PSA ratio and digital rectal examination, were not available across the 

datasets. In our work, manual delineations of the prostate gland were obtained, which is 

time consuming. Automatic lesion detection and segmentation would be desirable. Fourth, 

inter-reader variability in manual annotation of the prostate gland and lesion could lead to 

differences in the estimation of prostate and lesion volume. Although a single experienced 

radiologist from each institution delineated the lesions, using multiple readers could have 

yielded a consensus annotation that might have been less prone to the sensitivity of 

annotations made by individual readers. Fifth, we were not able to access data on race 

for all of the datasets; therefore, in terms of participant demographics, we could only report 

on age and clinical variables. Finally, our integrated ClaD nomogram was constructed by 

integrating deep learning predictions, PI-RADS, and three clinical variables. Including PI-

RADS-based scoring in the nomogram might require manual reading or interpretation of the 

MRI, which could lead to inter-observer variability. However, we showed that including PI-

RADS in the nomogram led to a statistically significant 7% increase in the AUC compared 

with DIN, which does not include PI-RADS.

In summary, we constructed an integrated nomogram (ClaD) using a routinely available 

blood parameter (PSA), prostate volume, lesion volume, PI-RADS score, and deep 

learning predictions from biparametric MRI. Our multicentre results suggest that the ClaD 

nomogram could be used as a non-invasive computer-aided diagnostic tool to triage patients 

into very low, low, and intermediate favourable risk categories for prostate cancer, thus 

helping to avoid unnecessary biopsies and identifying patients who might be candidates for 

active surveillance, and also identify high-risk patients with clinically significant prostate 

cancer, who are likely to have disease recurrence after definitive therapy and might benefit 

from adjuvant therapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in context

Evidence before this study

We searched PubMed for research articles published between database inception and 

May 27, 2021, using the search terms “prostate cancer risk stratification”, or “clinically 

significant prostate cancer” and “MRI”, together with at least one of the following: 

“machine learning”, “artificial intelligence”, “deep learning”, or “nomogram”. This 

search returned 190 titles and abstracts, which we subsequently reviewed. Although 

several previous studies have proposed pre-biopsy risk calculators for prostate cancer 

aggressiveness, most do not include MRI findings. Prostate cancer nomograms have been 

widely used as prognostic tools for prostate cancer risk assessment, and some of the 

previous studies have shown the advantage of combining Prostate Imaging–Reporting 

and Data System (PI-RADS)-based MRI findings with routinely available clinical 

variables, such as prostate-specific antigen, prostate volume, lesion volume, and digital 

rectal examination. However, to our knowledge, none of these studies have combined 

automated interpretation of MRI using artificial intelligent tools (such as deep learning 

and machine learning with PI-RADS-based MRI interpretation) with routine clinical 

variables for prostate cancer risk stratification. Additionally, we did not find any studies 

that had validated the approaches on large multi-site cohorts.

Added value of this study

This study presents a novel integrated nomogram, termed CIaD, constructed by 

integrating deep learning predictions on biparametric MRI with PI-RADS score and 

routinely used clinical variables (prostate-specific antigen, prostate volume, and lesion 

volume). The CIaD nomogram was able to identify clinically significant prostate cancer 

across a large multi-institutional cohort of 592 patients with prostate cancer. CIaD used 

deep learning-derived image patterns from both the intratumoural and the peritumoural 

regions. The CIaD nomogram could not only identify clinically significant prostate 

cancer regions, but could also predict biochemical recurrence-free survival in a subset of 

81 patients who had undergone radical prostatectomy.

Implications of all the available evidence

Accurate risk stratification of patients with prostate cancer by the integrated nomogram 

could help to identify patients with prostate cancer who are at low risk, very low risk, 

and favourable intermediate risk of prostate cancer, who might be candidates for active 

surveillance, and could also help to identify patients with lethal prostate cancer who 

might benefit from adjuvant therapy.
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Figure 1: Architecture and input configuration of the deep learning-based imaging predictor
Architectural diagram and input configuration of the deep learning-based imaging predictor 

to identify clinically significant prostate cancer lesions on biparametric MRI. (A) 

Architectural diagram of the imaging predictor depicting the three different input channels 

of the network (T2-weighted MRI, apparent diffusion coefficient maps, and binary lesion 

segmentation masks). (B) Input configurations to the deep learning-based imaging predictor.
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Figure 2: Identification of regions contributing to predictions of clinically significant prostate 
cancer by the deep learning-based imaging predictor
Model interpretability results of guided gradient-weighted class activation mapping to 

identify regions that most contributed to predictions of clinically insignificant or benign 

prostate cancer lesions (shown in blue) and clinically significant prostate cancer lesions 

(shown in red) by the deep learning-based imaging predictor on scale S1 (ie, patches 

extracted with the bounding box extended 3 mm from the tumour periphery). The colour 

gradient corresponds to the contribution of a pixel towards a clinically insignificant 

or clinically significant prostate cancer region, with darker colours showing a greater 

contribution.
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Figure 3: Integrated ClaD nomogram, combining deep learning, PI-RADS, and clinical variables
(A) An integrated nomogram combining deep learning, PI-RADS, and clinical variables 

constructed by integrating output probability score of the deep learning-based imaging 

predictor, PI-RADS score, and clinical variables to distinguish between clinically significant 

and clinically insignificant prostate cancer. (B) Multivariable logistic regression analysis 

of the deep learning-based imaging predictor, PI-RADS scoring, and clinical variables. 

PI-RADS=Prostate Imaging-Reporting and Data System. PSA=prostate-specific antigen.
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Figure 4: Kaplan-Meier analysis of BCR-free survival
Predictions obtained from the deep learning-based imaging predictor (A), integrated 

nomogram combining deep learning and clinical variables (B), integrated nomogram 

combining PI-RADS scoring and clinical variables (C), and integrated nomogram 

combining deep learning, PI-RADS scoring, and clinical variables (D). The predicted class 

probability obtained from models were dichotomised (BCR-negative or BCR-positive) using 

the chosen operating point on the receiver operating characteristic curve. Dichotomised 

labels were then used for the survival analysis. BCR=biochemical recurrence. HR=hazard 

ratio. PI-RADS=Prostate Imaging-Reporting and Data System.
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Table 1:

Univariate analysis

AUC (95% CI) Log odds ratio p value

Deep learning-based imaging predictor (0–1) 0·76 (0·67–0·86) 3·98 <0·0001

PI-RADS (1–5) 0·72 (0·61–0·82) 0·52 0·001

PSA, ng/mL 0·62 (0·51–0·74) 0·015 0·01

Prostate volume, mm3 0·76 (0·65–0·87) −0·06 <0·0001

Lesion volume, mm3 0·75 (0·66–0·84) 3·8 0·003

AUC=area under the receiver operating characteristic curve. PI-RADS=Prostate Imaging–Reporting and Data System. PSA=prostate-specific 
antigen.
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Table 2:

Performance metrics

Deep learning-based imaging predictor DIN PIN ClaD

Threshold 0·361 0·549 0·639 0·571

AUC (95% CI) 0·76 (071–0·81) 0·74 (0·69–0·80) 0·76 (0·71–0·81) 0·81 (0·76–0·85)

p value 0·004 0·0005 <0·0001 ··

Accuracy 69·36% 76·10% 75·67% 77·92%

Sensitivity 69·94% 86·70% 81·50% 83·23%

Specificity 67·34% 38·77% 55·10% 59·18%

AUC=area under the receiver operating characteristic curve. ClaD=integrated clinical nomogram combining deep learning, PI-RADS, and 
clinical variables. DIN=integrated nomogram combining deep learning-based imaging prediction and clinical variables. PIN=integrated nomogram 
combining PI-RADS scoring and clinical variables. PI-RADS=Prostate Imaging–Reporting and Data System.
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